generalized normal distribution

{{Short description|Probability distribution}}

The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line. Both families add a shape parameter to the normal distribution. To distinguish the two families, they are referred to below as "symmetric" and "asymmetric"; however, this is not a standard nomenclature.

Symmetric version{{anchor|Version 1}}

{{Probability distribution |

name =Symmetric Generalized Normal|

type =density|

pdf_image =File:Generalized normal densities.svg|

cdf_image =File:Generalized normal cdfs.svg|

parameters = \mu \, location (real)
\alpha \, scale (positive, real)
\beta \, shape (positive, real)|

support =x \in (-\infty; +\infty)\!|

pdf =\frac{\beta}{2\alpha\Gamma(1/\beta)} \;

e^{-(|x-\mu|/\alpha)^\beta}

\Gamma denotes the gamma function|

cdf =\frac{1}{2} + \text{sign}(x - \mu) \frac{1}{2\Gamma( 1/\beta ) } \gamma \left(1/\beta, \left| \frac{x - \mu}{\alpha} \right|^\beta \right)

where \beta is a shape parameter, \alpha is a scale parameter and \gamma is the unnormalized incomplete lower gamma function.|

quantile =\text{sign}(p - 0.5) \left[ \alpha^\beta F^{-1} \left(2|p - 0.5|; \frac{1}{\beta}\right) \right]^{1/\beta} + \mu

where F^{-1} \left(p; a\right) is the quantile function of Gamma distribution{{cite web |last1=Griffin |first1=Maryclare |title=Working with the Exponential Power Distribution Using gnorm |url=https://cran.r-project.org/web/packages/gnorm/vignettes/gnormUse.html |website=Github, gnorm package |access-date=26 June 2020}}|

mean = \mu \,|

median = \mu \,|

mode = \mu \,|

variance =\frac{\alpha^2\Gamma(3/\beta)}{\Gamma(1/\beta)}|

skewness =0|

kurtosis =\frac{\Gamma(5/\beta)\Gamma(1/\beta)}{\Gamma(3/\beta)^2}-3|

entropy =\frac{1}{\beta}-\log\left[\frac{\beta}{2\alpha\Gamma(1/\beta)}\right]{{cite journal |last= Nadarajah|first= Saralees|date=September 2005|title= A generalized normal distribution|journal= Journal of Applied Statistics|volume= 32 |issue= 7|pages= 685–694|doi= 10.1080/02664760500079464 |bibcode= 2005JApSt..32..685N|s2cid= 121914682}}|

mgf =|

char =|

}}

The symmetric generalized normal distribution, also known as the exponential power distribution or the generalized error distribution, is a parametric family of symmetric distributions. It includes all normal and Laplace distributions, and as limiting cases it includes all continuous uniform distributions on bounded intervals of the real line.

This family includes the normal distribution when \textstyle\beta=2 (with mean \textstyle\mu and variance \textstyle \frac{\alpha^2}{2}) and it includes the Laplace distribution when \textstyle\beta=1. As \textstyle\beta\rightarrow\infty, the density converges pointwise to a uniform density on \textstyle (\mu-\alpha,\mu+\alpha).

This family allows for tails that are either heavier than normal (when \beta<2) or lighter than normal (when \beta>2). It is a useful way to parametrize a continuum of symmetric, platykurtic densities spanning from the normal (\textstyle\beta=2) to the uniform density (\textstyle\beta=\infty), and a continuum of symmetric, leptokurtic densities spanning from the Laplace (\textstyle\beta=1) to the normal density (\textstyle\beta=2).

The shape parameter \beta also controls the peakedness in addition to the tails.

=Parameter estimation=

Parameter estimation via maximum likelihood and the method of moments has been studied.{{cite journal |last= Varanasi |first= M.K. |author2=Aazhang, B. |date=October 1989|title= Parametric generalized Gaussian density estimation|journal= Journal of the Acoustical Society of America|volume= 86|issue= 4|pages= 1404–1415|doi= 10.1121/1.398700|bibcode= 1989ASAJ...86.1404V }} The estimates do not have a closed form and must be obtained numerically. Estimators that do not require numerical calculation have also been proposed.{{cite web |last=Domínguez-Molina |first=J. Armando |author2=González-Farías, Graciela |author2-link=Graciela González Farías |author3=Rodríguez-Dagnino, Ramón M. |title=A practical procedure to estimate the shape parameter in the generalized Gaussian distribution |url=http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf |access-date=2009-03-03 |archive-date=2007-09-28 |archive-url=https://web.archive.org/web/20070928061844/http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf |url-status=dead }}

The generalized normal log-likelihood function has infinitely many continuous derivates (i.e. it belongs to the class C of smooth functions) only if \textstyle\beta is a positive, even integer. Otherwise, the function has \textstyle\lfloor \beta \rfloor continuous derivatives. As a result, the standard results for consistency and asymptotic normality of maximum likelihood estimates of \beta only apply when \textstyle\beta\ge 2.

== Maximum likelihood estimator ==

It is possible to fit the generalized normal distribution adopting an approximate maximum likelihood method.{{cite journal |last= Varanasi|first= M.K.|author2=Aazhang B. |year= 1989|title= Parametric generalized Gaussian density estimation|journal= J. Acoust. Soc. Am. |volume= 86|issue= 4|pages= 1404–1415|doi= 10.1121/1.398700|bibcode= 1989ASAJ...86.1404V}}{{cite journal |last= Do |first= M.N.|author2=Vetterli, M. |date=February 2002|title= Wavelet-based Texture Retrieval Using Generalised Gaussian Density and Kullback-Leibler Distance|journal= IEEE Transactions on Image Processing|volume= 11|issue= 2|pages= 146–158|url= http://infoscience.epfl.ch/record/33839|doi= 10.1109/83.982822|pmid= 18244620|bibcode= 2002ITIP...11..146D}} With \mu initially set to the sample first moment m_1,

\textstyle\beta is estimated by using a Newton–Raphson iterative procedure, starting from an initial guess of \textstyle\beta=\textstyle\beta_0,

:\beta _0 = \frac{m_1}{\sqrt{m_2}},

where

:m_1={1 \over N} \sum_{i=1}^N |x_i|,

is the first statistical moment of the absolute values and m_2 is the second statistical moment. The iteration is

:\beta_{i+1} = \beta_{i} - \frac{g(\beta _{i})}{g'(\beta_{i})} ,

where

:g(\beta)= 1 + \frac{\psi(1/\beta)}{\beta} - \frac{\sum_{i=1}^{N} |x_i-\mu|^\beta \log|x_i-\mu| }{\sum_{i=1}^{N} |x_i-\mu|^\beta} + \frac{\log( \frac{\beta}{N} \sum_{i=1}^{N} |x_i-\mu|^\beta)}{\beta} ,

and

:

\begin{align}

g'(\beta) = {} & -\frac{\psi(1/\beta)}{\beta^2} - \frac{\psi'(1/\beta)}{\beta^3} + \frac{1}{\beta^2} - \frac{\sum_{i=1}^N |x_i-\mu|^\beta (\log|x_i-\mu|)^2}{\sum_{i=1}^N |x_i-\mu|^\beta} \\[6pt]

& {} + \frac{\left(\sum_{i=1}^N |x_i-\mu|^\beta \log|x_i-\mu|\right)^2}{\left(\sum_{i=1}^N |x_i-\mu|^\beta \right)^2} + \frac{\sum_{i=1}^N |x_i-\mu|^\beta \log|x_i-\mu|}{\beta \sum_{i=1}^N |x_i-\mu|^\beta} \\[6pt]

& {} - \frac{\log\left(\frac{\beta}{N} \sum_{i=1}^N |x_i-\mu|^\beta \right)}{\beta^2},

\end{align}

and where \psi and \psi' are the digamma function and trigamma function.

Given a value for \textstyle\beta, it is possible to estimate \mu by finding the minimum of:

: \min_\mu = \sum_{i=1}^{N} |x_i-\mu|^\beta

Finally \textstyle\alpha is evaluated as

:\alpha = \left( \frac{\beta}{N} \sum_{i=1}^N|x_i-\mu|^\beta\right)^{1/\beta} .

For \beta \leq 1, median is a more appropriate estimator of \mu . Once \mu is estimated, \beta and \alpha can be estimated as described above.{{Cite journal|last1=Varanasi|first1=Mahesh K.|last2=Aazhang|first2=Behnaam|date=1989-10-01|title=Parametric generalized Gaussian density estimation|journal=The Journal of the Acoustical Society of America|volume=86|issue=4|pages=1404–1415|doi=10.1121/1.398700|bibcode=1989ASAJ...86.1404V |issn=0001-4966}}

=Applications=

The symmetric generalized normal distribution has been used in modeling when the concentration of values around the mean and the tail behavior are of particular interest.

{{cite journal

|last = Liang

|first = Faming

|author2 = Liu, Chuanhai

|author3 = Wang, Naisyin | author3-link = Naisyin Wang

|date = April 2007

|title = A robust sequential Bayesian method for identification of differentially expressed genes

|journal = Statistica Sinica

|volume = 17

|issue = 2

|pages = 571–597

|url = http://www3.stat.sinica.edu.tw/statistica/password.asp?vol=17&num=2&art=8

|access-date = 2009-03-03

|archive-url = https://web.archive.org/web/20071009233343/http://www3.stat.sinica.edu.tw/statistica/password.asp?vol=17&num=2&art=8

|archive-date = 2007-10-09

}}

{{cite book |title= Bayesian Inference in Statistical Analysis |last= Box |first= George E. P.|author-link= George E. P. Box |author2-link=George Tiao|author2=Tiao, George C. |year= 1992 |publisher= Wiley|location= New York|isbn= 978-0-471-57428-6}} Other families of distributions can be used if the focus is on other deviations from normality. If the symmetry of the distribution is the main interest, the skew normal family or asymmetric version of the generalized normal family discussed below can be used. If the tail behavior is the main interest, the student t family can be used, which approximates the normal distribution as the degrees of freedom grows to infinity. The t distribution, unlike this generalized normal distribution, obtains heavier than normal tails without acquiring a cusp at the origin. It finds uses in plasma physics under the name of Langdon Distribution resulting from inverse bremsstrahlung.{{cite thesis |degree=PhD |title=Electron velocity distribution functions and Thomson scattering |last=Milder |first=Avram L. |year=2021 |publisher=University of Rochester |hdl=1802/36536 |hdl-access=free}}

In a linear regression problem modeled as y \sim \mathrm{GeneralizedNormal}(X\cdot\theta, \alpha, p), the MLE will be the \arg\min_{\theta}\|X\cdot\theta-y\|_p where the p-norm is used.

=Properties=

== Moments ==

Let X_\beta be zero mean generalized Gaussian distribution of shape \beta and scaling parameter \alpha . The moments of X_\beta exist and are finite for any k greater than −1. For any non-negative integer k, the plain central moments are

:

\operatorname{E}\left[X^k_\beta\right] =

\begin{cases}

0 & \text{if }k\text{ is odd,} \\

\alpha^{k} \Gamma \left( \frac{k+1}{\beta} \right) \Big/ \, \Gamma \left( \frac{1}{\beta} \right) & \text{if }k\text{ is even.}

\end{cases}

== Connection to Stable Count Distribution ==

From the viewpoint of the Stable count distribution, \beta can be regarded as Lévy's stability parameter. This distribution can be decomposed to an integral of kernel density where the kernel is either a Laplace distribution or a Gaussian distribution:

:

\frac{1}{2} \frac{1}{\Gamma(\frac{1}{\beta}+1)} e^{-z^\beta} =

\begin{cases}

\displaystyle\int_0^\infty \frac{1}{\nu} \left( \frac{1}{2} e^{-|z|/\nu} \right)

\mathfrak{N}_\beta(\nu) \, d\nu ,

& 1 \geq \beta > 0; \text{or } \\

\displaystyle\int_0^\infty \frac{1}{s} \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} (z/s)^2} \right)

V_{\beta}(s) \, ds ,

& 2 \geq \beta > 0;

\end{cases}

where \mathfrak{N}_\beta(\nu) is the Stable count distribution and V_{\beta}(s)

is the Stable vol distribution.

== Connection to Positive-Definite Functions ==

The probability density function of the symmetric generalized normal distribution is a positive-definite function for \beta \in (0,2].{{cite journal

|last = Dytso

|first = Alex

|author2 = Bustin, Ronit

|author3 = Poor, H. Vincent

|author4 = Shamai, Shlomo

|date = 2018

|title = Analytical properties of generalized Gaussian distributions

|journal = Journal of Statistical Distributions and Applications

|volume = 5

|issue = 1

|page = 6

|doi=10.1186/s40488-018-0088-5

|doi-access= free

}}

{{cite journal

|last = Bochner

|first = Salomon

|date = 1937

|title = Stable laws of probability and completely monotone functions

|journal = Duke Mathematical Journal

|volume = 3

|issue = 4

|pages = 726–728

|url = https://jsdajournal.springeropen.com/articles/10.1186/s40488-018-0088-5

|doi=10.1215/s0012-7094-37-00360-0

}}

== Infinite divisibility ==

The symmetric generalized Gaussian distribution is an infinitely divisible distribution if and only if \beta \in (0,1] \cup \{ 2\} .

= Generalizations =

The multivariate generalized normal distribution, i.e. the product of n exponential power distributions with the same \beta and \alpha parameters, is the only probability density that can be written in the form p(\mathbf x)=g(\|\mathbf x\|_\beta) and has independent marginals.{{cite journal |last= Sinz|first= Fabian|author2=Gerwinn, Sebastian |author3=Bethge, Matthias

|date=May 2009|title=Characterization of the p-Generalized Normal Distribution. |journal=Journal of Multivariate Analysis|volume= 100|issue= 5|pages= 817–820|doi=10.1016/j.jmva.2008.07.006|doi-access=free}} The results for the special case of the Multivariate normal distribution is originally attributed to Maxwell.{{cite journal |last= Kac|first= M.|year= 1939|title=On a characterization of the normal distribution|journal=American Journal of Mathematics|volume= 61|issue= 3|pages= 726–728|doi= 10.2307/2371328 |jstor= 2371328}}

Asymmetric version{{anchor|Version 2}}

{{Probability distribution |

name =Asymmetric Generalized Normal|

type =density|

pdf_image =File:Generalized normal densities 2.svg|

cdf_image =File:Generalized normal cdfs 2.svg|

parameters = \xi \, location (real)
\alpha \, scale (positive, real)
\kappa \, shape (real)|

support =x \in (-\infty,\xi+\alpha/\kappa) \text{ if } \kappa>0
x \in (-\infty,\infty) \text{ if } \kappa=0
x \in (\xi+\alpha/\kappa, +\infty) \text{ if } \kappa<0|

pdf = \frac{\phi(y)}{\alpha-\kappa(x-\xi)}, where
y = \begin{cases} - \frac{1}{\kappa} \log \left[ 1- \frac{\kappa(x-\xi)}{\alpha} \right] & \text{if } \kappa \neq 0 \\ \frac{x-\xi}{\alpha} & \text{if } \kappa=0 \end{cases}
\phi is the standard normal pdf|

cdf = \Phi(y) , where
y = \begin{cases} - \frac{1}{\kappa} \log \left[ 1- \frac{\kappa(x-\xi)}{\alpha} \right] & \text{if } \kappa \neq 0 \\ \frac{x-\xi}{\alpha} & \text{if } \kappa=0 \end{cases}
\Phi is the standard normal CDF|

mean =\xi - \frac{\alpha}{\kappa} \left( e^{\kappa^2/2} - 1 \right)|

median =\xi \,|

mode =|

variance =\frac{\alpha^2}{\kappa^2} e^{\kappa^2} \left( e^{\kappa^2} - 1 \right)|

skewness =\frac{3 e^{\kappa^2} - e^{3 \kappa^2} - 2}{(e^{\kappa^2} - 1)^{3/2}} \text{ sign}(\kappa) |

kurtosis =e^{4 \kappa^2} + 2 e^{3 \kappa^2} + 3 e^{2 \kappa^2} - 6 |

entropy =|

mgf =|

char =|

}}

{{distinguish|Skew normal distribution}}

The asymmetric generalized normal distribution is a family of continuous probability distributions in which the shape parameter can be used to introduce asymmetry or skewness.Hosking, J.R.M., Wallis, J.R. (1997) Regional frequency analysis: an approach based on L-moments, Cambridge University Press. {{ISBN|0-521-43045-3}}. Section A.8[http://www.cran.r-project.org/web/packages/lmomco/lmomco.pdf Documentation for the lmomco R package] When the shape parameter is zero, the normal distribution results. Positive values of the shape parameter yield left-skewed distributions bounded to the right, and negative values of the shape parameter yield right-skewed distributions bounded to the left. Only when the shape parameter is zero is the density function for this distribution positive over the whole real line: in this case the distribution is a normal distribution, otherwise the distributions are shifted and possibly reversed log-normal distributions.

=Parameter estimation=

Parameters can be estimated via maximum likelihood estimation or the method of moments. The parameter estimates do not have a closed form, so numerical calculations must be used to compute the estimates. Since the sample space (the set of real numbers where the density is non-zero) depends on the true value of the parameter, some standard results about the performance of parameter estimates will not automatically apply when working with this family.

=Applications=

The asymmetric generalized normal distribution can be used to model values that may be normally distributed, or that may be either right-skewed or left-skewed relative to the normal distribution. The skew normal distribution is another distribution that is useful for modeling deviations from normality due to skew. Other distributions used to model skewed data include the gamma, lognormal, and Weibull distributions, but these do not include the normal distributions as special cases.

Kullback-Leibler divergence between two PDFs

Kullback-Leibler divergence (KLD) is a method using for compute the divergence or similarity between two probability density functions.

{{cite journal

|last = Kullback

|first = S.

|author2 = Leibler, R.A.

|date = 1951

|title = On information and sufficiency

|journal = The Annals of Mathematical Statistics

|volume = 22

|issue = 1

|pages = 79–86

|doi=10.1214/aoms/1177729694

|doi-access= free

}}

Let P(x) and Q(x) two generalized Gaussian distributions with parameters \alpha_1, \beta_1, \mu_1 and \alpha_2, \beta_2, \mu_2

subject to the constraint \mu_1 = \mu_2 = 0.

{{cite journal

|last = Quintero-Rincón

|first = A.

|author2 = Pereyra, M.

|author3 = D’Giano, C.

|author4 = Batatia, H.

|author5 = Risk, M.

|date = 2017

|title = A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence

|journal = IFMBE Proceedings

|volume = 60

|pages = 13–16

|doi=10.1007/978-981-10-4086-3_4

|doi-access= free

|hdl= 11336/77054

|hdl-access= free

}} Then this divergence is given by:

: KLD_{pdf}(P(x)||Q(x)) = -\frac{1}{\beta_1} + \frac{(\frac{\alpha_1}{\alpha_2})^{\beta_2}\Gamma (\frac{1+\beta_2}{\beta_1})}{\Gamma (\frac{1}{\beta_1})} + \log \left(\frac{\alpha_2 \Gamma(1+ \frac{1}{\beta_2})}{\alpha_1 \Gamma(1+ \frac{1}{\beta_1})}\right)

See also

References

{{Reflist}}

{{ProbDistributions|continuous}}

{{Statistics|hide}}

{{DEFAULTSORT:Generalized Normal Distribution}}

Category:Continuous distributions