trigamma function
{{Short description|Mathematical function}}
{{For|Barnes's gamma function of 3 variables |triple gamma function}}
File:Psi1.png method.]]
In mathematics, the trigamma function, denoted {{math|ψ1(z)}} or {{math|ψ(1)(z)}}, is the second of the polygamma functions, and is defined by
: .
It follows from this definition that
:
where {{math|ψ(z)}} is the digamma function. It may also be defined as the sum of the series
:
making it a special case of the Hurwitz zeta function
:
Note that the last two formulas are valid when {{math|1 − z}} is not a natural number.
Calculation
A double integral representation, as an alternative to the ones given above, may be derived from the series representation:
:
using the formula for the sum of a geometric series. Integration over {{math|y}} yields:
:
An asymptotic expansion as a Laurent series can be obtained via the derivative of the asymptotic expansion of the digamma function:
:
\psi_1(z)
&\sim {\operatorname{d}\over\operatorname{d}\!z} \left(\ln z - \sum_{n=1}^\infty \frac{B_n}{nz^n}\right) \\
&= \frac{1}{z} + \sum_{n=1}^\infty \frac{B_n}{z^{n+1}} = \sum_{n=0}^{\infty}\frac{B_n}{z^{n+1}} \\
&= \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} - \frac{1}{30z^5} + \frac{1}{42z^7} - \frac{1}{30z^9} + \frac{5}{66z^{11}} - \frac{691}{2730z^{13}} + \frac{7}{6z^{15}} \cdots
\end{align}
where {{mvar|Bn}} is the {{mvar|n}}th Bernoulli number and we choose {{math|B1 {{=}} {{sfrac|1|2}}}}.
=Recurrence and reflection formulae=
The trigamma function satisfies the recurrence relation
:
and the reflection formula
:
which immediately gives the value for z {{=}} {{sfrac|1|2}}: .
=Special values=
At positive integer values we have that
:
\psi_1(n) = \frac{\pi^2}{6} - \sum_{k=1}^{n-1} \frac{1}{k^2}, \qquad \psi_1(1) = \frac{\pi^2}{6}, \qquad \psi_1(2) = \frac{\pi^2}{6} - 1, \qquad \psi_1(3) = \frac{\pi^2}{6} - \frac{5}{4}.
At positive half integer values we have that
:
\psi_1\left(n+\frac12\right)=\frac{\pi^2}{2}-4\sum_{k=1}^n\frac{1}{(2k-1)^2},
\qquad \psi_1\left(\tfrac12\right) = \frac{\pi^2}{2},
\qquad \psi_1\left(\tfrac32\right) = \frac{\pi^2}{2} - 4 .
The trigamma function has other special values such as:
:
\psi_1\left(\tfrac14\right) = \pi^2 + 8G
where {{mvar|G}} represents Catalan's constant.
There are no roots on the real axis of {{math|ψ1}}, but there exist infinitely many pairs of roots {{math|zn, {{overline|zn}}}} for {{math|Re z < 0}}. Each such pair of roots approaches {{math|Re zn {{=}} −n + {{sfrac|1|2}}}} quickly and their imaginary part increases slowly logarithmic with {{mvar|n}}. For example, {{math|z1 {{=}} −0.4121345... + 0.5978119...i}} and {{math|z2 {{=}} −1.4455692... + 0.6992608...i}} are the first two roots with {{math|Im(z) > 0}}.
=Relation to the Clausen function=
The digamma function at rational arguments can be expressed in terms of trigonometric functions and logarithm by the digamma theorem. A similar result holds for the trigamma function but the circular functions are replaced by Clausen's function. Namely,{{Cite book|title=Structural properties of polylogarithms|editor-last=Lewin|editor-first=L. |publisher=American Mathematical Society|year=1991|isbn=978-0821816349}}
:
\psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right).
Appearance
See also
Notes
References
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. {{ISBN|0-486-61272-4}}. See section [http://www.math.sfu.ca/~cbm/aands/page_260.htm §6.4]
- Eric W. Weisstein. [http://mathworld.wolfram.com/TrigammaFunction.html Trigamma Function -- from MathWorld--A Wolfram Web Resource]