hexaoctagonal tiling
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U86_1}}
In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.
Constructions
There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,6,1+], gives [(8,8,3)], (*883). Removing the mirror between the order 2 and 8 points, [1+,8,6], gives [(4,6,6)], (*664). Removing two mirrors as [8,1+,6,1+], leaves remaining mirrors (*4343).
class=wikitable
|+ Four uniform constructions of 6.8.6.8 |
align=center
!Uniform | |
align=center
|[8,6] |[(8,3,8)] = [8,6,1+] |[(6,4,6)] = [1+,8,6] |[1+,8,6,1+] |
align=center
!Symbol |r{8,6} |r{(8,3,8)} |r{(6,4,6)} | |
align=center
|{{CDD|node|8|node_1|6|node}} |{{CDD|node|8|node_1|6|node_h0}} = {{CDD|node|split1-88|branch_11}} |{{CDD|node_h0|8|node_1|6|node}} = {{CDD|branch_11|split2-66|node}} |{{CDD|node_h0|8|node_1|6|node_h0}} = |
Symmetry
The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of [8,6].
160px [1+,8,4,1+], (*4343) !160px |
---|
Related polyhedra and tiling
{{Order 8-6 tiling table}}
{{Quasiregular6 table}}
{{Quasiregular8 table}}
See also
{{Commonscat|Uniform tiling 6-8-6-8}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery] {{Webarchive|url=https://web.archive.org/web/20130324095520/http://bork.hampshire.edu/~bernie/hyper/ |date=2013-03-24 }}
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}