hydroxylammonium nitrate

{{Chembox

| Watchedfields = changed

| verifiedrevid = 404999565

| ImageFile = Hydroxylammonium-nitrate-2D.png

| ImageSize =

| ImageFile1 = Hydroxylammonium-nitrate-3D-balls.png

| IUPACName =

| OtherNames = hydroxylamine nitrate

|Section1={{Chembox Identifiers

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 24259

| InChI = 1/NO3.H4NO/c2-1(3)4;1-2/h;2H,1H3/q-1;+1

| InChIKey = CRJZNQFRBUFHTE-UHFFFAOYAP

| SMILES = [NH3+]O.[N+](=O)([O-])[O-]

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/NO3.H4NO/c2-1(3)4;1-2/h;2H,1H3/q-1;+1

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = CRJZNQFRBUFHTE-UHFFFAOYSA-N

| CASNo_Ref = {{cascite|correct|??}}

| CASNo = 13465-08-2

| PubChem = 26045

| EINECS = 236-691-2

}}

|Section2={{Chembox Properties

| Formula = {{chem2|[NH3OH]+[NO3]−}}

| MolarMass = 96.04 g/mol

| Appearance =

| Density = 1.84 g/cm3

| MeltingPt = 48 °C

| BoilingPt =

| Solubility = Soluble

}}

|Section6={{Chembox Explosive

| ShockSens =

| FrictionSens =

| DetonationV =

| REFactor =

}}

|Section7={{Chembox Hazards

| ExternalSDS = [https://www.sigmaaldrich.com/US/en/sds/aldrich/438235 External MSDS (as 18 % solution)]

| GHSPictograms = {{GHS01}}{{GHS06}}{{GHS07}}{{GHS08}}{{GHS09}}

| GHSSignalWord = Danger

| HPhrases = {{H-phrases|201|302|311|315|317|319|351|373|400}}

| PPhrases = {{P-phrases|201|202|210|230|240|250|260|261|264|270|272|273|280|281|301+312|302+352|305+351+338|308+313|312|314|321|322|330|332+313|333+313|337+313|361|362|363|370+380|372|373|391|401|405|501}}

| FlashPt =

| AutoignitionPt =

}}

|Section8={{Chembox Related

| OtherAnions = Hydroxylammonium sulfate
Hydroxylammonium chloride

| OtherCations = Ammonium nitrate

| OtherCompounds = Hydroxylamine

}}

}}

Hydroxylammonium nitrate or hydroxylamine nitrate (HAN) is an inorganic compound with the chemical formula {{chem2|[NH3OH]+[NO3]−}}. It is a salt derived from hydroxylamine and nitric acid. In its pure form, it is a colourless hygroscopic solid. It has potential to be used as a rocket propellant either as a solution in monopropellants or bipropellants.{{cite web |first1=Ronald A. |last1=Spores |first2=Robert |last2=Masse |first3=Scott |last3=Kimbrel |first4=Chris |last4=McLean |title=GPIM AF-M315E Propulsion System |publisher=49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit |place=San Jose, California, USA |date=15–17 July 2013 |url=https://www.rocket.com/sites/default/files/documents/CubeSat/GPIM%20AF-M315E%20Propulsion%20System.pdf |url-status=live |archive-url=https://web.archive.org/web/20140228104531/https://www.rocket.com/files/aerojet/documents/CubeSat/GPIM%20AF-M315E%20Propulsion%20System.pdf |archive-date=2014-02-28}} Hydroxylammonium nitrate (HAN)-based propellants are a viable and effective solution for future "green" propellant-based missions, as it offers 50% higher performance for a given propellant tank compared to commercially used hydrazine.

Properties

The compound is a salt with separated hydroxyammonium and nitrate ions.{{cite journal |first1=A. L. |last1=Rheingold |first2=J. T. |last2=Cronin |first3=T. B. |last3=Brill |first4=F. K. |last4=Ross |date=March 1987 |title=Structure of hydroxylammonium nitrate (HAN) and the deuterium homolog |journal=Acta Crystallographica Section C |volume=43 |issue=3 |pages=402–404 |doi=10.1107/S0108270187095593 |bibcode=1987AcCrC..43..402R }} Hydroxylammonium nitrate is unstable because it contains both a reducing agent (hydroxylammonium cation) and an oxidizer (nitrate),{{Cite journal |last1=Pembridge |first1=John R. |last2=Stedman |first2=Geoffrey |date=1979 |title=Kinetics, mechanism, and stoicheiometry of the oxidation of hydroxylamine by nitric acid |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4652e73706346e14d1822e7c6008283a6aa4c051 |journal=Journal of the Chemical Society, Dalton Transactions |issue=11 |pages=1657–1663 |doi=10.1039/dt9790001657 |issn=0300-9246|url-access=subscription }} the situation being analogous to ammonium nitrate. It is usually handled as an aqueous solution with small amount of nitric acid as a stabilizer.{{Cite encyclopedia |title=Hydroxylammonium Salts |encyclopedia=Encyclopedia of Oxidizers |publisher=De Gruyter |last=Schmidt |first=Eckart W. |date=2022 |volume=3 |pages=1589–1816 |doi=10.1515/9783110750294-011 |isbn=978-3-11-075029-4}}{{rp|1641}} The solution is corrosive and toxic, and may be carcinogenic. Solid HAN is unstable, especially in the presence of trace amounts of iron(III).

Laboratory preparatory routes

  1. Catalytic reduction of nitric oxides
  2. Double decomposition
  3. Electrolysis
  4. Hydrogenation of nitric acid
  5. Ion exchange via resins
  6. Neutralization

Applications

HAN has applications as a component of rocket propellant, in both solid and liquid form. HAN and ammonium dinitramide (ADN), another energetic ionic compound, were investigated as less-toxic replacements for toxic hydrazine for monopropellant rockets where only a catalyst is needed to cause decomposition. {{cite journal |publisher=Wiley Online Library |title=ADN and HAN-Based Monopropellants – A Minireview on Compatibility and Chemical Stability in Aqueous Media |journal=Propellants, Explosives, Pyrotechnics |volume=44 |issue=9 |pages=1084–1089 |author=Dominic Freudenmann |author2=Helmut K. Ciezki |date=29 July 2019 |doi=10.1002/prep.201900127 |doi-access=free}} HAN and ADN will work as monopropellants in water solution, as well as when dissolved with fuel liquids such as methanol.

HAN is used by the Network Centric Airborne Defense Element boost-phase interceptor being developed by Raytheon.{{cite web |url=http://www.prnewswire.com/cgi-bin/micro_stories.pl?ACCT=149999&TICK=RTN&STORY=/www/story/05-14-2007/0004587551&EDATE=May+14,+2007 |title=Boost phase interceptor |publisher=Raytheon |work=Press Releases |archive-url=https://web.archive.org/web/20070518215926/http://www.prnewswire.com/cgi-bin/micro_stories.pl?ACCT=149999&TICK=RTN&STORY=%2Fwww%2Fstory%2F05-14-2007%2F0004587551&EDATE=May+14%2C+2007 |archive-date=May 18, 2007}} As a solid propellant oxidizer, it is typically bonded with glycidyl azide polymer (GAP), hydroxyl-terminated polybutadiene (HTPB), or carboxy-terminated polybutadiene (CTPB) and requires preheating to 200-300 °C to decompose.{{citation needed|date=December 2019}} When used as a monopropellant, the catalyst is a noble metal, similar to the other monopropellants that use silver, palladium, or iridium.{{citation needed|date=December 2019}}

HAN also enabled the development of solid propellants that could be controlled electrically and switched on and off.{{citation |last1=Sawka |first1=Wayne N. |chapter=Electrical Solid Propellants: A Safe, Micro to Macro Propulsion Technology |date=2013-07-12 |series=Joint Propulsion Conferences |publisher=American Institute of Aeronautics and Astronautics |doi=10.2514/6.2013-4168 |last2=McPherson |first2=Michael |title=49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference |isbn=978-1-62410-222-6}} Developed by DSSP for special effects{{cite news |url=https://www.livedesignonline.com/business-people-news/ldi-2014-award-winners-announced |title=LDI 2014 Award Winners Announced |date=2014-11-23 |newspaper=Live Design Online |access-date=2019-06-19}} and microthrusters, these were the first HAN-based propellants in space; and aboard the Naval Research Laboratory SpinSat, launched in 2014.{{cite web |url=https://apps.dtic.mil/dtic/tr/fulltext/u2/a591390.pdf |archive-url=https://web.archive.org/web/20190619165015/https://apps.dtic.mil/dtic/tr/fulltext/u2/a591390.pdf |url-status=live |archive-date=June 19, 2019 |title=SpinSat Mission Overview |last1=Nicholas |first1=Andrew |last2=Finne |first2=Ted |date=September 2013 |last3=Gaylsh |first3=Ivan |last4=Mai |first4=Anthony |last5=Yen |first5=Jim}}{{cite web |url=https://directory.eoportal.org/web/eoportal/satellite-missions/s/spinsat |title=SpinSat - Satellite Missions - eoPortal Directory |website=directory.eoportal.org |access-date=2019-06-19}}

It was used in a fuel/oxidizer blend known as "AF-M315E" in the high thrust engines of the Green Propellant Infusion Mission,{{cite web |url=http://www.nasa.gov/mission_pages/tdm/green/ |title=About Green Propellant Infusion Mission (GPIM) |work=NASA |date=2014 |archive-date=2013-04-24 |archive-url=https://web.archive.org/web/20130424120132/http://www.nasa.gov/mission_pages/tdm/green/ |url-status=live}}{{cite web |url=http://www.ballaerospace.com/page.jsp?page=281 |title=Green Propellant Infusion Mission (GPIM) |date=2014 |publisher=Ball Aerospace |archive-date=2013-04-24 |archive-url=https://web.archive.org/web/20130424145843/http://ballaerospace.com/page.jsp?page=281 |url-status=live}}{{cite news |first=Tina |last=Casey |title=NASA Sets Its Sights On $45 Million Green Fuel Mission |date=19 July 2013 |url=http://cleantechnica.com/2013/07/19/nasa-seeks-green-fuel-for-spacecraft/ |publisher=Clean Technica}} which was initially expected to be launched in 2015, and eventually launched and deployed on 25 June 2019.{{cite web |url=https://blogs.nasa.gov/spacex/2019/06/25/nasas-green-propellant-infusion-mission-deploys/ |title=NASA's Green Propellant Infusion Mission Deploys |first=Danielle |last=Sempsrott |publisher=NASA |date=25 June 2019 |access-date=6 June 2020}} The specific impulse of AF-M315E is 257 s.

The aqueous solution of HAN can be added with fuel components such as methanol, glycine, TEAN (triethanolammonium nitrate), and amines to form high performance monopropellants for space propulsion systems.{{Cite conference |last1=Wucherer |first1=E. |last2=Christofferson |first2=Stacy |last3=Reed |first3=Brian |date=2000 |title=Assessment of high performance HAN-monopropellants |conference=36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference |doi=10.2514/6.2000-3872}}

China Aerospace Science and Technology Corporation (CASC) launched a demonstration of HAN-based thruster aboard a microsatellite in January 2018.{{Cite web |date=24 May 2019 |script-title=zh:航天科技六院801所HAN 基无毒推进发动机研制攻关记 |trans-title=HAN-based non-toxic propulsion engine research and development of 801 Institute of the Sixth Academy of Space Science and Technology |url=http://www.spacechina.com/n25/n2018089/n2530233/c2633323/content.html |access-date=14 May 2020 |publisher=China Aerospace Science and Technology Corporation |language=zh-cn}}

Japanese technology demonstration satellite Innovative Satellite Technology Demonstration-1, launched in January 2019, contains a demonstration thruster using HAN and operated successfully in orbit.{{Cite web |title=革新的衛星技術実証1号機 PRESS KIT |trans-title=Innovative Satellite Technology Demonstration Flight No. 1 PRESS KIT |url=http://fanfun.jaxa.jp/countdown/kakushin-epsilon4/pdf/kakushin01_press_kit_web.pdf |access-date=15 March 2019 |publisher=JAXA}}{{Cite web |date=15 March 2019 |script-title=ja:小型実証衛星1号機 RAPIS-1 グリーンプロペラント推進系(GPRCS)世界初の軌道上 HAN系推進薬 実証! |trans-title=Small Demonstration Satellite-1 RAPIS-1 Green Propellant Reaction Control System (GPRCS), the world's first on-orbit HAN propulsion system demonstration! |url=http://fanfun.jaxa.jp/topics/detail/14250.html |access-date=15 March 2019 |publisher=JAXA |language=ja}}{{Cite journal |last1=Hori |first1=Keiichi |last2=Katsumi |first2=Toshiyuki |last3=Sawai |first3=Shujiro |last4=Azuma |first4=Nobuyuki |last5=Hatai |first5=Keigo |last6=Nakatsuka |first6=Junichi |date=2019 |title=HAN-Based Green Propellant, SHP163 – Its R&D and Test in Space |url=https://onlinelibrary.wiley.com/doi/10.1002/prep.201900237 |journal=Propellants, Explosives, Pyrotechnics |volume=44 |issue=9 |pages=1080–1083 |doi=10.1002/prep.201900237 |issn=0721-3115|url-access=subscription }}

HAN is sometimes used in nuclear reprocessing as a reducing agent for plutonium ions.{{Cite tech report |url=https://www.osti.gov/biblio/4065655 |title=Hydroxylamine nitrate as a plutonium reductant in the PUREX solvent extraction process |last=McKibben |first=J. M. |last2=Bercaw |first2=J. E. |date=1971-01-01 |publisher=Du Pont de Nemours (E. I.) and Co., Aiken, S. C. Savannah River Lab. |doi=10.2172/4065655 |number=DP-1248}}

Bibliography

  • Donald G. Harlow et al. (1998). "Technical Report on Hydroxlyamine Nitrate". U.S. Department of Energy. [https://web.archive.org/web/20061008220829/http://www.eh.doe.gov/chem_safety//Docs/hydroxlyamine.pdf DOE/EH-0555]
  • Gösta Bengtsson et al. (2002) "The kinetics and mechanism of oxidation of hydroxylamine by iron(III)". J. Chem. Soc., Dalton Trans., 2002, 2548–2552. {{doi|10.1039/B201602H}}
  • {{Cite encyclopedia |title=Hydroxylammonium Salts |encyclopedia=Encyclopedia of Oxidizers |publisher=De Gruyter |last=Schmidt |first=Eckart W. |date=2022 |volume=3 |pages=1589–1816 |doi=10.1515/9783110750294-011 |isbn=978-3-11-075029-4}}
  • {{Cite encyclopedia |title=Hydroxylammonium Nitrate-Based Monopropellants |encyclopedia=Encyclopedia of Monopropellants |publisher=De Gruyter |last=Schmidt |first=Eckart W. |date=2023 |volume=2 |pages=807–1194 |doi=10.1515/9783110751390-007 |isbn=978-3-11-075139-0}}

References