identity by descent

{{distinguish|text=lineage-bonded society or isolation by distance, another concept in population genetics with the acronym "IBD"}}

{{short description|Identical nucleotide sequence due to inheritance without recombination from a common ancestor}}

A DNA segment is identical by descent (IBD) in two or more individuals if:

  • they have inherited it from a common ancestor without recombination, that is, the segment has the same ancestral origin in these individuals
  • the segment is maximal, that is, it is delimited at both ends by ancestral recombination events.{{Cite journal

| last1 = Carmi | first1 = Shai

| title = A renewal theory approach to IBD sharing

| doi = 10.1016/j.tpb.2014.08.002

| journal = Theoretical Population Biology

| volume = 97

| pages = 35-48

| year = 2014

| pmid = 25149691

| pmc = 4179929

}}

File:Pedigree, recombination and resulting IBD segments, schematic representation.png

File:Pedigree, recombination and resulting IBD segments, schematic representation modified.png

Theory

All individuals in a finite population are related if traced back long enough and will, therefore, share segments of their genomes IBD. During meiosis segments of IBD are broken up by recombination. Therefore, the expected length of an IBD segment depends on the number of generations since the most recent common ancestor at the locus of the segment. The length of IBD segments that result from a common ancestor n generations in the past (therefore involving 2n meiosis) is exponentially distributed with mean 1/(2n) Morgans (M).{{Cite journal

| last1 = Browning | first1 = S. R.

| title = Estimation of Pairwise Identity by Descent from Dense Genetic Marker Data in a Population Sample of Haplotypes

| doi = 10.1534/genetics.107.084624

| journal = Genetics

| volume = 178

| issue = 4

| pages = 2123–2132

| year = 2008

| pmid = 18430938

| pmc =2323802

}} The expected number of IBD segments decreases as the number of generations since the common ancestor at this locus increases. For a specific DNA segment, the probability of being IBD decreases as 2−2n since in each meiosis the probability of transmitting this segment is 1/2.{{Cite journal

| last1 = Thompson | first1 = E. A. | author1-link = Elizabeth A. Thompson

| title = The IBD process along four chromosomes

| doi = 10.1016/j.tpb.2007.11.011

| journal = Theoretical Population Biology

| volume = 73

| issue = 3

| pages = 369–373

| year = 2008

| pmid = 18282591

| pmc =2518088

| bibcode = 2008TPBio..73..369T }}

Applications

Identified IBD segments can be used for a wide range of purposes. As noted above the amount (length and number) of IBD sharing depends on the familial relationships between the tested individuals. Therefore, one application of IBD segment detection is to quantify relatedness.{{Cite journal

| last1 = Albrechtsen | first1 = A.

| last2 = Sand Korneliussen | first2 = T.

| last3 = Moltke | first3 = I.

| last4 = Van Overseem Hansen | first4 = T.

| last5 = Nielsen | first5 = F. C.

| last6 = Nielsen | first6 = R.

| doi = 10.1002/gepi.20378

| title = Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium

| journal = Genetic Epidemiology

| volume = 33

| issue = 3

| pages = 266–274

| year = 2009

| pmid = 19025785

| pmc =

| s2cid = 12029712

}}{{Cite journal

| last1 = Browning | first1 = S. R.

| last2 = Browning | first2 = B. L.

| doi = 10.1016/j.ajhg.2010.02.021

| title = High-Resolution Detection of Identity by Descent in Unrelated Individuals

| journal = The American Journal of Human Genetics

| volume = 86

| issue = 4

| pages = 526–539

| year = 2010

| pmid = 20303063

| pmc =2850444

}}{{Cite journal

| last1 = Gusev | first1 = A.

| last2 = Lowe | first2 = J. K.

| last3 = Stoffel | first3 = M.

| last4 = Daly | first4 = M. J.

| last5 = Altshuler | first5 = D.

| last6 = Breslow | first6 = J. L.

| last7 = Friedman | first7 = J. M.

| last8 = Pe'Er | first8 = I.

| doi = 10.1101/gr.081398.108

| title = Whole population, genome-wide mapping of hidden relatedness

| journal = Genome Research

| volume = 19

| issue = 2

| pages = 318–326

| year = 2008

| pmid = 18971310

| pmc =2652213

}}{{Cite journal

| last1 = Purcell | first1 = S.

| last2 = Neale | first2 = B.

| last3 = Todd-Brown | first3 = K.

| last4 = Thomas | first4 = L.

| last5 = Ferreira | first5 = M. A. R.

| last6 = Bender | first6 = D.

| last7 = Maller | first7 = J.

| last8 = Sklar | first8 = P.

| last9 = De Bakker | first9 = P. I. W.

| last10 = Daly | first10 = M. J.

| last11 = Sham | first11 = P. C.

| doi = 10.1086/519795

| title = PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses

| journal = The American Journal of Human Genetics

| volume = 81

| issue = 3

| pages = 559–575

| year = 2007

| pmid = 17701901

| pmc =1950838

}} Measurement of relatedness can be used in forensic genetics,{{cite book|author1=Ian W. Evett|author2=Bruce S. Weir|title=Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists|url=https://books.google.com/books?id=J1V3QgAACAAJ|date=January 1998|publisher=Sinauer Associates, Incorporated|isbn=978-0-87893-155-2}} but can also increase information in genetic linkage mapping{{Cite journal

| last1 = Leutenegger | first1 = A.

| last2 = Prum | first2 = B.

| last3 = Genin | first3 = E.

| last4 = Verny | first4 = C.

| last5 = Lemainque | first5 = A.

| last6 = Clergetdarpoux | first6 = F.

| last7 = Thompson | first7 = E. | author7-link = Elizabeth A. Thompson

| doi = 10.1086/378207

| title = Estimation of the Inbreeding Coefficient through Use of Genomic Data

| journal = The American Journal of Human Genetics

| volume = 73

| issue = 3

| pages = 516–523

| year = 2003

| pmid = 12900793

| pmc =1180677

}} and help to decrease bias by undocumented relationships in standard association studies.{{Cite journal

| last1 = Voight | first1 = B. F.

| last2 = Pritchard | first2 = J. K.

| doi = 10.1371/journal.pgen.0010032

| title = Confounding from Cryptic Relatedness in Case-Control Association Studies

| journal = PLOS Genetics

| volume = 1

| issue = 3

| pages = e32

| year = 2005

| pmid = 16151517

| pmc =1200427

| doi-access = free

}}

Another application of IBD is genotype imputation and haplotype phase inference.{{Cite journal

| last1 = Kong | first1 = A.

| last2 = Masson | first2 = G.

| last3 = Frigge | first3 = M. L.

| last4 = Gylfason | first4 = A.

| last5 = Zusmanovich | first5 = P.

| last6 = Thorleifsson | first6 = G.

| last7 = Olason | first7 = P. I.

| last8 = Ingason | first8 = A.

| last9 = Steinberg | first9 = S.

| last10 = Rafnar | first10 = T.

| last11 = Sulem | first11 = P.

| last12 = Mouy | first12 = M.

| last13 = Jonsson | first13 = F.

| last14 = Thorsteinsdottir | first14 = U.

| last15 = Gudbjartsson | first15 = D. F.

| last16 = Stefansson | first16 = H.

| last17 = Stefansson | first17 = K.

| title = Detection of sharing by descent, long-range phasing and haplotype imputation

| doi = 10.1038/ng.216

| journal = Nature Genetics

| volume = 40

| issue = 9

| pages = 1068–1075

| year = 2008

| pmid = 19165921

| pmc = 4540081}}{{Cite journal

| last1 = Gusev | first1 = A.

| last2 = Shah | first2 = M. J.

| last3 = Kenny | first3 = E. E.

| last4 = Ramachandran | first4 = A.

| last5 = Lowe | first5 = J. K.

| last6 = Salit | first6 = J.

| last7 = Lee | first7 = C. C.

| last8 = Levandowsky | first8 = E. C.

| last9 = Weaver | first9 = T. N.

| last10 = Doan | first10 = Q. C.

| last11 = Peckham | first11 = H. E.

| last12 = McLaughlin | first12 = S. F.

| last13 = Lyons | first13 = M. R.

| last14 = Sheth | first14 = V. N.

| last15 = Stoffel | first15 = M.

| last16 = De La Vega | first16 = F. M.

| last17 = Friedman | first17 = J. M.

| last18 = Breslow | first18 = J. L.

| last19 = Pe'Er | first19 = I.

| title = Low-Pass Genome-Wide Sequencing and Variant Inference Using Identity-by-Descent in an Isolated Human Population

| doi = 10.1534/genetics.111.134874

| journal = Genetics

| volume = 190

| issue = 2

| pages = 679–689

| year = 2011

| pmid = 22135348

| pmc =3276614

}}{{Cite journal

| last1 = Browning | first1 = B. L.

| last2 = Browning | first2 = S. R.

| doi = 10.1016/j.ajhg.2009.01.005

| title = A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals

| journal = The American Journal of Human Genetics

| volume = 84

| issue = 2

| pages = 210–223

| year = 2009

| pmid = 19200528

| pmc =2668004

}} Long shared segments of IBD, which are broken up by short regions may be indicative for phasing errors.{{rp|SI}}

= IBD mapping =

IBD mapping is similar to linkage analysis, but can be performed without a known pedigree on a cohort of unrelated individuals. IBD mapping can be seen as a new form of association analysis that increases the power to map genes or genomic regions containing multiple rare disease susceptibility variants.{{Cite journal

| last1 = Browning | first1 = S. R.

| last2 = Thompson | first2 = E. A. | author2-link = Elizabeth A. Thompson

| doi = 10.1534/genetics.111.136937

| title = Detecting Rare Variant Associations by Identity-by-Descent Mapping in Case-Control Studies

| journal = Genetics

| volume = 190

| issue = 4

| pages = 1521–1531

| year = 2012

| pmid = 22267498

| pmc =3316661

}}

Using simulated data, Browning and Thompson showed that IBD mapping has higher power than association testing when multiple rare variants within a gene contribute to disease susceptibility. Via IBD mapping, genome-wide significant regions in isolated populations as well as outbred populations were found while standard association tests failed.{{Cite journal

| last1 = Gusev | first1 = A.

| last2 = Kenny | first2 = E. E.

| last3 = Lowe | first3 = J. K.

| last4 = Salit | first4 = J.

| last5 = Saxena | first5 = R.

| last6 = Kathiresan | first6 = S.

| last7 = Altshuler | first7 = D. M.

| last8 = Friedman | first8 = J. M.

| last9 = Breslow | first9 = J. L.

| last10 = Pe'Er | first10 = I.

| doi = 10.1016/j.ajhg.2011.04.023

| title = DASH: A Method for Identical-by-Descent Haplotype Mapping Uncovers Association with Recent Variation

| journal = The American Journal of Human Genetics

| volume = 88

| issue = 6

| pages = 706–717

| year = 2011

| pmid = 21620352

| pmc =3113343

}} Houwen et al. used IBD sharing to identify the chromosomal location of a gene responsible for benign recurrent intrahepatic cholestasis in an isolated fishing population.{{Cite journal

| last1 = Houwen | first1 = R. H. J.

| last2 = Baharloo | first2 = S.

| last3 = Blankenship | first3 = K.

| last4 = Raeymaekers | first4 = P.

| last5 = Juyn | first5 = J.

| last6 = Sandkuijl | first6 = L. A.

| last7 = Freimer | first7 = N. B.

| doi = 10.1038/ng1294-380

| title = Genome screening by searching for shared segments: Mapping a gene for benign recurrent intrahepatic cholestasis

| journal = Nature Genetics

| volume = 8

| issue = 4

| pages = 380–386

| year = 1994

| pmid = 7894490

| pmc =

| hdl = 1765/55192

| s2cid = 8131209

| url = http://repub.eur.nl/pub/55192

| hdl-access = free

}} Kenny et al. also used an isolated population to fine-map a signal found by a genome-wide association study (GWAS) of plasma plant sterol (PPS) levels, a surrogate measure of cholesterol absorption from the intestine.{{Cite journal

| last1 = Kenny | first1 = E. E.

| last2 = Gusev | first2 = A.

| last3 = Riegel | first3 = K.

| last4 = Lutjohann | first4 = D.

| last5 = Lowe | first5 = J. K.

| last6 = Salit | first6 = J.

| last7 = Maller | first7 = J. B.

| last8 = Stoffel | first8 = M.

| last9 = Daly | first9 = M. J.

| last10 = Altshuler | first10 = D. M.

| last11 = Friedman | first11 = J. M.

| last12 = Breslow | first12 = J. L.

| last13 = Pe'Er | first13 = I.

| last14 = Sehayek | first14 = E.

| title = Systematic haplotype analysis resolves a complex plasma plant sterol locus on the Micronesian Island of Kosrae

| doi = 10.1073/pnas.0907336106

| journal = Proceedings of the National Academy of Sciences

| volume = 106

| issue = 33

| pages = 13886–13891

| year = 2009

| pmid = 19667188

| pmc =2728990

| bibcode = 2009PNAS..10613886K

| doi-access = free

}} Francks et al. was able to identify a potential susceptibility locus for schizophrenia and bipolar disorder with genotype data of case-control samples.{{Cite journal

| last1 = Francks | first1 = C.

| last2 = Tozzi | first2 = F.

| last3 = Farmer | first3 = A.

| last4 = Vincent | first4 = J. B.

| last5 = Rujescu | first5 = D.

| last6 = St Clair | first6 = D.

| last7 = Muglia | first7 = P.

| doi = 10.1038/mp.2008.100

| title = Population-based linkage analysis of schizophrenia and bipolar case–control cohorts identifies a potential susceptibility locus on 19q13

| journal = Molecular Psychiatry

| volume = 15

| issue = 3

| pages = 319–325

| year = 2008

| pmid = 18794890

| pmc =

| doi-access = free

| hdl = 11858/00-001M-0000-0012-C935-9

| hdl-access = free

}} Lin et al. found a genome-wide significant linkage signal in a dataset of multiple sclerosis patients.{{Cite journal

| last1 = Lin | first1 = R.

| last2 = Charlesworth | first2 = J.

| last3 = Stankovich | first3 = J.

| last4 = Perreau | first4 = V. M.

| last5 = Brown | first5 = M. A.

| last6 = Anzgene | first6 = B. V.

| last7 = Taylor | first7 = B. V.

| editor1-last = Toland

| editor1-first = Amanda Ewart

| title = Identity-by-Descent Mapping to Detect Rare Variants Conferring Susceptibility to Multiple Sclerosis

| doi = 10.1371/journal.pone.0056379

| journal = PLOS ONE

| volume = 8

| issue = 3

| pages = e56379

| year = 2013

| pmid = 23472070

| pmc =3589405

| bibcode = 2013PLoSO...856379L

| doi-access = free

}} Letouzé et al. used IBD mapping to look for founder mutations in cancer samples.{{Cite journal

| last1 = Letouzé | first1 = E.

| last2 = Sow | first2 = A.

| last3 = Petel | first3 = F.

| last4 = Rosati | first4 = R.

| last5 = Figueiredo | first5 = B. C.

| last6 = Burnichon | first6 = N.

| last7 = Gimenez-Roqueplo | first7 = A. P.

| last8 = Lalli | first8 = E.

| last9 = De Reyniès | first9 = A. L.

| editor1-last = Mailund

| editor1-first = Thomas

| title = Identity by Descent Mapping of Founder Mutations in Cancer Using High-Resolution Tumor SNP Data

| doi = 10.1371/journal.pone.0035897

| journal = PLOS ONE

| volume = 7

| issue = 5

| pages = e35897

| year = 2012

| pmid = 22567117

| pmc =3342326

| bibcode = 2012PLoSO...735897L

| doi-access = free

}}

File:IBD segment detected by HapFABIA in 1000Genomes.png

= IBD in population genetics =

Detection of natural selection in the human genome is also possible via detected IBD segments. Selection will usually tend to increase the number of IBD segments among individuals in a population. By scanning for regions with excess IBD sharing, regions in the human genome that have been under strong, very recent selection can be identified.{{Cite journal

| last1 = Albrechtsen | first1 = A.

| last2 = Moltke | first2 = I.

| last3 = Nielsen | first3 = R.

| doi = 10.1534/genetics.110.113977

| title = Natural Selection and the Distribution of Identity-by-Descent in the Human Genome

| journal = Genetics

| volume = 186

| issue = 1

| pages = 295–308

| year = 2010

| pmid = 20592267

| pmc =2940294

}}{{Cite journal

| last1 = Han | first1 = L.

| last2 = Abney | first2 = M.

| doi = 10.1002/gepi.20606

| title = Identity by descent estimation with dense genome-wide genotype data

| journal = Genetic Epidemiology

| volume = 35

| issue = 6

| pages = 557–567

| year = 2011

| pmid = 21769932

| pmc =3587128

}}

In addition to that, IBD segments can be useful for measuring and identifying other influences on population structure.{{Cite journal

| last1 = Cockerham | first1 = C. C.

| last2 = Weir | first2 = B. S.

| title = Variance of actual inbreeding

| journal = Theoretical Population Biology

| volume = 23

| issue = 1

| pages = 85–109

| year = 1983

| pmid = 6857551

| doi=10.1016/0040-5809(83)90006-0

| bibcode = 1983TPBio..23...85C

}}{{Cite journal

| last1 = Gusev | first1 = A.

| last2 = Palamara | first2 = P. F.

| last3 = Aponte | first3 = G.

| last4 = Zhuang | first4 = Z.

| last5 = Darvasi | first5 = A.

| last6 = Gregersen | first6 = P.

| last7 = Pe'Er | first7 = I.

| doi = 10.1093/molbev/msr133

| title = The Architecture of Long-Range Haplotypes Shared within and across Populations

| journal = Molecular Biology and Evolution

| volume = 29

| issue = 2

| pages = 473–486

| year = 2011

| pmid = 21984068

| pmc =3350316

}}{{Cite journal

| last1 = Palamara | first1 = P. F.

| last2 = Lencz | first2 = T.

| last3 = Darvasi | first3 = A.

| last4 = Pe’Er | first4 = I.

| title = Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History

| doi = 10.1016/j.ajhg.2012.08.030

| journal = The American Journal of Human Genetics

| volume = 91

| issue = 5

| pages = 809–822

| year = 2012

| pmid = 23103233

| pmc =3487132

}}{{Cite journal

| last1 = Palamara | first1 = P. F.

| last2 = Pe'Er | first2 = I.

| doi = 10.1093/bioinformatics/btt239

| title = Inference of historical migration rates via haplotype sharing

| journal = Bioinformatics

| volume = 29

| issue = 13

| pages = i180–i188

| year = 2013

| pmid = 23812983

| pmc =3694674

}} Gusev et al. showed that IBD segments can be used with additional modeling to estimate demographic history including bottlenecks and admixture. Using similar models Palamara et al. and Carmi et al. reconstructed the demographic history of Ashkenazi Jewish and Kenyan Maasai individuals.{{Cite journal

| last1 = Carmi | first1 = S.

| last2 = Palamara | first2 = P. F.

| last3 = Vacic | first3 = V.

| last4 = Lencz | first4 = T.

| last5 = Darvasi | first5 = A.

| last6 = Pe'Er | first6 = I.

| doi = 10.1534/genetics.112.147215

| title = The Variance of Identity-by-Descent Sharing in the Wright-Fisher Model

| journal = Genetics

| volume = 193

| issue = 3

| pages = 911–928

| year = 2013

| pmid = 23267057

| pmc =3584006

| arxiv = 1206.4745

}} Botigué et al. investigated differences in African ancestry among European populations.{{Cite journal

| last1 = Botigue | first1 = L. R.

| last2 = Henn | first2 = B. M.

| last3 = Gravel | first3 = S.

| last4 = Maples | first4 = B. K.

| last5 = Gignoux | first5 = C. R.

| last6 = Corona | first6 = E.

| last7 = Atzmon | first7 = G.

| last8 = Burns | first8 = E.

| last9 = Ostrer | first9 = H.

| last10 = Flores | first10 = C.

| last11 = Bertranpetit | first11 = J.

| last12 = Comas | first12 = D.

| last13 = Bustamante | first13 = C. D.

| title = Gene flow from North Africa contributes to differential human genetic diversity in southern Europe

| doi = 10.1073/pnas.1306223110

| journal = Proceedings of the National Academy of Sciences

| volume = 110

| issue = 29

| pages = 11791–11796

| year = 2013

| pmid = 23733930

| pmc =3718088

| bibcode = 2013PNAS..11011791B

| doi-access = free

}} Ralph and Coop used IBD detection to quantify the common ancestry of different European populations{{Cite journal

| last1 = Ralph | first1 = P.

| last2 = Coop | first2 = G.

| editor1-last = Tyler-Smith

| editor1-first = Chris

| doi = 10.1371/journal.pbio.1001555

| title = The Geography of Recent Genetic Ancestry across Europe

| journal = PLOS Biology

| volume = 11

| issue = 5

| pages = e1001555

| year = 2013

| pmid = 23667324

| pmc =3646727

| doi-access = free

}} and Gravel et al. similarly tried to draw conclusions of the genetic history of populations in the Americas.{{Cite journal

| last1 = Gravel | first1 = S.

| last2 = Zakharia | first2 = F.

| last3 = Moreno-Estrada | first3 = A.

| last4 = Byrnes | first4 = J. K.

| last5 = Muzzio | first5 = M.

| last6 = Rodriguez-Flores | first6 = J. L.

| last7 = Kenny | first7 = E. E.

| last8 = Gignoux | first8 = C. R.

| last9 = Maples | first9 = B. K.

| last10 = Guiblet | first10 = W.

| last11 = Dutil | first11 = J.

| last12 = Via | first12 = M.

| last13 = Sandoval | first13 = K.

| last14 = Bedoya | first14 = G.

| last15 = 1000 Genomes | first15 = T. K.

| last16 = Oleksyk | first16 = A.

| last17 = Ruiz-Linares | first17 = E. G.

| last18 = Burchard | first18 = J. C.

| last19 = Martinez-Cruzado | first19 = C. D.

| last20 = Bustamante | first20 = C. D.

| editor1-last = Williams

| editor1-first = Scott M

| title = Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data

| doi = 10.1371/journal.pgen.1004023

| journal = PLOS Genetics

| volume = 9

| issue = 12

| pages = e1004023

| year = 2013

| pmid = 24385924

| pmc =3873240

| arxiv = 1306.4021

| doi-access = free

}} Ringbauer et al. utilized geographic structure of IBD segments to estimate dispersal within Eastern Europe during the last centuries.{{Cite journal|last1=Ringbauer|first1=Harald|last2=Coop|first2=Graham|last3=Barton|first3=Nicholas H.|date=2017-03-01|title=Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks|url=http://www.genetics.org/content/205/3/1335|journal=Genetics|language=en|volume=205|issue=3|pages=1335–1351|doi=10.1534/genetics.116.196220|issn=0016-6731|pmid=28108588|pmc=5340342}} Using the 1000 Genomes data Hochreiter found differences in IBD sharing between African, Asian and European populations as well as IBD segments that are shared with ancient genomes like the Neanderthal or Denisova.{{Cite journal

| last1 = Hochreiter | first1 = S.

| doi = 10.1093/nar/gkt1013

| title = HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data

| journal = Nucleic Acids Research

| year = 2013

| pmid = 24174545

| pmc =3905877| volume=41

| issue=22

| pages=e202

}}

Methods and software

Programs for the detection of IBD segments in unrelated individuals:

  • [https://www.biorxiv.org/content/early/2017/01/26/103325 RAPID]: Ultra-fast Identity by Descent Detection in Biobank-Scale Cohorts using Positional Burrows–Wheeler Transform Naseri A, Liu X, Zhang S, Zhi D. Ultra-fast Identity by Descent Detection in Biobank-Scale Cohorts using Positional Burrows–Wheeler Transform BioRxiv 2017.
  • [http://parente.stanford.edu/ Parente]: identifies IBD segments between pairs of individuals in unphased genotype dataRodriguez JM, Batzoglou S, Bercovici S. An accurate method for inferring relatedness in large datasets of unphased genotypes via an embedded likelihood-ratio test. RECOMB 2013, LNBI 7821:212-229.
  • [http://faculty.washington.edu/browning/beagle/beagle.html BEAGLE/fastIBD]: finds segments of IBD between pairs of individuals in genome-wide SNP data{{Cite journal

| last1 = Browning | first1 = B. L.

| last2 = Browning | first2 = S. R.

| doi = 10.1016/j.ajhg.2011.01.010

| title = A Fast, Powerful Method for Detecting Identity by Descent

| journal = The American Journal of Human Genetics

| volume = 88

| issue = 2

| pages = 173–182

| year = 2011

| pmid = 21310274

| pmc =3035716

}}

  • [https://web.archive.org/web/20131231192206/http://faculty.washington.edu/browning/beagle/b4.html BEAGLE/RefinedIBD]: finds IBD segments in pairs of individuals using a hashing method and evaluates their significance via a likelihood ratio{{Cite journal

| last1 = Browning | first1 = B. L.

| last2 = Browning | first2 = S. R.

| doi = 10.1534/genetics.113.150029

| title = Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data

| journal = Genetics

| volume = 194

| issue = 2

| pages = 459–471

| year = 2013

| pmid = 23535385

| pmc =3664855

}}

  • [http://faculty.washington.edu/browning/ibdseq.html IBDseq]: detects pairwise IBD segments in sequencing data{{Cite journal

| last1 = Browning | first1 = B. L.

| last2 = Browning | first2 = S. R.

| doi = 10.1016/j.ajhg.2013.09.014

| title = Detecting Identity by Descent and Estimating Genotype Error Rates in Sequence Data

| journal = The American Journal of Human Genetics

| volume = 93

| issue = 5

| pages = 840–851

| year = 2013

| pmid = 24207118

| pmc =3824133

}}

  • [http://gusevlab.org/projects/germline/ GERMLINE]: discovers in linear-time IBD segments in pairs of individuals
  • [http://www1.cs.columbia.edu/~gusev/dash/ DASH]: builds upon pairwise IBD segments to infer clusters of individuals likely to be sharing a single haplotype
  • [https://web.archive.org/web/20131124040826/http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml PLINK]: is a tool set for whole genome association and population-based linkage analyses including a method for pairwise IBD segment detection
  • [http://www.popgen.dk/software/index.php/Relate Relate]: estimates the probability of IBD between pairs of individuals at a specific locus using SNPs
  • [http://people.binf.ku.dk/ida/Software/MCMC_IBDfinder/ MCMC_IBDfinder]: is based on Markov chain Monte Carlo (MCMC) for finding IBD segments in multiple individuals{{Cite journal

| last1 = Moltke | first1 = I.

| last2 = Albrechtsen | first2 = A.

| last3 = Hansen | first3 = T. V. O.

| last4 = Nielsen | first4 = F. C.

| last5 = Nielsen | first5 = R.

| title = A method for detecting IBD regions simultaneously in multiple individuals--with applications to disease genetics

| doi = 10.1101/gr.115360.110

| journal = Genome Research

| volume = 21

| issue = 7

| pages = 1168–1180

| year = 2011

| pmid = 21493780

| pmc =3129259

}}

  • [http://www.cs.ucla.edu/~danhe/Software/IBDGroupon.html IBD-Groupon]: detects group-wise IBD segments based on pairwise IBD relationships{{Cite journal

| last1 = He | first1 = D.

| title = IBD-Groupon: An efficient method for detecting group-wise identity-by-descent regions simultaneously in multiple individuals based on pairwise IBD relationships

| doi = 10.1093/bioinformatics/btt237

| journal = Bioinformatics

| volume = 29

| issue = 13

| pages = i162–i170

| year = 2013

| pmid = 23812980

| pmc =3694672

}}

  • [http://www.bioinf.jku.at/research/short-IBD/ HapFABIA]: identifies very short IBD segments characterized by rare variants in large sequencing data simultaneously in multiple individuals

See also

References

{{Reflist}}

{{Population genetics}}

{{Personal genomics}}

{{DEFAULTSORT:Identity by descent}}

Category:Classical genetics

Category:Population genetics

Category:Human genome projects