langbeinites
{{short description|Class of chemical compounds}}
Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula {{chem2|M2M'2(SO4)3}}, where M is a large univalent cation (such as potassium, rubidium, caesium, or ammonium), and M' is a small divalent cation (for example, magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group, {{chem2|SO4(2-)}}, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate ({{chem2|BeF4(2-)}}), selenate ({{chem2|SeO4(2-)}}), chromate ({{chem2|CrO4(2-)}}), molybdate ({{chem2|MoO4(2-)}}), or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.
At higher temperatures the crystal structure is cubic P213. However, the crystal structure may change to lower symmetries at lower temperatures, for example, P21, P1, or P212121. Usually this temperature is well below room temperature, but in a few cases the substance must be heated to acquire the cubic structure.
Crystal structure
The crystal structures of langbeinites consist of a network of oxygen vertex-connected tetrahedral polyanions (such as sulfate) and distorted metal ion-oxygen octahedra. The unit cell contains four formula units. In the cubic form the tetrahedral anions are slightly rotated from the main crystal axes. When cooled, this rotation disappears and the tetrahedra align, resulting in lower energy as well as lower crystal symmetry.
Examples
Sulfates include dithallium dicadmium sulfate,{{cite journal |last=Guelylah |first=A. |author2=G. Madariaga |author3=W. Morgenroth |author4=M. I. Aroyo |author5=T. Breczewski |author6=E. H. Bocanegra |year=2000 |title=X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of langbeinite-type dithallium dicadmium sulfate |journal=Acta Crystallographica Section B |volume=56 |issue=6 |pages=921–935 |doi=10.1107/S0108768100009514 |pmid=11099956|bibcode=2000AcCrB..56..921G }} dirubidium dicadmium sulfate,{{cite journal |last=Guelylah |first=Abderrahim |author2=Gotzon Madariaga |year=2003 |title=Dirubidium dicadmium sulfate at 293 K|journal=Acta Crystallographica Section C |volume=59 |issue=5 |pages=i32–i34 |doi=10.1107/S0108270103007479 |pmid=12743381|bibcode=2003AcCrC..59I..32G }} dipotassium dicadmium sulfate,{{cite journal |last=Guelylah |first=A. |author2=M. I. Aroyo |author3=J. M. Pérez-Mato |year=1996 |title=Microscopic distortion and order parameter in langbeinite K2Cd2(SO4)3 |journal=Phase Transitions |volume=59 |issue=1–3 |pages=155–179 |doi=10.1080/01411599608220042|bibcode=1996PhaTr..59..155G }} dithallium manganese sulfate,{{cite journal |last=Zemann |first=Anna |author2=J. Zemann |year=1957 |title=Die Kristallstruktur von Langbeinit, K2Mg2(SO4)3 |journal=Acta Crystallographica |volume=10 |issue=6 |pages=409–413 |doi=10.1107/S0365110X57001346|doi-access=free |bibcode=1957AcCry..10..409Z }} and dirubidium dicalcium trisulfate.{{cite journal |last=Boujelben |first=Mohamed |author2=Mohamed Toumi |author3=Tahar Mhiri |year=2007 |title=Langbeinite-type Rb2Ca2(SO4)3 |journal=Acta Crystallographica Section E |volume=63 |issue=7 |pages=i157 |doi=10.1107/S1600536807027043|bibcode=2007AcCrE..63I.157B }}
Selenates include diammonium dimanganese selenate. A diammonium dicadmium selenate langbeinite could not be crystallised from water, but a trihydrate exists.{{cite journal |last1=Martínez |first1=M. L. |last2=Rodriguez |first2=A. |last3=Mestres |first3=L. |last4=Solans |first4=X. |last5=Bocanegra |first5=E. H. |title=Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O |journal=Journal of Solid State Chemistry |date=November 1990 |volume=89 |issue=1 |pages=88–93 |doi=10.1016/0022-4596(90)90297-B |bibcode=1990JSSCh..89...88M }}
Chromate based langbeinites include dicaesium dimanganese chromate.
Molybdates include {{chem2|Rb2Co2(MoO4)3}}. Potassium members are absent, as are zinc and copper containing solids, which all crystallize in different forms. Manganese, magnesium, cadmium and some nickel double molybdates exist as langbeinites.{{cite journal |last=Солодовникова |first=С. Ф. |author2=Солодовникова, В. А. |year=1997 |title=Новый тип строения в морфотропном ряду A+2M+2(MoO4)3: кристаллическая структура Rb2Cu2(MoO4)3 |journal=ЖУРНАЛ структур. химии |volume=38 |issue=5 |pages=914–921 |language=Russian |url=http://jsc.niic.nsc.ru/JSC/jsc_rus/1997-t38/n5/V38_N5_12.pdf}}
Double tungstates of the form {{chem2|A2B2(WO4)3}} are predicted to exist in the langbeinite form.
An examples with tetrafluroberyllate is dipotassium dimanganese tetrafluoroberyllate ({{chem2|K2Mn2(BeF4)3}}).{{cite journal |last=Guelylah |first=A. |author2=T. Breczewski |author3=G. Madariaga |year=1996 |title=A New Langbeinite: Dipotassium Dimanganese Tetrafluoroberyllate |journal=Acta Crystallographica Section C |volume=52 |issue=12 |pages=2951–2954 |doi=10.1107/S0108270196008827|bibcode=1996AcCrC..52.2951G }} Other tetrafluoroberyllates may include: {{chem2|Rb2Mg2(BeF4)3}}; {{chem2|Tl2Mg2(BeF4)3}}; {{chem2|Rb2Mn2(BeF4)3}}; {{chem2|Tl2Mn2(BeF4)3}}; {{chem2|Rb2Ni2(BeF4)3}}; {{chem2|Tl2Ni2(BeF4)3}}; {{chem2|Rb2Zn2(BeF4)3}}; {{chem2|Tl2Zn2(BeF4)3}}; {{chem2|Cs2Ca2(BeF4)3}}; {{chem2|Rb2Ca2(BeF4)3}}; {{chem2|RbCsMnCd(BeF4)3}}; {{chem2|Cs2MnCd(BeF4)3}}; {{chem2|RbCsCd2(BeF4)3}}; {{chem2|Cs2Cd2(BeF4)3}}; {{chem2|Tl2Cd2(BeF4)3}}; {{chem2|(NH4)2Cd2(BeF4)3}}; {{chem2|KRbMnCd(BeF4)3}}; {{chem2|K2MnCd(BeF4)3}}; {{chem2|Rb2MnCd(BeF4)3}}; {{chem2|Rb2Cd2(BeF4)3}}; {{chem2|RbCsCo2(BeF4)3}}; {{chem2|(NH4)2Co2(BeF4)3}}; {{chem2|K2Co2(BeF4)3}}; {{chem2|Rb2Co2(BeF4)3}}; {{chem2|Tl2Co2(BeF4)3}}; {{chem2|RbCsMn2(BeF4)3}}; {{chem2|Cs2Mn2(BeF4)3}}; {{chem2|RbCsZn2(BeF4)3}}; {{chem2|(NH4)2Mg2(BeF4)3}}; {{chem2|(NH4)2Mn2(BeF4)3}}; {{chem2|(NH4)2Ni2(BeF4)3}}; {{chem2|(NH4)2Zn2(BeF4)3}};{{chem2|KRbMg2(BeF4)3}}; {{chem2|K2Mg2(BeF4)3}}; {{chem2|KRbMn2(BeF4)3}}; {{chem2|K2Ni2(BeF4)3}};
The phosphate containing langbeinites were found in 1972 with the discovery of {{chem2|KTi2(PO4)3}}, and since then a few more phosphates that also contain titanium have been found such as {{chem2|Na2FeTi(PO4)3}} and {{chem2|Na2CrTi(PO4)3}}. By substituting metals in {{chem2|A2MTi(PO4)3}}, A from (K, Rb, Cs), and M from (Cr, Fe, V), other langbeinites are made. The NASICON-type structure competes for these kinds of phosphates, so not all possibilities are langbeinites.
Other phosphate based substances include {{chem2|K2YTi(PO4)3}}, {{chem2|K2ErTi(PO4)3}}, {{chem2|K2YbTi(PO4)3}}, {{chem2|K2CrTi(PO4)3}},{{cite journal |last=Norberg |first=Stefan T. |year=2002 |title=New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework |journal=Acta Crystallographica B |volume=58 |issue=5 |pages=743–749 |pmid=12324686 |doi=10.1107/S0108768102013782 |pmc=2391006|bibcode=2002AcCrB..58..743N }} {{chem2|K2AlSn(PO4)3}},{{cite journal |last=Li |first=Hai-Yan |author2=Dan Zhao |year=2011 |title=A new langbeinite-type phosphate: K2AlSn(PO4)3 |journal=Acta Crystallographica Section E |volume=67 |issue=10 |pages=i56 |doi=10.1107/S1600536811037263 |pmid=22058680|pmc=3201338|bibcode=2011AcCrE..67I..56L }} {{chem2|KRbYbTi(PO4)3}}.{{cite journal |last=Gustafsson |first=Joacim C. M. |author2=Stefan T. Norberg |author3=Göran Svensson |year=2006 |title=The langbeinite type Rb2TiY(PO4)3 |journal=Acta Crystallographica Section E |volume=62 |issue=7 |pages=i160–i162 |doi=10.1107/S1600536806021635|bibcode=2006AcCrE..62I.160G }} Sodium barium diiron tris-(phosphate) ({{chem2|NaBaFe2(PO4)3}}) is yet another variation with the same structure but differently charged ions.{{cite journal |last=Hidouri |first=Mourad |author2=Hasna Jerbi |author3=Mongi Ben Amara |year=2008 |title=The iron phosphate NaBaFe2(PO4)3 |journal=Acta Crystallographica Section E |volume=64 |issue=8 |pages=i51 |doi=10.1107/S1600536808023040 |pmid=21202994 |pmc=2961906|bibcode=2008AcCrE..64I..51H }} Most phosphates of this kind of formula do not form langbeinites, instead crystallise in the NASICON structure with archetype {{chem2|Na3Zr2(PO4)(SiO4)2}}.
A langbeinite with arsenate is known to exist by way of {{chem2|K2ScSn(AsO4)3}}.{{cite journal |last=Harrison |first=William T. A. |year=2010 |title=K2ScSn(AsO4)3: an arsenate-containing langbeinite |journal=Acta Crystallographica Section C |volume=66 |issue=7 |pages=i82–i84 |doi=10.1107/S0108270110021670 |pmid=20603547 |bibcode=2010AcCrC..66I..82H |url=http://repositorio.unicamp.br/jspui/handle/REPOSIP/198934}}
Properties
=Physical properties=
Langbeinite-family crystals can show ferroelectric or ferroelastic properties. Diammonium dicadmium sulfate identified by Jona and Pepinsky{{cite journal |last=Jona |first=F. |author2=R. Pepinsky |year=1956 |title=Ferroelectricity in the Langbeinite System |journal=Physical Review |volume=103 |issue=4 |pages=1126 |doi=10.1103/PhysRev.103.1126 |bibcode=1956PhRv..103.1126J}} with a unit cell size of 10.35 Å becomes ferroelectric when the temperature drops below 95 K.{{cite journal |last=McDowell |first=C. A. |author2=P. Raghunathan |author3=R. Srinivasan |year=1975 |title=Proton N.M.R. study of the dynamics of the ammonium ion in ferroelectric langbeinite, (NH4)2Cd2(SO4)3 |journal=Molecular Physics |volume=29 |issue=3 |pages=815–824 |doi=10.1080/00268977500100721 |bibcode=1975MolPh..29..815M}} The phase transition temperature is not fixed, and can vary depending on the crystal or history of temperature change. So for example the phase transition in diammonium dicadmium sulfate can occur between 89 and 95 K.{{cite web |url=http://ir.lib.hiroshima-u.ac.jp/metadb/up/ZZT00003/200703/Ferroelectrics_337_85.pdf |title=Structural Study of Langbeinite-type ((NH4)2Cd2(SO4)3) Crystal in the High Temperature Phase |last=Moriyoshi |first=C. |author2=E. Magome |author3=K. Itoh |date=28 March 2007 |website=IMF-11 |access-date=24 June 2013}} Under pressure the highest phase transition temperature increases. ∂T/∂P = 0.0035 degrees/bar. At 824 bars there is a triple point with yet another transition diverging at a slope of ∂T/∂P = 0.103 degrees/bar.{{cite journal |last=Glogarová |first=M. |author2=C. Frenzel |author3=E. Hegenbarth |year=1972 |title=The Behaviour of (NH4)2Cd2(SO4)3 under Pressure |journal=Physica Status Solidi B |volume=53 |issue=1 |pages=369–372 |doi=10.1002/pssb.2220530139 |bibcode=1972PSSBR..53..369G}} For dipotassium dimanganese sulfate pressure causes the transition to rise at the rate of 6.86 °C/kbar. The latent heat of the transition is 456 cal/mol.{{cite journal |last=Hikita |first=Tomoyuki |author2=Makoto Kitabatake |author3=Takuro Ikeda |year=1979 |title=Hydrostatic Pressure Effect on the Phase Transition of K2Mn2(SO4)3 |journal=Journal of the Physical Society of Japan |volume=46 |issue=2 |pages=695–696 |doi=10.1143/JPSJ.46.695 |bibcode=1979JPSJ...46..695H}}
Dithallium dicadmium sulfate was shown to be ferroelectric in 1972.{{cite journal |last=Brzina |first=B. |author2=M. Glogarová |year=1972 |title=New ferroelectric langbeinite Tl2Cd2(SO4)3 |journal=Physica Status Solidi A |volume=11 |issue=1 |pages=K39–K42 |doi=10.1002/pssa.2210110149 |bibcode=1972PSSAR..11...39.}}
Dipotassium dicadmium sulfate is thermoluminescent with stronger outputs of light at 350 and 475 K. This light output can be boosted forty times with a trace amount of samarium.{{cite journal |last=Deshmukh |first=B. T. |author2=S. V. Bodade |author3=S. V. Moharil |year=1986 |title=Thermoluminescence of K2Cd2(SO4)3 |journal=Physica Status Solidi A |volume=98 |issue=1 |pages=239–246 |doi=10.1002/pssa.2210980127 |bibcode=1986PSSAR..98..239D}} Dipotassium dimagnesium sulfate doped with dysprosium develops thermoluminescence and mechanoluminescence after being irradiated with gamma rays.{{cite journal |last=Panigrahi |first=A. K. |author2=Dhoble, S. J. |author3=Kher, R. S. |author4=Moharil, S. V. |year=2003 |title=Thermo and mechanoluminescence of Dy3+ activated { K2Mg2(SO4)3 phosphor |journal=Physica Status Solidi A |volume=198 |issue=2 |pages=322–328 |doi=10.1002/pssa.200306605 |bibcode=2003PSSAR.198..322P}} Since gamma rays occur naturally, this radiation induced thermoluminescence can be used to date evaporites in which langbeinite can be a constituent.{{cite journal |last=Léost |first=I. |author2=Féraud, G. |author3=Blanc-Valleron, M. M. |author4=Rouchy, J. M. |year=2001 |title=First absolute dating of Miocene Langbeinite evaporites by 40Ar/39Ar laser step-heating: [K2Mg2(SO4)3] Stebnyk Mine (Carpathian Foredeep Basin) |journal=Geophysical Research Letters |volume=28 |issue=23 |pages=4347–4350 |doi=10.1029/2001GL013477 |bibcode=2001GeoRL..28.4347L |doi-access=free}}
At higher temperatures the crystals take on cubic form, whereas at the lowest temperatures they can transform to an orthorhombic crystal group. For some types there are two more phases, and as the crystal is cooled it goes from cubic, to monoclinic, to triclinic to orthorhombic. This change to higher symmetry on cooling is very unusual in solids.{{cite journal |last=Franke |first=V. |author2=E. Hegenbarth |author3=B. Březina |year=1975 |title=Specific heat measurement on Tl2Cd2(SO4)3 |journal=Physica Status Solidi A |volume=28 |issue=1 |pages=K77–K80 |doi=10.1002/pssa.2210280165 |bibcode=1975PSSAR..28...77F}} For some langbeinites only the cubic form is known, but that may be because it has not been studied at low enough temperatures yet. Those that have three phase transitions go through these crystallographic point groups: P213 – P21 – P1 – P212121, whereas the single phase change crystals only have P213 – P212121.
{{chem2|K2Cd2(SO4)3}} has a transition temperature above room temperature, so that it is ferroelectric in standard conditions. The orthorhombic cell size is a=10.2082 Å, b=10.2837 Å, c=10.1661 Å.{{cite journal |last=Abrahams |first=S. C. |author2=Bernstein, J. L. |year=1977 |title=Piezoelectric langbeinite-type K2Cd2(SO4)3: Room temperature crystal structure and ferroelastic transformation |journal=The Journal of Chemical Physics |volume=67 |issue=5 |page=2146 |doi=10.1063/1.435101 |bibcode=1977JChPh..67.2146A}}
Where the crystals change phase there is a discontinuity in the heat capacity. The transitions may show thermal hysteresis.{{cite journal |last=Cao |first=Hongjie |author2=Dalley, N. Kent |author3=Boerio-Goates, Juliana |year=1993 |title=Calorimetric and structural studies of langbeinite-type Tl2Cd2(SO4)3 |journal=Ferroelectrics |volume=146 |issue=1 |pages=45–56 |doi=10.1080/00150199308008525|bibcode=1993Fer...146...45C }}
Different cations can be substituted so that for example {{chem2|K2Cd2(SO4)3}} and {{chem2|Tl2Cd2(SO4)3}} can form solid solutions for all ratios of thallium and potassium. Properties such as the phase transition temperature and unit cell sizes vary smoothly with the composition.{{cite journal |last=Sutera |first=A. |author2=Nassau, K. |author3=Abrahams, S. C. |year=1981 |title=Phase-transition variation with composition in solid solutions of K2Cd2(SO4)3 with Tl2Cd2(SO4)3 |journal=Journal of Applied Crystallography |volume=14 |issue=5 |pages=297–299 |doi=10.1107/S0021889881009412|bibcode=1981JApCr..14..297S }}
Langbeinites containing transition metals can be coloured. For example, cobalt langbeinite shows a broad absorption around 555 nm due to the cobalt 4T1g(F)→4T1g(P) electronic transition.{{cite journal |last=Percival |first=M. J. L. |year=1990 |title=Optical Absorption Spectroscopy of Doped Materials: The P213-P212121 Phase Transition in K2(Cd0.98Co0.02)2(SO4)3 |journal=Mineralogical Magazine|volume=54|issue=377|pages=525–535 |doi=10.1180/minmag.1990.054.377.01 |bibcode=1990MinM...54..525P|s2cid=96797382 }}
The enthalpy of formation (ΔfHm) for solid {{chem2|(NH4)2Cd2(SO4)3}} at 298.2 K is {{val|−3031.74|0.08|u=kJ/mol}}, and for {{chem2|K2Cd2(SO4)3}} it is {{val|-3305.52|0.17|u=kJ/mol}}.{{cite journal |last=Zhou |first=Ya-Ping |author2=Rui, Zhang |author3=Hong-Wen, Wan |author4=Zheng-Kun, Zhan |author5=Ming-Fei, Xu |date=March 2001 |title=Thermochemical Studies on the Langbeinite-Type Double Sulfate Salts,(NH4)2Cd2(SO4)3 and K2Cd2(SO4)3 |journal=Acta Physico-Chimica Sinica |volume=17 |issue=3 |page=247 |doi=10.3866/PKU.WHXB20010312 |url=http://www.whxb.pku.edu.cn/EN/abstract/abstract24330.shtml |language=Chinese |doi-access=free}}
=Sulfates=
Fluoroberyllates
class="wikitable"
|+ Properties of langbeinites with fluoroberyllate ({{chem2|BeF4(2-)}}) anion |
scope=col | Formula
! scope=col | Weight (g/mol) ! scope=col | Cell size (Å) ! scope=col | Volume ! scope=col | Density ! scope=col | Comment |
---|
{{chem2|K2Mn2(BeF4)3}}
| | | | |4 phases transition at 213 |
{{chem2|K2Mg2(BeF4)3}}{{cite journal |last1=Le Fur |first1=Y. |last2=Aléonard |first2=S |title=Etude d'orthofluoroberyllates MeI2MeII2(BeF4)3 de structure langbeinite |journal=Materials Research Bulletin |date=August 1969 |volume=4 |issue=8 |pages=601–615 |doi=10.1016/0025-5408(69)90121-4}}
| |9.875 |962.8 |1.59 | |
{{chem2|(NH4)2Mg2(BeF4)3}}
| |9.968 | |1.37 | |
{{chem2|KRbMg2(BeF4)3}}
| |9.933 | |1.72 | |
{{chem2|Rb2Mg2(BeF4)3}}
| |9.971 | |1.91 | |
{{chem2|Tl2Mg2(BeF4)3}}
| |9.997 | |2.85 | |
{{chem2|K2Ni2(BeF4)3}}
| |9.888 | |1.86 | |
{{chem2|Rb2Ni2(BeF4)3}}
| |9.974 | |2.19 | |
{{chem2|Tl2Ni2(BeF4)3}}
| |9.993 | |3.13 | |
{{chem2|K2Co2(BeF4)3}}
| |9.963 |988 |1.82 | |
{{chem2|(NH4)2Co2(BeF4)3}}
| |10.052 | |1.61 | |
{{chem2|Rb2Co2(BeF4)3}}
| |10.061 | |2.14 | |
{{chem2|Tl2Co2(BeF4)3}}
| |10.078 | |3.05 | |
{{chem2|RbCsCo2(BeF4)3}}
| |10.115 | |2.28 | |
{{chem2|K2Zn2(BeF4)3}}
| |9.932 | |1.89 | |
{{chem2|(NH4)Zn2(BeF4)3}}
| |10.036 | |1.67 | |
{{chem2|Rb2Zn2(BeF4)3}}
| |10.035 | |2.20 | |
{{chem2|Tl2Zn2(BeF4)3}}
| |10.060 | |3.14 | |
{{chem2|RbCsZn2(BeF4)3}}
| |10.102 | |2.36 | |
{{chem2|K2Mn2(BeF4)3}}
| |10.102 | |1.72 | |
{{chem2|KRbMn2(BeF4)3}}
| |10.187 | |1.82 | |
{{chem2|(NH4)2Mn2(BeF4)3}}
| |10.217 | |1.50 | |
{{chem2|Rb2Mn2(BeF4)3}}
| |10.243 | |2.00 | |
{{chem2|Tl2Mn2(BeF4)3}}
| |10.255 | |2.87 | |
{{chem2|RbCsMn2(BeF4)3}}
| |10.327 | |2.12 | |
{{chem2|Cs2Mn2(BeF4)3}}
| |10.376 | |2.26 | |
{{chem2|K2MnCd(BeF4)3}}
| |10.133 | |1.92 | |
{{chem2|KRbMnCd(BeF4)3}}
| |10.220 | |2.04 | |
{{chem2|Rb2MnCd(BeF4)3}}
| |10.133 | |1.92 | |
{{chem2|RbCsMnCd(BeF4)3}}
| |10.380 | |2.28 | |
{{chem2|Cs2MnCd(BeF4)3}}
| |10.451 | |2.41 | |
{{chem2|(NH4)2Cd2(BeF4)3}}
| |10.342 | |1.87 | |
{{chem2|Rb2Cd2(BeF4)3}}
| |10.385 | |2.32 | |
{{chem2|Tl2Cd2(BeF4)3}}
| |10.402 | |3.16 | |
{{chem2|RbCsCd2(BeF4)3}}
| |10.474 | |2.43 | |
{{chem2|Cs2Cd2(BeF4)3}}
| |10.558 | |2.53 | |
{{chem2|RbCsCdCa(BeF4)3}}
| |10.501 | |2.15 | |
{{chem2|Rb2Ca2(BeF4)3}}
| |10.480 | |1.74 | |
{{chem2|RbCsCa2(BeF4)3}}
| |10.583 | |1.86 | |
{{chem2|Cs2Ca2(BeF4)3}}
| |10.672 | |1.98 | |
{{chem2|Cs2Mg2(BeF4)3}}
| | | | |
Phosphates
Phosphate silicates
Mixed anion phosphates
class="wikitable"
!substance !formula weight !unit cell edge Å !density !comment !ref |
K2MgTi(SO4)(PO4)2
| | | | |
K2Fe2(MoO4)(PO4)2
| | | | |
K2Sc2(MoO4)(PO4)2
| | | | |
K2Sc2(WO4)(PO4)2
| | | | |
Vanadates
The orthovanadates have four formula per cell, with a slightly distorted cell that has orthorhombic symmetry.
class="wikitable"
| |formula weight |comment |colspan=3|Cell dimensions Å |Volume |density |refractive |
Formula
|g/mol |symmetries |a |b |c | | |index |
{{chem2|LiBaCr2(VO4)3}}{{cite journal |last1=Nabar |first1=M. A. |last2=Phanasgaonkar |first2=D. S. |title=Preparation and X-ray powder diffraction studies of triple orthovanadates having langbeinite structure |journal=Journal of Applied Crystallography |date=1 October 1980 |volume=13 |issue=5 |pages=450–451 |doi=10.1107/s0021889880012514|doi-access=free |bibcode=1980JApCr..13..450N }}
|593.08 |Orthorhombic |9.98 |10.52 |9.51 |998 |4.02 |
{{chem2|NaBaCr2(VO4)3}}
|609.13 |Orthorhombic |9.99 |10.52 |9.53 |1002 |4.09 |
{{chem2|AgBaCr2(VO4)3}}
|694.00 |Orthorhombic |10.02 |10.53 |9.53 |1005 |4.62 |
Arsenates
Selenates
Langbeinite structured double selenates are difficult to make, perhaps because selenate ions arranged around the dication leave space for water, so hydrates crystallise from double selenate solutions. For example, when ammonia selenate and cadmium selenate solution is crystallized it forms diammonium dicadmium selenate trihydrate: {{chem2|(NH4)2Cd2(SeO4)3*3H2O}} and when heated it loses both water and ammonia to form a pyroselenate rather than a langbeinite.{{cite journal |last1=Martínez |first1=M. L. |last2=Rodriguez |first2=A. |last3=Mestres |first3=L. |last4=Solans |first4=X. |last5=Bocanegra |first5=E. H. |title=Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O |journal=Journal of Solid State Chemistry |date=November 1990 |volume=89 |issue=1 |pages=88–93 |doi=10.1016/0022-4596(90)90297-B |bibcode=1990JSSCh..89...88M}}
class="wikitable"
!substance !formula weight !unit cell edge Å !density !note |
{{chem2|(NH4)2Mn2(SeO4)3}}{{cite journal |last1=Kohler |first1=K. |last2=Franke |first2=W. |title=(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur |journal=Acta Crystallographica |date=1 August 1964 |volume=17 |issue=8 |pages=1088–1089 |doi=10.1107/s0365110x64002833 |language=de|doi-access=free |bibcode=1964AcCry..17.1088K }}
|574.83 |10.53 |3.26 |forms continuous series with {{chem2|SO4}} too |
Molybdates
class="wikitable"
!substance !formula weight !unit cell edge Å !density !ref |
{{chem2|Cs2Cd2(MoO4)3}}
|970.5 |11.239 | |
{{chem2|Rb2Co2(MoO4)3}}
|768.7 | | | |
{{chem2|Cs2Co2(MoO4)3}}
| | | |
Cs2Fe2(MoO4)3
| |10.9112 | |
{{chem2|Cs2Ni2(MoO4)3}}
|863.01 |10.7538 | |
{{chem2|(H3O)2Mn2(MoO4)3}}
|627.75 |10.8713 | |
{{chem2|K2Mn2(MoO4)3}}
| | | |
Tungstates
class="wikitable"
!substance !formula weight !unit cell edge Å !density |
{{chem2|Rb2Mg2(WO4)3}}{{cite journal |last1=Han |first1=Shujuan |last2=Wang |first2=Ying |last3=Jing |first3=Qun |last4=Wu |first4=Hongping |last5=Pan |first5=Shilie |last6=Yang |first6=Zhihua |title=Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2 (WO4)3 (R = Rb, Cs) |journal=Dalton Trans. |date=2015 |volume=44 |issue=12 |pages=5810–5817 |doi=10.1039/c5dt00332f |pmid=25715112}}
|963.06 |10.766 | |
{{chem2|Cs2Mg2(WO4)3}}
|1057.93 |10.878 | |
Preparation
Diammonium dicadmium sulfate can be made by evaporating a solution of ammonium sulfate and cadmium sulfate. Dithallium dicadmium sulfate can be made by evaporating a water solution at 85 °C. Other substances may be formed during crystallisation from water such as Tutton's salts or competing compounds like {{chem2|Rb2Cd3(SO4)4*5H2O}}.{{cite journal |last=Swain |first=Diptikanta |author2=T. N. Guru Row |year=2005 |title=Dirubidium tricadmium tetrakis(sulfate) pentahydrate |journal=Acta Crystallographica Section E |volume=61 |issue=8 |pages=i163–i164|doi=10.1107/S1600536805021252 |bibcode=2005AcCrE..61I.163S |url=http://eprints.iisc.ernet.in/3645/1/A156.pdf}}
Potassium and ammonium nickel langbeinite can be made from nickel sulfate and the other sulfates by evaporating a water solution at 85 °C.
Dipotassium dizinc sulfate can be formed into large crystals by melting zinc sulfate and potassium sulfate together at 753 K. A crystal can be slowly drawn out of the melt from a rotating crucible at about 1.2 mm every hour.{{cite journal |last=Yamada |first=N. |author2=Tomoyuki Hikita |author3=Kazuhiro Yamada |year=1981 |title=Pyroelectric properties of langbeinite-type K2Zn2(SO4)3 |journal=Ferroelectrics |volume=33 |issue=1 |pages=59–61 |doi=10.1080/00150198108008070|bibcode=1981Fer....33...59Y }}
{{chem2|Li(H2O)2Hf2(PO4)3}} can be made by heating {{chem2|HfCl4}}, {{chem2|Li2B4O7}}, {{chem2|H3PO4}}, water and hydrochloric acid to 180 °C for eight days under pressure.
{{chem2|Li(H2O)2Hf2(PO4)3}} converts to {{chem2|Li2Hf2(PO4)3}} on heating to 200 °C.
The sol-gel method produces a gel from a solution mixture, which is then heated. {{chem2|Rb2FeZr(PO4)3}} can be made by mixing solutions of {{chem2|FeCl3}}, {{chem2|RbCl}}, {{chem2|ZrOCl2}}, and dripping in {{chem2|H3PO4}}. The gel produced was dried out at 95 °C and then baked at various temperatures from 400 to 1100 °C.
Langbeinites crystals can be made by the Bridgman technique, Czochralski process or flux technique.
A Tutton's salt may be heat treated and dehydrate, e.g. {{chem2|(NH4)2Mn2(SeO4)3}} can be made from {{chem2|(NH4)2Mn(SeO4)3*6(H2O)}} heated to 100 °C, forming {{chem2|(NH4)2(SeO4)}} as a side product.{{cite journal |last=Kohler |first=K. |author2=W. Franke |year=1964 |title=(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur |journal=Acta Crystallographica |volume=17 |issue=8 |pages=1088–1089 |doi=10.1107/S0365110X64002833|doi-access=free |bibcode=1964AcCry..17.1088K }} Similarly the ammonium vanadium Tutton's salt, {{chem2|(NH4)2V(SO4)2}}, heated to 160 °C in a closed tube produces {{chem2|(NH4)2V2(SO4)3}}. At lower temperatures a hydroxy compound is formed.
Use
Few uses have been made of these substances. Langbeinite itself can be used as an "organic" fertiliser with potassium, magnesium and sulfur, all needed for plant growth. Electrooptic devices could be made from some of these crystals, particularly those that have cubic transition temperatures as temperatures above room temperature. Research continues into this. Ferroelectric crystals could store information in the location of domain walls.
The phosphate langbeinites are insoluble, stable against heat, and can accommodate a large number of different ions, and have been considered for immobilizing unwanted radioactive waste.{{cite journal |last=Orlova |first=A. I. |author2=V. A. Orlova |author3=M. P. Orlova |author4=D. M. Bykov |author5=S. V. Stefanovskii |author6=O. I. Stefanovskaya |author7=B. S. Nikonov |year=2006 |title=The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste |journal=Radiochemistry |volume=48 |issue=4 |pages=330–339 |doi=10.1134/S1066362206040035 |s2cid=97539628}}
Zirconium phosphate langbeinites containing rare earth metals have been investigated for use in white LEDs and plasma displays. Langbeinites that contain bismuth are photoluminescent.
In case of iron-containing ones complex magnetic behavior may be found.{{cite journal |last=Slobodyanik |first=M. S. |author2=N. S. Slobodyanik |author3=K. V. Terebilenko |author4=I. V. Ogorodnyk |author5=I. V. Zatovsky |author6=M. Seredyuk |author7=V. N. Baumer |author8=P. Gütlich |year=2012 |title=K2MIII2(MVIO4)(PO4)2 (MIII = Fe, Sc; MVI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties |journal=Inorg. Chem. |volume=51 |issue=5 |pages=1380–1385 |doi=10.1021/ic201575v |pmid=22260084}}