class="wikitable sortable" border="1"
! Map !! Time domain !! Space domain !! Number of space dimensions !! Number of parameters !! Also known as |
3-cells CNN system | continuous | real | 3 | | |
2D Lorenz system[[http://sprott.physics.wisc.edu/chaos/eulermap.htm Chaos from Euler Solution of ODEs]] | discrete | real | 2 | 1 | Euler method approximation to (non-chaotic) ODE. |
2D Rational chaotic map[[http://sprott.physics.wisc.edu/chaos/elhadj/2dmap4/pub4.pdf On the dynamics of a new simple 2-D rational discrete mapping]] | discrete | rational | 2 | 2 | |
ACT chaotic attractor [{{usurped|1=[https://web.archive.org/web/20230429234227/http://www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf]}}] | continuous | real | 3 | | |
Aizawa chaotic attractor[[http://www.algosome.com/articles/aizawa-attractor-chaos.html The Aizawa attractor]] | continuous | real | 3 | 5 | |
Arneodo chaotic system[[http://www.scientific.net/AMM.130-134.2550 Local Stability and Hopf Bifurcation Analysis of the Arneodo’s System]] | continuous | real | 3 | | |
Arnold's cat map | discrete | real | 2 | 0 | |
Baker's map | discrete | real | 2 | 0 | |
Basin chaotic map[[http://www.ba.infn.it/~zito/ds/basin.html Basin of attraction] {{webarchive|url=https://web.archive.org/web/20140701200254/http://www.ba.infn.it/~zito/ds/basin.html |date=2014-07-01 }}] | discrete | real | 2 | 1 | |
Beta Chaotic Map[{{Cite journal |last1=Zahmoul |first1=Rim |last2=Ejbali |first2=Ridha |last3=Zaied |first3=Mourad |date=2017 |title=Image encryption based on new Beta chaotic maps |url=https://linkinghub.elsevier.com/retrieve/pii/S0143816617300775 |journal=Optics and Lasers in Engineering |language=en |volume=96 |pages=39–49 |doi=10.1016/j.optlaseng.2017.04.009|bibcode=2017OptLE..96...39Z }}] | | | | 12 | |
Bogdanov map | discrete | real | 2 | 3 | |
Brusselator | continuous | real | 3 | | |
Burke-Shaw chaotic attractor[[http://www.atomosyd.net/spip.php?article33 1981 The Burke & Shaw system]] | continuous | real | 3 | 2 | |
Chen chaotic attractor[[http://lsc.amss.ac.cn/~ljh/02LC.pdf A new chaotic attractor coined]] | continuous | real | 3 | 3 | Not topologically conjugate to the Lorenz attractor. |
Chen-Celikovsky system[[http://lsc.amss.ac.cn/~ljh/02LC.pdf A new chaotic attractor coined]] | continuous | real | 3 | | "Generalized Lorenz canonical form of chaotic systems" |
Chen-LU system[[http://lsc.amss.ac.cn/~ljh/02LC.pdf A new chaotic attractor coined]] | continuous | real | 3 | 3 | Interpolates between Lorenz-like and Chen-like behavior. |
Chen-Lee system | continuous | real | 3 | | |
Chossat-Golubitsky symmetry map | | | | | |
Chua circuit[http://www.scholarpedia.org/article/Chua_circuit Chua Circuit] | continuous | real | 3 | 3 | |
Circle map | discrete | real | 1 | 2 | |
Complex quadratic map | discrete | complex | 1 | 1 | gives rise to the Mandelbrot set |
Complex squaring map | discrete | complex | 1 | 0 | acts on the Julia set for the squaring map. |
Complex cubic map | discrete | complex | 1 | 2 | |
Clifford fractal map[[http://paulbourke.net/fractals/clifford/ Clifford Attractors]] | discrete | real | 2 | 4 | |
Degenerate Double Rotor map | | | | | |
De Jong fractal map[[http://paulbourke.net/fractals/peterdejong/ Peter de Jong Attractors]] | discrete | real | 2 | 4 | |
Delayed-Logistic system[[http://www.phaser.com/modules/ecology/delayed_logistic/index.html A discrete population model of delayed regulation]] | discrete | real | 2 | 1 | |
Discretized circular Van der Pol system[[http://sprott.physics.wisc.edu/chaos/eulermap.htm Chaos from Euler Solution of ODEs]] | discrete | real | 2 | 1 | Euler method approximation to 'circular' Van der Pol-like ODE. |
Discretized Van der Pol system[[http://sprott.physics.wisc.edu/chaos/eulermap.htm Chaos from Euler Solution of ODEs]] | discrete | real | 2 | 2 | Euler method approximation to Van der Pol ODE. |
Double rotor map | | | | | |
Duffing map | discrete | real | 2 | 2 | Holmes chaotic map |
Duffing equation | continuous | real | 2 | 5 (3 independent) | |
Dyadic transformation | discrete | real | 1 | 0 | 2x mod 1 map, Bernoulli map, doubling map, sawtooth map |
Exponential map | discrete | complex | 2 | 1 | |
Feigenbaum strange nonchaotic map[[http://www.emis.de/journals/HOA/DDNS/2/153.pdf Irregular Attractors]] | discrete | real | 3 | | |
Finance system[[http://www.internonlinearscience.org/upload/papers/20110308103218810.pdf A New Finance Chaotic Attractor]] | continuous | real | 3 | | |
Folded-Towel hyperchaotic map[[http://jlswbs.blogspot.de/2011/12/hyperchaotic.html Hyperchaos] {{webarchive|url=https://web.archive.org/web/20151222135224/http://jlswbs.blogspot.de/2011/12/hyperchaotic.html |date=2015-12-22 }}] | continuous | real | 3 | | |
Fractal-Dream system[[http://softology.com.au/tutorials/attractors2d/tutorial.htm Visions of Chaos 2D Strange Attractor Tutorial]] | discrete | real | 2 | | |
Gauss map | discrete | real | 1 | | mouse map, Gaussian map |
Generalized Baker map | | | | | |
Genesio-Tesi chaotic attractor[[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like system]] | continuous | real | 3 | | |
Gingerbreadman map[[http://mathworld.wolfram.com/GingerbreadmanMap.html Gingerbreadman map]] | discrete | real | 2 | 0 | |
Grinch dragon fractal | discrete | real | 2 | | |
Gumowski/Mira map[[http://www.copysense.co.uk/mira.php Mira Fractals]] | discrete | real | 2 | 1 | |
Hadley chaotic circulation | continuous | real | 3 | 0 | |
Half-inverted Rössler attractor[[http://www.scholarpedia.org/article/Chaos_topology Half-inverted tearing]] | | | | | |
Halvorsen chaotic attractor[[http://sprott.physics.wisc.edu/lorenz.pdf Halvorsen: A tribute to Dr. Edward Norton Lorenz]] | continuous | real | 3 | | |
Hénon map | discrete | real | 2 | 2 | |
Hénon with 5th order polynomial | | | | | |
Hindmarsh-Rose neuronal model | continuous | real | 3 | 8 | |
Hitzl-Zele map | | | | | |
Horseshoe map | discrete | real | 2 | 1 | |
Hopa-Jong fractal[[http://paulbourke.net/fractals/peterdejong/ Peter de Jong Attractors]] | discrete | real | 2 | | |
Hopalong orbit fractal[[http://www.jamesh.id.au/fractals/orbit/hopalong.html Hopalong orbit fractal]] | discrete | real | 2 | | |
Hyper Logistic map[[http://www.emis.de/journals/HOA/DDNS/2/153.pdf Irregular Attractors]] | discrete | real | 2 | | |
Hyperchaotic Chen system[{{usurped|1=[https://web.archive.org/web/20120530145100/http://www.ijest.info/docs/IJEST11-03-05-262.pdf Global chaos synchronization of hyperchaotic chen system by sliding model control]}}] | continuous | real | 3 | | |
Hyper Newton-Leipnik system{{citation needed|date=November 2019}} | continuous | real | 4 | | |
Hyper-Lorenz chaotic attractor | continuous | real | 4 | | |
Hyper-Lu chaotic system[[http://www.ias.ac.in/pramana/v73/p781/fulltext.pdf Hyper-Lu system]] | continuous | real | 4 | | |
Hyper-Rössler chaotic attractor[[http://www.scholarpedia.org/article/Hyperchaos The first hyperchaotic system]] | continuous | real | 4 | | |
Hyperchaotic attractor[[http://jlswbs.blogspot.de/2011/12/hyperchaotic_23.html Hyperchaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222083004/http://jlswbs.blogspot.de/2011/12/hyperchaotic_23.html |date=2015-12-22 }}] | continuous | real | 4 | | |
Ikeda chaotic attractor[[http://www.bentamari.com/attractors.html Attractors]] | continuous | real | 3 | | |
Ikeda map | discrete | real | 2 | 3 | Ikeda fractal map |
Interval exchange map | discrete | real | 1 | variable | |
Kaplan-Yorke map | discrete | real | 2 | 1 | |
Knot fractal map[[http://jlswbs.blogspot.de/2012/03/knot.html Knot fractal map] {{webarchive|url=https://web.archive.org/web/20151222103231/http://jlswbs.blogspot.de/2012/03/knot.html |date=2015-12-22 }}] | discrete | real | 2 | | |
Knot-Holder chaotic oscillator[{{Cite journal|doi = 10.4249/scholarpedia.4592|title = Chaos topology|year = 2008|last1 = Lefranc|first1 = Marc|last2 = Letellier|first2 = Christophe|last3 = Gilmore|first3 = Robert|journal = Scholarpedia|volume = 3|issue = 7|page = 4592|bibcode = 2008SchpJ...3.4592G| doi-access=free }}] | continuous | real | 3 | | |
Kuramoto–Sivashinsky equation | continuous | real | | | |
Lambić map[{{Cite journal |last=Lambić |first=Dragan |date=2015 |title=A new discrete chaotic map based on the composition of permutations |url=https://linkinghub.elsevier.com/retrieve/pii/S0960077915002325 |journal=Chaos, Solitons & Fractals |language=en |volume=78 |pages=245–248 |doi=10.1016/j.chaos.2015.08.001|bibcode=2015CSF....78..245L }}] | discrete | discrete | 1 | | |
Li symmetrical toroidal chaos[[http://www.atomosyd.net/spip.php?article66 A 3D symmetrical toroidal chaos]] | continuous | real | 3 | | |
Linear map on unit square | | | | | |
Logistic map | discrete | real | 1 | 1 | |
Lorenz system | continuous | real | 3 | 3 | |
Lorenz system's Poincaré return map | discrete | real | 2 | 3 | |
Lorenz 96 model | continuous | real | arbitrary | 1 | |
Lotka-Volterra system | continuous | real | 3 | 9 | |
Lozi map[[http://padyn.wikidot.com/lozi-maps Lozi maps]] | discrete | real | 2 | | |
Moore-Spiegel chaotic oscillator[[http://demonstrations.wolfram.com/MooreSpiegelAttractor/ Moore-Spiegel Attractor]] | continuous | real | 3 | | |
Scroll-Attractor[[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized lorenz-like system]] | continuous | real | 3 | | |
Jerk Circuit[[http://sprott.physics.wisc.edu/pubs/paper352.pdf A New Chaotic Jerk Circuit]] | continuous | real | 3 | | |
Newton-Leipnik system | continuous | real | 3 | | |
Nordmark truncated map | | | | | |
Nosé-Hoover system | continuous | real | 3 | | |
Novel chaotic system[[http://www.emis.de/journals/HOA/MPE/Volume2011/452671.pdf Chaos Control and Hybrid Projective Synchronization of a Novel Chaotic System]] | continuous | real | 3 | | |
Pickover fractal map[[http://www.chaoscope.org/doc/attractors.htm Pickover]] | continuous | real | 3 | | |
Pomeau-Manneville maps for intermittent chaos | discrete | real | 1 or 2 | | Normal-form maps for intermittency (Types I, II and III) |
Polynom Type-A fractal map[[http://www.chaoscope.org/doc/attractors.htm Polynomial Type-A]] | continuous | real | 3 | 3 | |
Polynom Type-B fractal map[[http://www.chaoscope.org/doc/attractors.htm Polynomial Type-B]] | continuous | real | 3 | 6 | |
Polynom Type-C fractal map[[http://www.chaoscope.org/doc/attractors.htm Polynomial Type-C]] | continuous | real | 3 | 18 | |
Pulsed rotor | | | | | |
Quadrup-Two orbit fractal[[http://www.jamesh.id.au/fractals/orbit/quadruptwo.html Quadrup Two Orbit Fractal]] | discrete | real | 2 | 3 | |
Quasiperiodicity map | | | | | |
Mikhail Anatoly chaotic attractor | continuous | real | 3 | 2 | |
Random Rotate map | | | | | |
Rayleigh-Benard chaotic oscillator | continuous | real | 3 | 3 | |
Rikitake chaotic attractor[[http://www.ams.jhu.edu/~castello/391/articles/rikitake.pdf Rikitake chaotic attractor] {{webarchive|url=https://web.archive.org/web/20100620195842/http://www.ams.jhu.edu/~castello/391/articles/rikitake.pdf |date=2010-06-20 }}] | continuous | real | 3 | 3 | |
Rössler attractor | continuous | real | 3 | 3 | |
Rucklidge system[[http://www.wseas.us/e-library/conferences/2011/Iasi/DYMANOW/DYMANOW-17.pdf Description of strange attractors using invariants of phase-plane]] | continuous | real | 3 | 2 | |
Sakarya chaotic attractor[[http://jlswbs.blogspot.de/2011/10/sakarya.html Skarya] {{webarchive|url=https://web.archive.org/web/20151222172911/http://jlswbs.blogspot.de/2011/10/sakarya.html |date=2015-12-22 }}] | continuous | real | 3 | 2 | |
Shaw-Pol chaotic oscillator[[https://math.la.asu.edu/~gardner/Lorenz+Shaw.pdf Van der Pol Oscillator Equations]][[http://jlswbs.blogspot.de/2011/10/shaw-pol.html Shaw-Pol chaotic oscillator] {{webarchive|url=https://web.archive.org/web/20151222101232/http://jlswbs.blogspot.de/2011/10/shaw-pol.html |date=2015-12-22 }}] | continuous | real | 3 | 3 | |
Shimizu-Morioka system[[http://www.atomosyd.net/spip.php?article75 The Shimiziu-Morioka System]] | continuous | real | 3 | 2 | |
Shobu-Ose-Mori piecewise-linear map | discrete | real | 1 | | piecewise-linear approximation for Pomeau-Manneville Type I map |
Sinai map - [http://www.maths.ox.ac.uk/~mcsharry/papers/dynsys18n3p191y2003mcsharry.pdf][http://people.maths.ox.ac.uk/~mcsharry/papers/dynsys18n3p191y2003mcsharry.ps.gz] | | | | | |
Sprott B chaotic system[[http://sprott.physics.wisc.edu/ Sprott B chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://jlswbs.blogspot.de/2011/10/sprott-b.html Chaos Blog - Sprott B system] {{webarchive|url=https://web.archive.org/web/20151222080354/http://jlswbs.blogspot.de/2011/10/sprott-b.html |date=2015-12-22 }}] | continuous | real | 3 | 2 | |
Sprott C chaotic system[[http://sprott.physics.wisc.edu/ Sprott C chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://jlswbs.blogspot.de/2011/10/sprott-c.html Chaos Blog - Sprott C system] {{webarchive|url=https://web.archive.org/web/20151222110232/http://jlswbs.blogspot.de/2011/10/sprott-c.html |date=2015-12-22 }}] | continuous | real | 3 | 3 | |
Sprott-Linz A chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz A chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/linz-sprott.html Chaos Blog - Sprott-Linz A chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222105209/http://jlswbs.blogspot.de/2012/02/linz-sprott.html |date=2015-12-22 }}] | continuous | real | 3 | 0 | |
Sprott-Linz B chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz B chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-b.html Chaos Blog - Sprott-Linz B chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222131534/http://jlswbs.blogspot.de/2012/02/sprott-linz-b.html |date=2015-12-22 }}] | continuous | real | 3 | 0 | |
Sprott-Linz C chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz C chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-c.html Chaos Blog - Sprott-Linz C chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222122051/http://jlswbs.blogspot.de/2012/02/sprott-linz-c.html |date=2015-12-22 }}] | continuous | real | 3 | 0 | |
Sprott-Linz D chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz D chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2011/10/sprott-d.html Chaos Blog - Sprott-Linz D chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222121754/http://jlswbs.blogspot.de/2011/10/sprott-d.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz E chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz E chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2011/10/sprott-e.html Chaos Blog - Sprott-Linz E chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222131120/http://jlswbs.blogspot.de/2011/10/sprott-e.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz F chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz F chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-f.html Chaos Blog - Sprott-Linz F chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222113403/http://jlswbs.blogspot.de/2012/02/sprott-linz-f.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz G chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz G chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-g.html Chaos Blog - Sprott-Linz G chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222135125/http://jlswbs.blogspot.de/2012/02/sprott-linz-g.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz H chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz H chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-h.html Chaos Blog - Sprott-Linz H chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222114512/http://jlswbs.blogspot.de/2012/02/sprott-linz-h.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz I chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz I chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-i.html Chaos Blog - Sprott-Linz I chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222134451/http://jlswbs.blogspot.de/2012/02/sprott-linz-i.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz J chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz J chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/02/sprott-linz-j.html Chaos Blog - Sprott-Linz J chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222104911/http://jlswbs.blogspot.de/2012/02/sprott-linz-j.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz K chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz K chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-k.html Chaos Blog - Sprott-Linz K chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222124410/http://jlswbs.blogspot.de/2012/03/sprott-linz-k.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz L chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz L chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-l.html Chaos Blog - Sprott-Linz L chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222103528/http://jlswbs.blogspot.de/2012/03/sprott-linz-l.html |date=2015-12-22 }}] | continuous | real | 3 | 2 | |
Sprott-Linz M chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz M chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-m.html Chaos Blog - Sprott-Linz M chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222083001/http://jlswbs.blogspot.de/2012/03/sprott-linz-m.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz N chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz N chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2011/10/sprott-n.html Chaos Blog - Sprott-Linz N chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222134121/http://jlswbs.blogspot.de/2011/10/sprott-n.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz O chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz O chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-o.html Chaos Blog - Sprott-Linz O chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222133342/http://jlswbs.blogspot.de/2012/03/sprott-linz-o.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz P chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz P chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-p.html Chaos Blog - Sprott-Linz P chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222100518/http://jlswbs.blogspot.de/2012/03/sprott-linz-p.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Sprott-Linz Q chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz Q chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-q.html Chaos Blog - Sprott-Linz Q chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222090843/http://jlswbs.blogspot.de/2012/03/sprott-linz-q.html |date=2015-12-22 }}] | continuous | real | 3 | 2 | |
Sprott-Linz R chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz R chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2011/10/sprott-r.html Chaos Blog - Sprott-Linz R chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222132941/http://jlswbs.blogspot.de/2011/10/sprott-r.html |date=2015-12-22 }}] | continuous | real | 3 | 2 | |
Sprott-Linz S chaotic attractor[[http://sprott.physics.wisc.edu/ Sprott's Gateway - Sprott-Linz S chaotic attractor] {{webarchive|url=https://web.archive.org/web/20070227172534/http://sprott.physics.wisc.edu/ |date=2007-02-27 }}][[http://lsc.amss.ac.cn/~ljh/04LCC.pdf A new chaotic system and beyond: The generalized Lorenz-like System]][[http://jlswbs.blogspot.de/2012/03/sprott-linz-s.html Chaos Blog - Sprott-Linz S chaotic attractor] {{webarchive|url=https://web.archive.org/web/20151222131932/http://jlswbs.blogspot.de/2012/03/sprott-linz-s.html |date=2015-12-22 }}] | continuous | real | 3 | 1 | |
Standard map, Kicked rotor | discrete | real | 2 | 1 | Chirikov standard map, Chirikov-Taylor map |
Strizhak-Kawczynski chaotic oscillator[[http://goryachev.bio.ed.ac.uk/Papers/jcp97.pdf Strizhak-Kawczynski chaotic oscillator]{{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}][[http://jlswbs.blogspot.de/2011/10/strizhak-kawczynski.html Chaos Blog - Strizhak-Kawczynski chaotic oscillator] {{webarchive|url=https://web.archive.org/web/20151222080355/http://jlswbs.blogspot.de/2011/10/strizhak-kawczynski.html |date=2015-12-22 }}] | continuous | real | 3 | 9 | |
Symmetric Flow attractor[[http://sprott.physics.wisc.edu/chaos/symmetry.htm Sprott's Gateway - A symmetric chaotic flow]] | continuous | real | 3 | 1 | |
Symplectic map | | | | | |
Tangent map | | | | | |
Tahn map[{{cite journal | url=http://doi:10.1016/j.chaos.2020.109638 | doi=10.1016/j.chaos.2020.109638 | title=Structured light entities, chaos and nonlocal maps | year=2020 | last1=Okulov | first1=A. Yu | journal=Chaos, Solitons & Fractals | volume=133 | page=109638 | arxiv=1901.09274 | bibcode=2020CSF...13309638O | s2cid=247759987 }}{{Dead link|date=June 2024 |bot=InternetArchiveBot |fix-attempted=yes }}] | discrete | real | 1 | 1 | Ring laser map [{{cite journal |doi=10.1364/JOSAB.3.000741 |title=Space–temporal behavior of a light pulse propagating in a nonlinear nondispersive medium |year=1986 |last1=Okulov |first1=A. Yu. |last2=Oraevsky |first2=A. N. |journal=Journal of the Optical Society of America B |volume=3 |issue=5 |page=741 |bibcode=1986JOSAB...3..741O |s2cid=124347430 }}]Beta distribution[{{cite journal | url=https://iopscience.iop.org/article/10.1070/QE1984v014n09ABEH006171 | doi=10.1070/QE1984v014n09ABEH006171 | title=Regular and stochastic self-modulation of radiation in a ring laser with a nonlinear element | year=1984 | last1=Okulov | first1=A Yu | last2=Oraevskiĭ | first2=A. N. | journal=Soviet Journal of Quantum Electronics | volume=14 | issue=9 | pages=1235–1237 }}]
[{{cite journal | url=http://doi:10.20537/2076-7633-2020-12-5-979-992 | doi=10.20537/2076-7633-2020-12-5-979-992 | title=Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings | year=2020 | last1=Okulov | first1=Alexey Yurievich | journal=Computer Research and Modeling | volume=12 | issue=5 | pages=979–992 | s2cid=211133329 | arxiv=1911.10694 }}{{Dead link|date=June 2024 |bot=InternetArchiveBot |fix-attempted=yes }}]
|
Thomas' cyclically symmetric attractor[http://sprott.physics.wisc.edu/chaostsa/ Sprott's Gateway - Chaos and Time-Series Analysis] | continuous | real | 3 | 1 | |
Tent map | discrete | real | 1 | | |
Tinkerbell map | discrete | real | 2 | 4 | |
Triangle map | | | | | |
Ueda chaotic oscillator[[http://www.sgtnd.narod.ru/science/atlas/eng/charts/ueda.htm Oscillator of Ueda]] | continuous | real | 3 | 3 | |
Van der Pol oscillator | continuous | real | 2 | 3 | |
Willamowski-Rössler model[[http://www.loreto.unican.es/ACurriculum/pre(48)R2351.pdf Internal fluctuations in a model of chemical chaos]] | continuous | real | 3 | 10 | |
WINDMI chaotic attractor[{{cite web |url=http://aurora.gmu.edu/projects/index.php?title=Main_Page |title=Main Page - Weigel's Research and Teaching Page |website=aurora.gmu.edu |access-date=17 January 2022 |archive-url=https://web.archive.org/web/20110410010408/http://aurora.gmu.edu/projects/index.php?title=Main_Page |archive-date=10 April 2011 |url-status=dead}}][[https://www.hindawi.com/journals/mpe/2010/859685/ Synchronization of Chaotic Fractional-Order WINDMI Systems via Linear State Error Feedback Control]][{{Cite journal |date=2015 |title=Adaptive Backstepping Controller Design for the Anti-Synchronization of Identical WINDMI Chaotic Systems with Unknown Parameters and its SPICE Implementation |url=http://www.jestr.org/downloads/Volume8Issue2/fulltext82112015.pdf |journal=Journal of Engineering Science and Technology Review |volume=8 |issue=2 |pages=74–82|doi=10.25103/jestr.082.11 |last1=Vaidyanathan |first1=S. |last2=Volos |first2=Ch. K. |last3=Rajagopal |first3=K. |last4=Kyprianidis |first4=I. M. |last5=Stouboulos |first5=I. N. }}] | continuous | real | 1 | 2 | |
Zaslavskii map | discrete | real | 2 | 4 | |
Zaslavskii rotation map | | | | | |
Zeraoulia-Sprott map[{{Cite journal |doi = 10.1142/S0218127416501261|title = Dynamics of the Zeraoulia–Sprott Map Revisited|journal = International Journal of Bifurcation and Chaos|volume = 26|issue = 7|pages = 1650126–21|year = 2016|last1 = Chen|first1 = Guanrong|last2 = Kudryashova|first2 = Elena V.|last3 = Kuznetsov|first3 = Nikolay V.|last4 = Leonov|first4 = Gennady A.|arxiv = 1602.08632|bibcode = 2016IJBC...2650126C|s2cid = 11406449}}] | discrete | real | 2 | 2 | |
Chialvo map
|discrete
|discrete
|
|3 |