list of dimensionless quantities

{{short description|none}}

This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.

Biology and medicine

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

! scope="col" | Field of application

Basic reproduction numberR_0number of infections caused on average by an infectious individual over entire infectious periodepidemiology
Body fat percentagetotal mass of fat divided by total body mass, multiplied by 100biology
Kt/VKt/Vmedicine (hemodialysis and peritoneal dialysis treatment; dimensionless time)
Waist–hip ratiowaist circumference divided by hip circumferencebiology
Waist-to-chest ratiowaist circumference divided by chest circumferencebiology
Waist-to-height ratiowaist circumference divided by heightbiology

Chemistry

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Activity coefficient\gamma \gamma= \frac {{a}}{{x}}

|

chemistry (Proportion of "active" molecules or atoms)
Arrhenius number\alpha\alpha = \frac{E_a}{RT}

|Svante Arrhenius

chemistry (ratio of activation energy to thermal energy){{cite web |title=Table of Dimensionless Numbers |url=http://www.cchem.berkeley.edu/gsac/grad_info/prelims/binders/dimensionless_numbers.pdf |access-date=2009-11-05}}
Atomic weightM|chemistry (mass of one atom divided by the atomic mass constant, {{val|1|ul=Da}})
Bodenstein numberBo or Bd\mathrm{Bo} = vL/\mathcal{D} = \mathrm{Re}\, \mathrm{Sc}

|Max Bodenstein

chemistry (residence-time distribution; similar to the axial mass transfer Peclet number){{Cite journal | last1 = Becker | first1 = A. | last2 = Hüttinger | first2 = K. J. | doi = 10.1016/S0008-6223(97)00175-9 | title = Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime | journal = Carbon | volume = 36 | issue = 3 | pages = 177 | year = 1998 }}
Damköhler numbersDa \mathrm{Da} = k \tau

|Gerhard Damköhler

chemistry (reaction time scales vs. residence time)
Hatta numberHa\mathrm{Ha} = \frac{N_{\mathrm{A}0}}{N_{\mathrm{A}0}^{\mathrm{phys}}}

|Shirôji Hatta (1895–1973)

chemical engineering (adsorption enhancement due to chemical reaction)
Jakob numberJa\mathrm{Ja} = \frac{c_p (T_\mathrm{s} - T_\mathrm{sat}) }{\Delta H_{\mathrm{f}} }

|

chemistry (ratio of sensible to latent energy absorbed during liquid-vapor phase change){{cite book |last=Incropera |first=Frank P. |title= Fundamentals of heat and mass transfer |url=https://archive.org/details/fundamentalsheat00incr_869 |url-access=limited |page=[https://archive.org/details/fundamentalsheat00incr_869/page/n383 376] |year=2007 |publisher=John Wiley & Sons, Inc|isbn=9780470055540 }}
pH\mathrm{pH}\mathrm{pH} = - \log_{10}(a_{\textrm{H}^+})

|

chemistry (the measure of the acidity or basicity of an aqueous solution)
van 't Hoff factori i = 1 + \alpha (n - 1)

|Jacobus Henricus van 't Hoff

quantitative analysis (Kf and Kb)
Wagner numberWa\mathrm{Wa} = \frac{\kappa}{l} \frac{\mathrm{d}\eta}{\mathrm{d}i}

|

electrochemistry (ratio of kinetic polarization resistance to solution ohmic resistance in an electrochemical cell){{cite book |last1=Popov |first1=Konstantin I. |last2=Djokić |first2=Stojan S. |last3=Grgur |first3=Branimir N. |title=Fundamental Aspects of Electrometallurgy |date=2002 |publisher=Springer |location=Boston, MA |isbn=978-0-306-47564-1 |pages=101–102}}
Weaver flame speed numberWea\mathrm{Wea} = \frac{w}{w_\mathrm{H}} 100

|

combustion (laminar burning velocity relative to hydrogen gas){{cite book| last1 = Kuneš | first1 = J.| chapter = Technology and Mechanical Engineering| doi = 10.1016/B978-0-12-416013-2.00008-7| title = Dimensionless Physical Quantities in Science and Engineering| pages = 353–390| year = 2012| isbn = 978-0-12-416013-2}}

Physics

=Physical constants=

{{main|Dimensionless physical constant#Examples}}

=Fluids and heat transfer=

{{main|Dimensionless numbers in fluid mechanics}}

=Solids=

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Coefficient of kinetic friction\mu_k|mechanics (friction of solid bodies in translational motion)
Coefficient of static friction\mu_s|mechanics (friction of solid bodies at rest)
Föppl–von Kármán number\gamma\gamma = \frac{Y r^2}{\kappa}

|August Föppl and Theodore von Kármán

virology, solid mechanics (thin-shell buckling)
Rockwell scale|Hugh M. (1890–1957) and Stanley P. (1886–1940) Rockwellmechanical hardness (indentation hardness of a material)
Rolling resistance coefficientCrrC_{rr} = \frac{F}{N_f}

|

vehicle dynamics (ratio of force needed for motion of a wheel over the normal force)

=Optics=

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Abbe numberVV = \frac{ n_d - 1 }{ n_F - n_C }

|Ernst Abbe

optics (dispersion in optical materials)
f-numberN N = \frac{f}{D}

|

optics, photography (ratio of focal length to diameter of aperture)
Fresnel numberF\mathit{F} = \frac{a^{2}}{L \lambda}

|Augustin-Jean Fresnel

optics (slit diffraction)[http://www.ilt.fraunhofer.de/default.php?web=1&id=100050&lan=eng&dat=2 Fresnel number] {{webarchive|url=https://web.archive.org/web/20111001052854/http://www.ilt.fraunhofer.de/default.php?web=1&id=100050&lan=eng&dat=2 |date=2011-10-01 }}
Refractive indexnn=\frac{c}{v}

|

electromagnetism, optics (speed of light in vacuum over speed of light in a material)
TransmittanceT T = \frac{I}{I_0}

|

optics, spectroscopy (the ratio of the intensities of radiation exiting through and incident on a sample)

= Other =

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Fine-structure constant\alpha\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c}

|

quantum electrodynamics (QED) (coupling constant characterizing the strength of the electromagnetic interaction)
Havnes parameter P_H P_H = \frac{Z_d n_d}{n_i}

|O. Havnes

In dusty plasma physics, ratio of the total charge Z_d carried by the dust particles d to the charge carried by the ions i , with n the number density of particles
Helmholtz number He He = \frac{\omega a}{c_0} = k_0a

|Hermann von Helmholtz

The most important parameter in duct acoustics. If \omega is the dimensional frequency, then k_0 is the corresponding free field wavenumber and He is the corresponding dimensionless frequency S.W. RIENSTRA, 2015, Fundamentals of Duct Acoustics, Von Karman Institute Lecture Notes
Lundquist numberSS = \frac{\mu_0LV_A}{\eta}

|Stig Lundqvist

plasma physics (ratio of a resistive time to an Alfvén wave crossing time in a plasma)
PerveanceK{K} = \frac{{I}}{{I_0}}\,\frac{{2}}{{\beta}^3{\gamma}^3} (1-\gamma^2f_e)

|

charged particle transport (measure of the strength of space charge in a charged particle beam)
Pierce parameterCC^3=\frac{Z_c I_K}{4 V_K}

|

Traveling wave tube
Beta\beta\beta = \frac{n k_B T}{B^2/2\mu_0}

|

Plasma and fusion power. Ratio of plasma thermal pressure to magnetic pressure, controlling the level of turbulence in a magnetised plasma.
Poisson's ratio\nu\nu = -\frac{\mathrm{d}\varepsilon_\mathrm{trans}}{\mathrm{d}\varepsilon_\mathrm{axial}}

|

elasticity (strain in transverse and longitudinal direction)
Q factorQQ = 2 \pi f_r \frac{\text{Energy Stored}}{\text{Power Loss}}

|

physics, engineering (Damping ratio of oscillator or resonator; energy stored versus energy lost)
Relative densityRDRD = \frac{\rho_\mathrm{substance}}{\rho_\mathrm{reference}}

|

hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)
Relative permeability\mu_r\mu_r = \frac{\mu}{\mu_0}

|

magnetostatics (ratio of the permeability of a specific medium to free space)
Relative permittivity\varepsilon_r\varepsilon_{r} = \frac{C_{x}} {C_{0}}

|

electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum)
Specific gravitySG|(same as Relative density)
Stefan numberSte\mathrm{Ste} = \frac{c_p \Delta T}{L}

|Josef Stefan

phase change, thermodynamics (ratio of sensible heat to latent heat)
Strain\epsilon\epsilon = \cfrac{\partial{F}}{\partial{X}} - 1

|

materials science, elasticity (displacement between particles in the body relative to a reference length)
ErlangE E = \lambda h

| Agner Krarup Erlang

telephony (a measure of offered load on a telephone circuit)

Mathematics and statistics

{{Main|List of mathematical constants}}

Geography, geology and geophysics

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Albedo\alpha\alpha= (1-D) \bar \alpha(\theta_i) + D \bar{ \bar \alpha}

|

climatology, astronomy (reflectivity of surfaces or bodies)
Dieterich–Ruina–Rice number

| \mathrm{R_u}

| \mathrm{R_u} = \frac{W}{L}\frac{(b-a)\bar{\sigma}}{G}

|James H. Dieterich, Andy Ruina, and James R. Rice

|mechanics, friction, rheology, geophysics (stiffness ratio for frictional contacts){{Cite journal |last1=Barbot |first1=S. |year=2019 |title=Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault |journal=Tectonophysics |volume=768 |pages=228171 |bibcode=2019Tectp.76828171B |doi=10.1016/j.tecto.2019.228171 |doi-access=free}}

Love numbersh, k, l|Augustus Edward Hough Lovegeophysics (solidity of earth and other planets)
Porosity\phi\phi = \frac{V_\mathrm{V}}{V_\mathrm{T}}

|

geology, porous media (void fraction of the medium)
Rossby numberRo\mathrm{Ro}=\frac{U}{Lf}

|Carl-Gustav Arvid Rossby

geophysics (ratio of inertial to Coriolis force)

Sport

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

! scope="col" | Field of application

Blondeau numberB_\kappa\mathrm{B_\kappa} = \frac{t_g v_f}{l_{mf}}sport science, team sports{{cite journal |last1=Blondeau |first1=J. |title=The influence of field size, goal size and number of players on the average number of goals scored per game in variants of football and hockey: the Pi-theorem applied to team sports |journal=Journal of Quantitative Analysis in Sports |year=2021 |volume=17 |issue=2 |pages=145–154 |doi=10.1515/jqas-2020-0009 |s2cid=224929098 |url=https://doi.org/10.1515/jqas-2020-0009}}
Gain ratiobicycling (system of representing gearing; length traveled over length pedaled)[http://sheldonbrown.com/gain.html Gain Ratio – Sheldon Brown]
Runs Per Wicket RatioRpW ratio\text{RpW ratio }=\frac{\text{runs scored}}{\text{wickets lost}} \div \frac{\text{runs conceded}}{\text{wickets taken}}cricket{{Cite web|url=https://icc-static-files.s3.amazonaws.com/ICC/document/2019/07/31/6b4241d8-1b33-44b5-8a83-579380989fb9/Changes-to-Test-PCs-for-WTC.pdf|title=World Test Championship Playing Conditions: What's different?|last=|first=|date=|website=International Cricket Council|archive-url=|archive-date=|access-date=11 August 2021}}
Winning percentageVarious, e.g. \frac{\text{Games won}}{\text{Games played}} or \frac{\text{Points won}}{\text{Points contested}}Various sports

Other fields

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

! scope="col" | Field of application

Capacity factor\frac{\text{actual electrical energy output}}{\text{maximum possible electrical energy output}}energy
Cohesion number

|Coh

|Coh=\frac{1}{\rho g}\left ( \frac{\Gamma^5}{{E^*}^2{R^*}^8} \right )^{\frac{1}{3}}

|Chemical engineering, material science, mechanics (A scale to show the energy needed for detaching two solid particles){{Cite journal|last1=Behjani|first1=Mohammadreza Alizadeh|last2=Rahmanian|first2=Nejat|last3=Ghani|first3=Nur Fardina bt Abdul|last4=Hassanpour|first4=Ali|title=An investigation on process of seeded granulation in a continuous drum granulator using DEM|journal=Advanced Powder Technology|volume=28|issue=10|pages=2456–2464|doi=10.1016/j.apt.2017.02.011|year=2017|url=http://eprints.whiterose.ac.uk/113300/3/APT_Seeded_Granulation-accepted%20manuscript%20Feb%202017.pdf}}{{Cite journal|last1=Alizadeh Behjani|first1=Mohammadreza|last2=Hassanpour|first2=Ali|last3=Ghadiri|first3=Mojtaba|last4=Bayly|first4=Andrew|date=2017|title=Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures|journal=EPJ Web of Conferences|language=en|volume=140|pages=06024|doi=10.1051/epjconf/201714006024|issn=2100-014X|bibcode=2017EPJWC.14006024A|doi-access=free}}

Cost of transportCOT\mathrm{COT} = \frac{E}{mgd}energy efficiency, economics (ratio of energy input to kinetic motion)
Damping ratio\zeta \zeta = \frac{c}{2 \sqrt{km}}mechanics, electrical engineering (the level of damping in a system)
DecibeldBacoustics, electronics, control theory (ratio of two intensities or powers of a wave)
Elasticity
(economics)
EE_{x,y} = \frac{\partial \ln(x)}{\partial \ln(y)} = \frac{\partial x}{\partial y}\frac{y}{x}economics (response of demand or supply to price changes)
Gainelectronics (signal output to signal input)
Load factor\frac{\text{average load}}{\text{peak load}}energy
Peel numberNPN_\mathrm{P} = \frac{\text{Restoring force}}{\text{Adhesive force}}coating (adhesion of microstructures with substrate){{Cite journal | last1 = Van Spengen | first1 = W. M. | last2 = Puers | first2 = R. | last3 = De Wolf | first3 = I. | doi = 10.1109/TDMR.2003.820295 | title = The prediction of stiction failures in MEMS | journal = IEEE Transactions on Device and Materials Reliability | volume = 3 | issue = 4 | pages = 167 | year = 2003 }}
Pixelpxdigital imaging (smallest addressable unit)
Power factorpfpf = \frac{P}{S}

| electrical (real power to apparent power)

Power numberNp N_p = {P\over \rho n^3 d^5} fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force)
Prater numberβ\beta = \frac{-\Delta H_r D_{TA}^e C_{AS}}{\lambda^e T_s}reaction engineering (ratio of heat evolution to heat conduction within a catalyst pellet){{cite book |last1=Davis |first1=Mark E. |last2=Davis |first2=Robert J. |title=Fundamentals of Chemical Reaction Engineering |year=2012 |publisher=Dover |isbn=978-0-486-48855-4 |page=215}}
Relative densityRDRD = \frac{\rho_\mathrm{substance}}{\rho_\mathrm{reference}}hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)

References

{{Reflist|30em}}

Bibliography

  • {{cite web | website=iso.org |title=ISO 80000-11:2019 Quantities and units — Part 11: Characteristic numbers | url=https://www.iso.org/obp/ui/#iso:std:iso:80000:-11:ed-2:v1:en | access-date=2023-08-31}}

*