class="wikitable" style="margin: 1em auto 1em auto;" |
Organism
! style="width: 100px;" | Low Earth orbit
! style="width: 100px;" | Impact event and planetary ejection
! style="width: 100px;" | Atmospheric reentry
! style="width: 100px;" | Simulated conditions
! References |
---|
{{center| Bacteria & bacterial spores}} | | | | | |
Actinomyces erythreus | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Dublin |first1=M.
|last2=Volz |first2=P. A.
|date=1973
|title=Space-related research in mycology concurrent with the first decade of manned space exploration
|journal=Space Life Sciences
|volume=4 |issue=2 |pages=223–30
|bibcode=1973SLSci...4..223D
|doi=10.1007/BF00924469
|pmid=4598191
|s2cid=11871141
}} |
Aeromonas proteolytica | {{center|{{Checked}}}} | | | | |
Anabaena cylindrica (akinetes) | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Olsson-Francis |first1=K.
|last2=de la Torre |first2=R.
|last3=Towner |first3=M. C.
|last4=Cockell |first4=C. S.
|date=2009
|title=Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions
|journal=Origins of Life and Evolution of Biospheres
|volume=39 |issue=6 |pages=565–579
|bibcode=2009OLEB...39..565O
|doi=10.1007/s11084-009-9167-4
|pmid=19387863
|s2cid=7228756
}} |
Azotobacter chroococcum | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Moll |first1=D. M.
|last2=Vestal |first2=J. R.
|date=1992
|title=Survival of microorganisms in smectite clays: Implications for Martian exobiology
|journal=Icarus
|volume=98 |issue=2 |pages=233–9
|bibcode=1992Icar...98..233M
|doi=10.1016/0019-1035(92)90092-L
|pmid=11539360
}} |
Azotobacter vinelandii | | | | {{center|{{Checked}}}} | |
Bacillus cereus | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Hagen |first1=C. A.
|last2=Hawrylewicz |first2=E. J.
|last3=Ehrlich |first3=R.
|date=1967
|title=Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores
|journal=Applied Microbiology
|volume=15 |issue=2 |pages=285–291
|doi=10.1128/AEM.15.2.285-291.1967
|pmc=546892
|pmid=4961769
}} |
Bacillus megaterium | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Hawrylewicz |first1=E.
|last2=Gowdy |first2=B.
|last3=Ehrlich |first3=R.
|date=1962
|title=Micro-organisms under a Simulated Martian Environment
|journal=Nature
|volume=193 |issue=4814 |pages=497
|bibcode=1962Natur.193..497H
|doi=10.1038/193497a0
|s2cid=4149916
|doi-access=free
}} |
Bacillus mycoides | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Imshenetskiĭ |first1=A. A.
|last2=Murzakov |first2=B. G.
|last3=Evdokimova |first3=M. D.
|last4=Dorofeeva |first4=I. K.
|date=1984
|title=Survival of bacteria in the Artificial Mars unit
|journal=Mikrobiologiia
|volume=53 |issue=5 |pages=731–7
|pmid=6439981
}} |
Bacillus pumilus | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Horneck |first1=G.
|date=2012
|title=Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission
|journal=Astrobiology
|volume=12 |issue=5|pages=445–56
|bibcode=2012AsBio..12..445H
|doi=10.1089/ast.2011.0737
|pmc=3371261
|pmid=22680691
}} |
Bacillus subtilis | {{center|{{Checked}}}} | {{center|{{Checked}}}} | {{center|{{Checked}}}} | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Hotchin |first1=J.
|last2=Lorenz |first2=P.
|last3=Hemenway |first3=C.
|date=1965
|title=Survival of Micro-Organisms in Space
|journal=Nature
|volume=206 |issue=4983 |pages=442–445
|bibcode=1965Natur.206..442H
|doi=10.1038/206442a0
|pmid=4284122
|s2cid=4156325
}} [
]{{cite journal
|last1=Horneck |first1=G.
|last2=Bücker |first2=H.
|last3=Reitz |first3=G.
|date=1994
|title=Long-term survival of bacterial spores in space
|journal=Advances in Space Research
|volume=14 |issue=10 |pages=41–5
|bibcode=1994AdSpR..14j..41H
|doi=10.1016/0273-1177(94)90448-0
|pmid=11539977
}} [
]{{cite journal
|last1=Fajardo-Cavazos |first1=P.
|last2=Link |first2=L.
|last3=Melosh |first3=H. J.
|last4=Nicholson |first4=W. L.
|date=2005
|title=Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia
|journal=Astrobiology
|volume=5 |issue=6 |pages=726–36
|bibcode=2005AsBio...5..726F
|doi=10.1089/ast.2005.5.726
|pmid=16379527
}} [
]{{cite journal
|last1=Brandstätter |first1=F.
|date=2008
|title=Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment
|journal=Planetary and Space Science
|volume=56 |issue=7 |pages=976–984
|bibcode=2008P&SS...56..976B
|doi=10.1016/j.pss.2007.12.014
|citeseerx=10.1.1.549.4307
}} [
]{{cite journal
|last1=Wassmann |first1=M.
|date=2012
|title=Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E
|journal=Astrobiology
|volume=12 |issue=5 |pages=498–507
|bibcode=2012AsBio..12..498W
|doi=10.1089/ast.2011.0772
|pmid=22680695
}} |
Bacillus thuringiensis | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Taylor |first1=G. R.
|last2=Bailey |first2=J. V.
|last3=Benton |first3=E. V.
|date=1975
|title=Physical dosimetric evaluations in the Apollo 16 microbial response experiment
|journal=Life Sciences in Space Research
|volume=13 |pages=135–41
|pmid=11913418
}} |
Carnobacterium | | | | {{center|{{Checked}}}} | [{{cite journal |title=Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars |journal=PNAS USA |date=24 December 2012 |last1=Nicholson |first1=Wayne L. |last2=Krivushin |first2=Kirill |last3=Gilichinsky |first3=u |last4=Schuerger |first4=Andrew C. |volume=110 |issue=2 |pages=666–671 |doi=10.1073/pnas.1209793110 |pmid=23267097 |bibcode=2013PNAS..110..666N |pmc=3545801 |doi-access=free }}] |
Chroococcidiopsis | {{center|{{Checked}}}} | {{center|{{Checked}}}} | {{center|{{Checked}}}} | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Cockell |first1=C. S.
|last2=Schuerger |first2=A. C.
|last3=Billi |first3=D.
|last4=Imre Friedmann |first4=E.
|last5=Panitz |first5=C.
|date=2005
|title=Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029
|journal=Astrobiology
|volume=5 |issue=2 |pages=127–140
|bibcode=2005AsBio...5..127C
|doi=10.1089/ast.2005.5.127
|pmid=15815164
}} [
]{{cite journal
|last1=Billi|first1=D.
|date=2011
|title=Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions
|journal=Astrobiology
|volume=11 |issue=1 |pages=65–73
|bibcode=2011AsBio..11...65B
|doi=10.1089/ast.2009.0430
|pmid=21294638
}} [
]{{cite journal
| title = The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes
| journal = Acta Astronautica
| date = 20 August 2013
| last1 = Baqué |first1 = Mickael
| last2 = de Vera |first2 = Jean-Pierre
| last3 = Rettberg |first3 = Petra
| last4 = Billi |first4 = Daniela
| volume = 91
| pages = 180–186
| doi = 10.1016/j.actaastro.2013.05.015
| bibcode = 2013AcAau..91..180B
}} |
Clostridium botulinum | | | | {{center|{{Checked}}}} | |
Clostridium butyricum | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Parfenov |first1=G. P.
|last2=Lukin |first2=A. A.
|date=1973
|title=Results and prospects of microbiological studies in outer space
|journal=Space Life Sciences
|volume=4 |issue= 1|pages=160–179
|bibcode=1973SLSci...4..160P
|doi=10.1007/BF02626350
|pmid=4576727
|s2cid=11421221
}} [
]{{cite journal
|last1=Koike |first1=J.
|date=1996
|title=Fundamental studies concerning planetary quarantine in space
|journal=Advances in Space Research
|volume=18 |issue=1–2 |pages=339–44
|bibcode=1996AdSpR..18a.339K
|doi=10.1016/0273-1177(95)00825-Y
|pmid=11538982
}} |
Clostridium celatum | | | | {{center|{{Checked}}}} | |
Clostridium mangenotii | | | | {{center|{{Checked}}}} | |
Clostridium roseum | | | | {{center|{{Checked}}}} | |
Deinococcus aerius | {{center|{{Checked}}}} | | | | [{{cite journal | url=http://adsabs.harvard.edu/abs/2018cosp...42E1714K | bibcode=2018cosp...42E1714K | title=Survival and DNA damage of cell-aggregate of Deinococcus SPP. Exposed to space for two-years in Tanpopo mission | last1=Kawaguchi | first1=Yuko | last2=Hashimoto | first2=Hirofumi | last3=Yokobori | first3=Shin-Ichi | last4=Yamagishi | first4=Akihiko | last5=Shibuya | first5=Mio | last6=Kinoshita | first6=Iori | last7=Hayashi | first7=Risako | last8=Yatabe | first8=Jun | last9=Narumi | first9=Issay | last10=Fujiwara | first10=Daisuke | last11=Murano | first11=Yuka | journal=42nd COSPAR Scientific Assembly | date=2018 | volume=42 }}] |
Deinococcus aetherius | {{center|{{Checked}}}} | | | | [{{cite journal | doi = 10.1089/ast.2017.1751 | volume=18 | title=Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission | year=2018 | journal=Astrobiology | pages=1369–1374 | author=Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi| issue=11 | pmid=30289276 | bibcode=2018AsBio..18.1369Y | s2cid=52920452 }}] |
Deinococcus geothermalis | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [[http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-930.pdf BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests]. EPSC Abstracts. Vol. 8, EPSC2013-930, 2013. European Planetary Science Congress 2013.] |
Deinococcus radiodurans | {{center|{{Checked}}}} | {{center|{{Checked}}}} | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Dose |first1=K.
|date=1995
|title=ERA-experiment "space biochemistry"
|journal=Advances in Space Research
|volume=16 |issue=8 |pages=119–29
|bibcode=1995AdSpR..16h.119D
|doi=10.1016/0273-1177(95)00280-R
|pmid=11542696
}} [
]{{cite journal
|last1=Mastrapa |first1=R. M. E
|last2=Glanzberg |first2=H.
|last3=Head |first3=J. N
|last4=Melosh |first4=H. J
|last5=Nicholson |first5=W. L
|date=2001
|title=Survival of bacteria exposed to extreme acceleration: Implications for panspermia
|journal=Earth and Planetary Science Letters
|volume=189 |issue= 1–2|pages=1–8
|bibcode=2001E&PSL.189....1M
|doi=10.1016/S0012-821X(01)00342-9
}} [
]{{cite journal
|last1=De La Vega |first1=U. P.
|last2=Rettberg |first2=P.
|last3=Reitz |first3=G.
|date=2007
|title=Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans
|journal=Advances in Space Research
|volume=40 |issue=11 |pages=1672–1677
|bibcode=2007AdSpR..40.1672D
|doi=10.1016/j.asr.2007.05.022
}} [{{cite news |last=Strickland |first=Ashley |title=Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study |url=https://www.cnn.com/2020/08/26/world/earth-mars-bacteria-space-scn/index.html |date=26 August 2020 |work=CNN News |access-date=26 August 2020 }}][{{cite journal |author=Kawaguchi, Yuko |display-authors=et al. |title=DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space |date=26 August 2020 |journal=Frontiers in Microbiology |volume=11 |page=2050 |doi=10.3389/fmicb.2020.02050 |pmid=32983036 |pmc=7479814 |doi-access=free }}] |
Enterobacter aerogenes | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Young |first1=R. S.
|last2=Deal |first2=P. H.
|last3=Bell |first3=J.
|last4=Allen |first4=J. L.
|date=1964
|title=Bacteria under simulated Martian conditions
|journal=Life Sciences in Space Research
|volume=2 |pages=105–11
|pmid=11881642
}} |
Escherichia coli | {{center|{{Checked}}}} | {{center|{{Checked}}}} | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Grigoryev |first1=Y. G.
|date=1972
|title=Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea
|journal=Life Sciences in Space Research
|volume=10 |pages=113–8
|pmid=11898831
}} [
]{{cite journal
|last1=Willis |first1=M.
|last2=Ahrens |first2=T.
|last3=Bertani |first3=L.
|last4=Nash |first4=C.
|date=2006
|title=Bugbuster—survivability of living bacteria upon shock compression
|journal=Earth and Planetary Science Letters
|volume=247 |issue=3–4 |pages=185–196
|bibcode=2006E&PSL.247..185W
|doi=10.1016/j.epsl.2006.03.054
}} |
Gloeocapsa | {{center|{{Checked}}}} | | | | [{{cite journal |title=Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth |journal=The ISME Journal |date= 19 May 2011 |last1=Cockell |first1=Charles S. |last2=Rettberg |first2=Petra |last3=Rabbow |first3=Elke |last4=Olson-Francis |first4=Karen |volume=5 |issue=10 |pages=1671–1682 |doi=10.1038/ismej.2011.46 |doi-access=free |pmid=21593797 |pmc=3176519|bibcode=2011ISMEJ...5.1671C }}] |
Gloeocapsopsis pleurocapsoides | | | | {{center|{{Checked}}}} | |
Haloarcula-G | {{center|{{Checked}}}} | | | | |
Hydrogenomonas eutropha | {{center|{{Checked}}}} | | | | |
Klebsiella pneumoniae | | | | {{center|{{Checked}}}} | |
Kocuria rosea | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Imshenetskiĭ |first1=A. A.
|last2=Kuzyurina |first2=L. A.
|last3=Yakshina |first3=V.M.
|date=1979
|title=Xerophytic microorganisms multiplying under conditions close to Martian ones
|journal=Mikrobiologiia
|volume=48 |issue=1 |pages=76–9
|pmid=106224
}} |
Lactobacillus plantarum | | | | {{center|{{Checked}}}} | [
]{{cite conference
|last1=Hawrylewicz |first1=E.
|last2=Hagen |first2=C. A.
|last3=Tolkacz |first3=V.
|last4=Anderson |first4=B. T.
|last5=Ewing |first5=M.
|date=1968
|chapter=Probability of growth pG of viable microorganisms in Martian environments
|title=Life Sciences in Space Research VI
|pages=146–156
}} |
Leptolyngbya | | | | {{center|{{Checked}}}} | |
Luteococcus japonicus | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Zhukova |first1=A. I.
|last2=Kondratyev |first2=I. I.
|date=1965
|title=On artificial Martian conditions reproduced for microbiological research
|journal=Life Sciences in Space Research
|volume=3 |pages=120–6
|pmid=12199257
}} |
Micrococcus luteus | {{center|{{Checked}}}} | | | | |
Nostoc commune | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [{{cite journal |title=Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions |journal=International Journal of Astrobiology |date=3 August 2015 |last1=Jänchena |first1=Jochen |last2=Feyha |first2=Nina |last3=Szewzyka |first3=Ulrich |last4=de Vera |first4=Jean-Pierre P. |doi= 10.1017/S147355041500018X |doi-access=free|volume=15 |issue=2 |pages=107–118|bibcode=2016IJAsB..15..107J }}] |
Nostoc microscopicum | | | | {{center|{{Checked}}}} | |
Photobacterium | | | | {{center|{{Checked}}}} | |
Pseudomonas aeruginosa | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Pseudomonas fluorescens | | | | {{center|{{Checked}}}} | |
Rhodococcus erythropolis | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Burchell |first1=M.
|date=2001
|title=Survivability of Bacteria in Hypervelocity Impact
|journal=Icarus
|volume=154 |issue=2|pages=545–547
|bibcode=2001Icar..154..545B
|doi=10.1006/icar.2001.6738
}} |
Rhodospirillum rubrum | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Roberts |first1=T. L.
|last2=Wynne |first2=E. S.
|date=1962
|title=Studies with a simulated Martian environment
|journal=Journal of the Astronautical Sciences
|volume=10 |pages=65–74
}} |
Salmonella enterica | | | | {{center|{{Checked}}}} | [{{cite journal |title=A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions |journal=Astrobiology |date=1 September 2016 |last1= Raktim |first1=Roy |last2=Phani |first2=Shilpa P. |last3=Sangram |first3=Bagh |volume=16 |issue=9 |pages=677–689 |doi=10.1089/ast.2015.1420 |bibcode=2016AsBio..16..677R |pmid=27623197}}] |
Serratia marcescens | | | | {{center|{{Checked}}}} | |
Serratia plymuthica | | {{center|{{Checked}}}} | | | [
]{{cite journal
|last1=Roten |first1=C. A.
|last2=Gallusser |first2=A.
|last3=Borruat |first3=G. D.
|last4=Udry |first4=S. D.
|last5=Karamata |first5=D.
|date=1998
|title=Impact resistance of bacteria entrapped in small meteorites
|journal=Bulletin de la Société Vaudoise des Sciences Naturelles
|volume=86 |issue=1 |pages=1–17
}} |
Staphylococcus aureus | | | | {{center|{{Checked}}}} | |
Streptococcus mutans | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Koike |first1=J.
|last2=Oshima |first2=T.
|last3=Kobayashi |first3=K.
|last4=Kawasaki |first4=Y.
|date=1995
|title=Studies in the search for life on Mars
|journal=Advances in Space Research
|volume=15 |issue=3 |pages=211–4
|bibcode=1995AdSpR..15c.211K
|doi=10.1016/S0273-1177(99)80086-6
|pmid=11539227
}} |
Streptomyces albus | | | | {{center|{{Checked}}}} | |
Streptomyces coelicolor | | | | {{center|{{Checked}}}} | |
Synechococcus (halite) | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Mancinelli |first1=R. L.
|last2=White |first2=M. R.
|last3=Rothschild |first3=L. J.
|date=1998
|title=Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment
|journal=Advances in Space Research
|volume=22 |issue=3 |pages=327–334
|bibcode=1998AdSpR..22..327M
|doi=10.1016/S0273-1177(98)00189-6
|url=https://zenodo.org/record/1259971
}} [{{cite web
]|date=26 April 2013
|title=Expose-R: Exposure of Osmophilic Microbes to Space Environment
|publisher=NASA
|url=http://www.nasa.gov/mission_pages/station/research/experiments/211.html |archive-url=https://web.archive.org/web/20130407021600/http://www.nasa.gov/mission_pages/station/research/experiments/211.html |url-status=dead |archive-date=7 April 2013 |access-date=2013-08-07}} [{{cite journal
]|title=The affect {{sic|nolink=y}} of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R |journal=International Journal of Astrobiology |date=January 2015 |last=Mancinelli |first=R. L. |volume=14 |issue=Special Issue 1 |pages=123–128 |doi=10.1017/S147355041400055X |url=https://zenodo.org/record/943061 |access-date=2015-05-09 |bibcode=2015IJAsB..14..123M |s2cid=44120218 }} |
Synechocystis | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Klementiev |first1=K. E.
|last2=Maksimov |first2=E. G.
|last3=Gvozdev |first3=D. A.
|last4=Tsoraev |first4=G. V.
|display-authors=etal
|date=2019
|title=Radioprotective role of cyanobacterial phycobilisomes
|journal=Biochimica et Biophysica Acta (BBA) - Bioenergetics
|volume=1860 |issue=2 |pages=121–128
|bibcode=
|doi=10.1016/j.bbabio.2018.11.018
|pmid=30465750
|doi-access=free
}} |
Symploca | | | | {{center|{{Checked}}}} | |
Tolypothrix byssoidea | | | | {{center|{{Checked}}}} | [{{cite journal |title=Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions |journal=International Journal of Astrobiology |date=17 October 2013 |last1=de Vera |first1=J. P. |last2=Dulai |first2=S. |last3=Kereszturi |first3=A. |last4=Koncz |first4=L. |last5=Pocs |first5=T. |pages=35–44 |doi=10.1017/S1473550413000323 |volume=13|issue=1 |bibcode=2014IJAsB..13...35D |s2cid=83647440 }}] |
{{center|Archaea}} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
Halobacterium noricense | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Stan-Lotter |first1=H.
|date=2002
|title=Astrobiology with haloarchaea from Permo-Triassic rock salt
|journal=International Journal of Astrobiology
|volume=1 |issue=4 |pages=271–284
|bibcode=2002IJAsB...1..271S
|doi=10.1017/S1473550403001307
|s2cid=86665831
}} [{{cite web |url=http://forms.asm.org/microbe/index.asp?bid=41227 |title=Extreme Halophiles Are Models for Astrobiology |url-status=dead |archive-url=https://web.archive.org/web/20110722193334/http://forms.asm.org/microbe/index.asp?bid=41227 |archive-date=2011-07-22 |author=Shiladitya DasSarma |publisher=American Society for Microbiology}}] |
Halobacterium salinarum | | | | {{center|{{Checked}}}} | |
Halococcus dombrowskii | | | | {{center|{{Checked}}}} | |
Halorubrum chaoviatoris | {{center|{{Checked}}}} | | | | |
Methanosarcina sp. SA-21/16 | | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Morozova |first1=D.
|last2=Möhlmann |first2=D.
|last3=Wagner |first3=D.
|date=2006
|title=Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions
|journal=Origins of Life and Evolution of Biospheres
|volume=37 |issue=2 |pages=189–200
|bibcode=2007OLEB...37..189M
|doi=10.1007/s11084-006-9024-7
|pmid=17160628
|s2cid=15620946
|url=http://epic.awi.de/14473/1/Mor2006e.pdf
}} |
Methanobacterium MC-20 | | | | {{center|{{Checked}}}} | |
Methanosarcina barkeri | | | | {{center|{{Checked}}}} | |
{{center|Fungi and algae}} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
Aspergillus niger | | | | {{center|{{Checked}}}} | |
Aspergillus oryzae | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Aspergillus terreus | | | | {{center|{{Checked}}}} | [{{cite journal |title=Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation |journal=Planetary and Space Science |volume=59 |issue=1 |date=2011 |last1=Sarantopoulou |first1=E. |last2=Gomoiu |first2=I. |last3=Kollia |first3=Z. |last4=Cefalas |first4=A.C. |pages=63–78 |doi=10.1016/j.pss.2010.11.002 |bibcode=2011P&SS...59...63S|hdl=10442/15561 |url=http://helios-eie.ekt.gr/EIE/bitstream/10442/15561/1/Interplanetary%20survival%20probability%20of%20Aspergillus%20terreus%20spores.pdf |hdl-access=free }}] |
Aspergillus versicolor | {{center|{{Checked}}}} | | | | [{{cite journal |title=Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment |journal=International Journal of Astrobiology |date=January 2015 |last1=Novikova |first1=N. |last2=Deshevaya |first2=E. |last3=Levinskikh |first3=M. |last4=Polikarpov |first4=N. |last5=Poddubko |first5= S. |pages=137–142 |doi=10.1017/S1473550414000731 |volume=14|issue=1 |bibcode=2015IJAsB..14..137N |s2cid=85458386 |doi-access=free }}] |
Chaetomium globosum | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Cladosporium herbarum | | | | {{center|{{Checked}}}} | [{{cite journal |title=Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum |journal=Journal of Applied Physics |date=2014 |last1=Sarantopoulou |first1=E. |last2=Stefi |first2=A. |last3=Kollia |first3=Z. |last4=Palles |first4=D. |last5=Petrou |first5=.P.S. |last6=Bourkoula |first6=A. |last7=Koukouvinos |first7=G. |last8=Velentzas |first8=A.D. |last9=Kakabakos |first9=S. |last10=Cefalas |first10=A.C. |pages=104701 |doi= 10.1063/1.4894621 |volume=116|issue=10 |bibcode=2014JAP...116j4701S }}] |
Cryomyces antarcticus | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [{{cite news |last=Wall |first=Mike |url=http://www.space.com/31772-fungi-survive-mars-conditions-space-station.html |title=Fungi Survive Mars-Like Conditions On Space Station |work=Space.com |date=January 29, 2016 |access-date=2016-01-29 }}][{{cite journal | url=https://link.springer.com/article/10.1007/s11084-016-9485-2 | doi=10.1007/s11084-016-9485-2 | title=BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests | date=2017 | last1=Pacelli | first1=Claudia | last2=Selbmann | first2=Laura | last3=Zucconi | first3=Laura | last4=De Vera | first4=Jean-Pierre | last5=Rabbow | first5=Elke | last6=Horneck | first6=Gerda | last7=de la Torre | first7=Rosa | last8=Onofri | first8=Silvano | journal=Origins of Life and Evolution of Biospheres | volume=47 | issue=2 | pages=187–202 | url-access=subscription }}] |
Cryomyces minteri | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Euglena gracilis | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [{{cite journal |title=Aquacells — Flagellates under long-term microgravity and potential usage for life support systems |vauthors=Häder DP, Richter PR, Strauch SM, et al |journal=Microgravity Sci. Technol. |year=2006 |volume=18 |issue=210 |pages=210–214 |doi=10.1007/BF02870411|bibcode=2006MicST..18..210H |s2cid=121659796 }}][{{cite journal |title=The influence of microgravity on Euglena gracilis as studied on Shenzhou 8 |vauthors=Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V |year=2014 |journal=Plant Biol J |volume=16 |pages=113–119 |doi=10.1111/plb.12067|pmid=23926886 |bibcode=2014PlBio..16S.113N }}][{{cite journal | doi = 10.1017/S1473550417000131 | volume=17 | title=Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments | year=2018 | journal=International Journal of Astrobiology | pages=101–111 | author=Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael| issue=2 | bibcode=2018IJAsB..17..101S | s2cid=90868067 }}][{{cite journal | doi = 10.1016/j.jplph.2009.07.009 | volume=167 | title=The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights | year=2010 | journal=Journal of Plant Physiology | pages=41–46 | author=Strauch S.M., Richter P., Schuster M., Häder D.-P.| issue=1 | pmid=19679374 }}] |
Mucor plumbeus | | | | {{center|{{Checked}}}} | |
Nannochloropsis oculata | | {{center|{{Checked}}}} | | | [{{cite conference |last1=Pasini |first1=J. L. S. |last2=Price |first2=M. C. |title=Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events |url=http://www.hou.usra.edu/meetings/lpsc2015/pdf/2725.pdf |conference=46th Lunar and Planetary Science Conference |date=2015 }}][Pasini D. L. S. et al. LPSC44, 1497. (2013).][Pasini D. L. S. et al. EPSC2013, 396. (2013).] |
Penicillium roqueforti | {{center|{{Checked}}}} | | | | |
Rhodotorula mucilaginosa | | | | {{center|{{Checked}}}} | |
Sordaria fimicola | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Zimmermann |first1=M. W.
|last2=Gartenbach |first2=K. E.
|last3=Kranz |first3=A. R.
|date=1994
|title=First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores
|journal=Advances in Space Research
|volume=14 |issue=10 |pages=47–51
|bibcode=1994AdSpR..14j..47Z
|doi=10.1016/0273-1177(94)90449-9
|pmid=11539984
}} |
Trebouxia | | | | {{center|{{Checked}}}} | [{{cite journal |title=UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances |journal=International Journal of Astrobiology |date=6 September 2013 |last1=Sánchez |first1=Francisco Javier |last2=Meeßen |first2=Joachim |last3=Ruiza |first3=M. del Carmen |last4=Sancho |first4=Leopoldo G. |last5=de la Torre |first5=Rosa |volume=13 |issue=1 |pages=1–18 |doi=10.1017/S147355041300027X |bibcode=2014IJAsB..13....1S |doi-access=free }}] |
Trichoderma koningii | {{center|{{Checked}}}} | | | | [
]{{cite web
|date=26 April 2013
|title=Expose-R: Exposure of Osmophilic Microbes to Space Environment |publisher=NASA
|url=http://www.nasa.gov/mission_pages/station/research/experiments/211.html |archive-url=https://web.archive.org/web/20130407021600/http://www.nasa.gov/mission_pages/station/research/experiments/211.html |url-status=dead |archive-date=7 April 2013 |access-date=2013-08-07
}} |
Trichoderma longibrachiatum | {{center|{{Checked}}}} | | | | [{{cite journal |title=Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R |journal=International Journal of Astrobiology |date=January 2015 |last1=Neuberger |first1=Katja |last2=Lux-Endrich |first2=Astrid |last3=Panitz |first3=Corinna |last4=Horneck |first4=Gerda |volume=14 |issue=Special Issue 1 |pages=129–135 |doi=10.1017/S1473550414000408 |bibcode=2015IJAsB..14..129N|s2cid=121455217 }}] |
Trichophyton terrestre | {{center|{{Checked}}}} | | | | |
Ulocladium atrum | | | {{center|{{Checked}}}} | | |
{{center|Lichens}} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
Aspicilia fruticulosa | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Raggio |first1=J.
|date=2011
|title=Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa
|journal=Astrobiology
|volume=11 |issue=4 |pages=281–92
|bibcode=2011AsBio..11..281R
|doi=10.1089/ast.2010.0588
|pmid=21545267
}} |
Buellia frigida | | | | {{center|{{Checked}}}} | [{{cite journal |title=Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability |journal=Astrobiology |date=August 2015 |last1=Meeßen |first1=J. |last2=Wuthenow |first2=P. |last3=Schille |first3=P. |last4=Rabbow |first4=E. |last5=de Vera |first5=J.-P.P |volume=15 |issue=8 |pages=601–615 |doi=10.1089/ast.2015.1281 |bibcode=2015AsBio..15..601M |pmid=26218403 |pmc=4554929}}] |
Chlorella | {{center|{{Checked}}}} | | | | |
Circinaria gyrosa | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [{{cite journal | doi = 10.1089/ast.2015.1454 | volume=17 | title=The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa | year=2017 | journal=Astrobiology | pages=145–153 | author=Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim | issue=2 | pmid=28206822 | bibcode=2017AsBio..17..145D }}] |
Rhizocarpon geographicum | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=de La Torre Noetzel |first1=R.
|date=2007
|title=BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem
|journal=Advances in Space Research
|volume=40 |issue=11 |pages=1665–1671
|bibcode=2007AdSpR..40.1665D
|doi=10.1016/j.asr.2007.02.022
}} |
Rosenvingiella | {{center|{{Checked}}}} | | | | |
Xanthoria elegans | {{center|{{Checked}}}} | {{center|{{Checked}}}} | | {{center|{{Checked}}}} | [
]{{cite journal
|last1=Sancho |first1=L. G.
|date=2007
|title=Lichens survive in space: Results from the 2005 LICHENS experiment
|journal=Astrobiology
|volume=7 |issue=3 |pages=443–54
|bibcode=2007AsBio...7..443S
|doi=10.1089/ast.2006.0046
|pmid=17630840
|hdl=10261/20262
|hdl-access=free
}} [
]{{cite journal
|last1=De Vera |first1=J.-P.
|last2=Horneck |first2=G.
|last3=Rettberg |first3=P.
|last4=Ott |first4=S.
|date=2004
|title=The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions
|journal=Advances in Space Research
|volume=33 |issue=8|pages=1236–43
|bibcode=2004AdSpR..33.1236D
|doi=10.1016/j.asr.2003.10.035
|pmid=15806704
}} [
]{{cite journal
|last1=Horneck |first1=G.
|date=2008
|title=Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested
|journal=Astrobiology
|volume=8 |issue=1 |pages=17–44
|bibcode=2008AsBio...8...17H
|doi=10.1089/ast.2007.0134
|pmid=18237257
}} [{{cite journal | year = 2014 | title = Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS | journal = International Journal of Astrobiology | volume = 14| issue = 3| pages = 411–425| doi = 10.1017/S1473550414000214 | last1 = Brandt | first1 = Annette | last2 = De Vera | first2 = Jean-Pierre | last3 = Onofri | first3 = Silvano | last4 = Ott | first4 = Sieglinde | bibcode = 2015IJAsB..14..411B | doi-access = free }}][{{cite journal | vauthors = Horneck G, et al | year = 2008 | title = Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested| doi = 10.1089/ast.2007.0134 | journal = Astrobiology | volume = 8 | issue = 1| pages = 17–44 | pmid=18237257| bibcode = 2008AsBio...8...17H }}] |
Xanthoria parietina | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
{{center|Bacteriophage / virus}} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
T7 phage | | | | {{center|{{Checked}}}} | |
Canine hepatitis | {{center|{{Checked}}}} | | | | |
Influenza PR8 | {{center|{{Checked}}}} | | | | |
Tobacco mosaic virus | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Hotchin |first1=J.
|date=1968
|title=The Microbiology of Space
|journal=Journal of the British Interplanetary Society
|volume=21 |pages=122
|bibcode=1968JBIS...21..122H
}} |
Vaccinia virus | {{center|{{Checked}}}} | | | | |
{{center|Yeast}} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
Rhodotorula rubra | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Saccharomyces cerevisiae | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | |
Saccharomyces ellipsoides | {{center|{{Checked}}}} | | | | |
Zygosaccharomyces bailii | {{center|{{Checked}}}} | | | | |
{{center|Animals }} | {{center|Low Earth orbit}} | {{center|Impact event and planetary ejection}} | {{center|Atmospheric reentry}} | {{center|Simulated conditions}} | |
Caenorhabditis elegans (nematode) | {{center|{{Checked}}}} | | | | [{{cite journal | doi = 10.1242/jeb.02365 | volume=209 | title=Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight | year=2006 | journal=Journal of Experimental Biology | pages=3209–3218 | author=Higashibata A| issue=16 | pmid=16888068 | doi-access=free }}][[https://www.nasa.gov/mission_pages/station/research/experiments/644.html International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics)]. November 22, 2016.] |
Hypsibius dujardini (tardigrade) | | {{center|{{Checked}}}} | | {{center|{{Checked}}}} | [Pasini D. L. S. et al. LPSC45, 1789.
](2014). [Pasini D. L. S. et al. EPSC2014, 67. (2014).] |
Milnesium tardigradum (tardigrade) | {{center|{{Checked}}}} | | | | [
]{{cite journal
|last1=Jönsson |first1=K. I.
|last2=Rabbow |first2=E.
|last3=Schill |first3=Ralph O.
|last4=Harms-Ringdahl |first4=M.
|last5=Rettberg |first5=P.
|date=2008
|title=Tardigrades survive exposure to space in low Earth orbit
|journal=Current Biology
|volume=18 |issue=17 |pages=R729–R731
|doi=10.1016/j.cub.2008.06.048
|pmid=18786368
|s2cid=8566993
|doi-access=free
|bibcode=2008CBio...18.R729J
}} [
]{{cite web
|date=17 May 2011
|title=BIOKon In Space (BIOKIS)
|url=http://www.nasa.gov/mission_pages/station/research/experiments/BIOKIS.html
|archive-url=https://web.archive.org/web/20110417085459/http://www.nasa.gov/mission_pages/station/research/experiments/BIOKIS.html
|url-status=dead
|archive-date=17 April 2011
|publisher=NASA
|access-date=2011-05-24
}} [
]{{cite web
|last=Brennard |first=Emma
|date=17 May 2011
|title=Tardigrades: Water bears in space
|url=https://www.bbc.co.uk/nature/12855775
|publisher=BBC
|access-date=2011-05-24
}} |
Richtersius coronifer (tardigrade) | {{center|{{Checked}}}} | | | {{center|{{Checked}}}} | [{{cite journal|last1=Jönsson|first1=K. Ingemar|last2=Wojcik|first2=Andrzej|title=Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola|journal=Astrobiology|volume=17|issue=2|date=February 2017|pages=163–167|issn=1531-1074|doi=10.1089/ast.2015.1462|pmid=28206820|bibcode=2017AsBio..17..163J}}] |
Mniobia russeola (rotifer) | | | | {{center|{{Checked}}}} | |