modular lambda function
{{short description|Symmetric holomorphic function}}
File:Modular lambda function in range -3 to 3.png
In mathematics, the modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
The q-expansion, where is the nome, is given by:
: . {{oeis|id=A115977 }}
By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group , and it is in fact Klein's modular j-invariant.
Modular properties
The function is invariant under the group generated byChandrasekharan (1985) p.115
:
The generators of the modular group act byChandrasekharan (1985) p.109
:
:
Consequently, the action of the modular group on is that of the anharmonic group, giving the six values of the cross-ratio:Chandrasekharan (1985) p.110
:
Relations to other functions
It is the square of the elliptic modulus,Chandrasekharan (1985) p.108 that is, . In terms of the Dedekind eta function and theta functions,
:
and,
:
whereChandrasekharan (1985) p.63
:
:
:
In terms of the half-periods of Weierstrass's elliptic functions, let be a fundamental pair of periods with .
:
:
Since the three half-period values are distinct, this shows that does not take the value 0 or 1.
The relation to the j-invariant isChandrasekharan (1985) p.117Rankin (1977) pp.226–228
:
which is the j-invariant of the elliptic curve of Legendre form
Given , let
:
where is the complete elliptic integral of the first kind with parameter .
Then
:
Modular equations
The modular equation of degree (where is a prime number) is an algebraic equation in and . If and , the modular equations of degrees are, respectively,{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 103–109, 134
:
:
:
:
The quantity (and hence ) can be thought of as a holomorphic function on the upper half-plane :
:
&=\cfrac{\sqrt{2}e^{\pi i\tau/8}}{1+\cfrac{e^{\pi i\tau}}{1+e^{\pi i\tau}+\cfrac{e^{2\pi i\tau}}{1+e^{2\pi i\tau}+\cfrac{e^{3\pi i\tau}}{1+e^{3\pi i\tau}+\ddots}}}}\end{align}
Since , the modular equations can be used to give algebraic values of for any prime .For any prime power, we can iterate the modular equation of degree . This process can be used to give algebraic values of for any The algebraic values of are also given by{{Cite book |last1=Jacobi |first1=Carl Gustav Jacob |author-link=Carl Gustav Jacob Jacobi|title=Fundamenta nova theoriae functionum ellipticarum|language=Latin|year=1829}} p. 42 is algebraic for every
:
:
where is the lemniscate sine and is the lemniscate constant.
Lambda-star
=Definition and computation of lambda-star=
The function {{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 152 (where ) gives the value of the elliptic modulus , for which the complete elliptic integral of the first kind and its complementary counterpart are related by following expression:
:
The values of can be computed as follows:
:
:
:
The functions and are related to each other in this way:
:
=Properties of lambda-star=
Every value of a positive rational number is a positive algebraic number:
:
and (the complete elliptic integral of the second kind) can be expressed in closed form in terms of the gamma function for any , as Selberg and Chowla proved in 1949.{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences |date=1949 |volume=35 |issue=7 |page=373|doi=10.1073/PNAS.35.7.371 |s2cid=45071481 |doi-access=free|pmc=1063041}}{{Cite web|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|website=EuDML|pages=86–110}}
The following expression is valid for all :
:
where is the Jacobi elliptic function delta amplitudinis with modulus .
By knowing one value, this formula can be used to compute related values:
:
where and is the Jacobi elliptic function sinus amplitudinis with modulus .
Further relations:
:
:
:
:
& a^{6}-f^{6} = 2af +2a^5f^5\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(f = \left[\frac{2\lambda^*(25x)}{1-\lambda^*(25x)^2}\right]^{1/12}\right) \\
&a^{8}+b^{8}-7a^4b^4 = 2\sqrt{2}ab+2\sqrt{2}a^7b^7\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(b = \left[\frac{2\lambda^*(49x)}{1-\lambda^*(49x)^2}\right]^{1/12}\right) \\
& a^{12}-c^{12} = 2\sqrt{2}(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2+2a^4c^4)\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(c = \left[\frac{2\lambda^*(121x)}{1-\lambda^*(121x)^2}\right]^{1/12}\right) \\
& (a^2-d^2)(a^4+d^4-7a^2d^2)[(a^2-d^2)^4-a^2d^2(a^2+d^2)^2] = 8ad+8a^{13}d^{13}\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^{1/12}\right) &\left(d = \left[\frac{2\lambda^*(169x)}{1-\lambda^*(169x)^2}\right]^{1/12}\right)
\end{align}
{{Collapse top|title=Special values}}
Lambda-star values of integer numbers of 4n-3-type:
:
:
:
:
:
:
:
:
:
:
:
:
:
Lambda-star values of integer numbers of 4n-2-type:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Lambda-star values of integer numbers of 4n-1-type:
:
:
:
:
:
:
:
:
:
Lambda-star values of integer numbers of 4n-type:
:
:
:
:
:
:
:
:
Lambda-star values of rational fractions:
:
:
:
:
:
:
:
:
:
{{Collapse bottom}}
=Ramanujan's class invariants=
Ramanujan's class invariants and are defined as{{cite journal |last1=Berndt |first1=Bruce C. |last2=Chan |first2=Heng Huat|last3=Zhang|first3=Liang-Cheng |date=6 June 1997 |title=Ramanujan's class invariants, Kronecker's limit formula, and modular equations|url=https://www.ams.org/journals/tran/1997-349-06/ |journal=Transactions of the American Mathematical Society|volume=349|issue=6|pages=2125–2173}}
:
:
where . For such , the class invariants are algebraic numbers. For example
:
Identities with the class invariants include{{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=Autour du nombre Pi |language=French|publisher=HERMANN |year=1999 |isbn=2705614435}} p. 240
:
The class invariants are very closely related to the Weber modular functions and . These are the relations between lambda-star and the class invariants:
:
:
:
Other appearances
=Little Picard theorem=
The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.Chandrasekharan (1985) p.121 Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.Chandrasekharan (1985) p.118
=Moonshine=
The function is the normalized Hauptmodul for the group , and its q-expansion , {{oeis|id=A007248}} where , is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.
Footnotes
{{reflist}}
References
=Notes=
{{reflist|group=note}}
=Other=
- {{Citation | editor1-last=Abramowitz | editor1-first=Milton | editor1-link=Milton Abramowitz | editor2-last=Stegun | editor2-first=Irene A. | editor2-link=Irene Stegun | title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher=Dover Publications | location=New York | isbn=978-0-486-61272-0 | year=1972 | zbl=0543.33001 | url-access=registration | url=https://archive.org/details/handbookofmathe000abra }}
- {{citation | last=Chandrasekharan | first=K. | authorlink=K. S. Chandrasekharan | title=Elliptic Functions | series=Grundlehren der mathematischen Wissenschaften | volume=281 | publisher=Springer-Verlag | year=1985 | isbn=3-540-15295-4 | zbl=0575.33001 | pages=108–121 }}
- {{citation|first1=John Horton|last1=Conway|author1-link=John Horton Conway|first2=Simon|last2=Norton|author2-link=Simon P. Norton|title=Monstrous moonshine|journal=Bulletin of the London Mathematical Society|volume=11|issue=3|year=1979|pages=308–339|mr=0554399|zbl=0424.20010 |doi=10.1112/blms/11.3.308}}
- {{citation | last=Rankin | first=Robert A. | authorlink=Robert Alexander Rankin | title=Modular Forms and Functions | publisher=Cambridge University Press | year=1977 | isbn=0-521-21212-X | zbl=0376.10020 }}
- {{dlmf|id=23.15.E6|title=Elliptic Modular Function|first= W. P. |last=Reinhardt|first2=P. L.|last2= Walker}}
- Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
- Conway, J. H. and Norton, S. P. "Monstrous Moonshine." Bull. London Math. Soc. 11, 308-339, 1979.
- Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.
External links
- [https://fungrim.org/topic/Modular_lambda_function/ Modular lambda function] at [https://fungrim.org/ Fungrim]
{{DEFAULTSORT:Modular Lambda Function}}