lemniscate constant
{{Short description|Ratio of the perimeter of Bernoulli's lemniscate to its diameter}}
{{Redirect|Gauss's constant|the parameter used in orbital mechanics|Gaussian gravitational constant}}
File:Lemniscate of Bernoulli.svg
In mathematics, the lemniscate constant {{mvar|ϖ}} is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of {{pi}} for the circle.See:
- {{Cite book |last1=Gauss |first1=C. F. |title=Werke (Band III)|publisher=Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen |language=Latin, German|year=1866|url=https://gdz.sub.uni-goettingen.de/id/PPN235999628}} p. 404
- {{harvnb|Cox|1984|p=281}}
- {{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=The Number Pi |publisher=American Mathematical Society |year=2004 |isbn=0-8218-3246-8}} p. 199
- {{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }} p. 57
- {{Cite book |last1=Arakawa |first1=Tsuneo |last2=Ibukiyama| first2=Tomoyoshi |last3=Kaneko|first3=Masanobu|title=Bernoulli Numbers and Zeta Functions |publisher=Springer |year=2014 |isbn=978-4-431-54918-5}} p. 203 Equivalently, the perimeter of the lemniscate is {{math|2ϖ}}. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.See:
- {{harvnb|Finch|2003|p=420}}
- {{citation|title=Applications of generalized trigonometric functions with two parameters|last1=Kobayashi|first1=Hiroyuki|last2=Takeuchi|first2=Shingo|journal=Communications on Pure & Applied Analysis|arxiv=1903.07407|year=2019|volume=18|issue=3|pages=1509–1521|doi=10.3934/cpaa.2019072|s2cid=102487670}}
- {{citation|title=Elliptic Gauss Sums and Hecke L-values at s=1|last1=Asai|first1=Tetsuya|arxiv=0707.3711|year=2007}}
- {{cite web | url=http://oeis.org/A062539 | title=A062539 - Oeis }} It also appears in evaluation of the gamma and beta function at certain rational values. The symbol {{mvar|ϖ}} is a cursive variant of {{mvar|π}} known as variant pi represented in Unicode by the character {{unichar|03D6}}.
Sometimes the quantities {{math|2ϖ}} or {{math|ϖ/2}} are referred to as the lemniscate constant.{{Cite web | url=http://oeis.org/A064853 | title=A064853 - Oeis }}{{Cite web|url=http://www.numberworld.org/digits/Lemniscate/|title=Lemniscate Constant}}
As of 2024 over 1.2 trillion digits of this constant have been calculated.{{Cite web |title=Records set by y-cruncher |url=http://numberworld.org/y-cruncher/records.html |access-date=2024-08-20 |website=numberworld.org}}
History
Gauss's constant, denoted by G, is equal to {{math|ϖ /{{pi}} ≈ 0.8346268}}{{cite web |title=A014549 - Oeis |url=http://oeis.org/A014549}} and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as .{{sfn|Finch|2003|p=420}} By 1799, Gauss had two proofs of the theorem that where is the lemniscate constant.Neither of these proofs was rigorous from the modern point of view. See {{harvnb|Cox|1984|p=281}}
John Todd named two more lemniscate constants, the first lemniscate constant {{math|1=A = ϖ/2 ≈ 1.3110287771}} and the second lemniscate constant {{math|1=B = {{pi}}/(2ϖ) ≈ 0.5990701173}}.{{Cite journal |last=Todd |first=John |date=January 1975 |title=The lemniscate constants |journal=Communications of the ACM |volume=18 |pages=14–19 |doi=10.1145/360569.360580 |s2cid=85873 |doi-access=free |number=1}}{{Cite web |title=A085565 - Oeis |url=http://oeis.org/A085565}} and {{cite web |title=A076390 - Oeis |url=http://oeis.org/A076390}}{{dlmf|first=B. C.|last=Carlson|id=19.20.E2|title=Elliptic Integrals}}
The lemniscate constant and Todd's first lemniscate constant were proven transcendental by Carl Ludwig Siegel in 1932 and later by Theodor Schneider in 1937 and Todd's second lemniscate constant and Gauss's constant were proven transcendental by Theodor Schneider in 1941.{{r|todd}} In particular, Siegel proved that if and with are algebraic, then or is transcendental. Here, and are Eisenstein series. The fact that is transcendental follows from and {{pb}} {{Cite book |last=Apostol |first=T. M. |title=Modular Functions and Dirichlet Series in Number Theory|publisher=Springer |year=1990 |isbn=0-387-97127-0|page=12|edition=Second}} {{pb}} {{Cite journal |last=Siegel |first=C. L. |date=1932 |title=Über die Perioden elliptischer Funktionen. |url=https://eudml.org/doc/149791 |journal=Journal für die reine und angewandte Mathematik |volume=167 |pages=62–69|doi=10.1515/crll.1932.167.62 |language=German}}In particular, Schneider proved that the beta function is transcendental for all such that . The fact that is transcendental follows from and similarly for {{mvar|B}} and {{mvar|G}} from {{pb}} {{cite journal |first=Theodor |last=Schneider |url=https://www.deepdyve.com/lp/de-gruyter/zur-theorie-der-abelschen-funktionen-und-integrale-mn0U50bvkB |title=Zur Theorie der Abelschen Funktionen und Integrale |year=1941 |journal=Journal für die reine und angewandte Mathematik |volume=183 |number=19 |pages=110–128 |doi=10.1515/crll.1941.183.110 |s2cid=118624331 }} In 1975, Gregory Chudnovsky proved that the set is algebraically independent over , which implies that and are algebraically independent as well.G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6 But the set (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over .In fact, {{pb}} {{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 45 In 1996, Yuri Nesterenko proved that the set is algebraically independent over .{{Cite book |last1=Nesterenko |first1=Y. V. |last2=Philippon|first2=P.|title=Introduction to Algebraic Independence Theory|publisher=Springer |year=2001 |isbn=3-540-41496-7|page=27}}
Forms
Usually, is defined by the first equality below, but it has many equivalent forms:See:
- {{harvnb|Cox|1984|p=281}}
- {{harvnb|Finch|2003|pp=420–422}}
- {{cite book |chapter=Some milestones of lemniscatomy |last1=Schappacher |first1=Norbert |author-link1=Norbert Schappacher | date= 1997 |editor1-last=Sertöz |editor1-first=S. |title=Algebraic Geometry |type=Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey |publisher=Marcel Dekker |pages=257–290 | chapter-url=http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1997_LemniscProvis.pdf}}
\varpi
&= 2\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}}
= \sqrt2\int_0^\infty\frac{\mathrm{d}t}{\sqrt{1+t^4}}
= \int_0^1\frac{\mathrm dt}{\sqrt{t-t^3}}
= \int_1^\infty \frac{\mathrm dt}{\sqrt{t^3-t}}\\[6mu]
&= 4\int_0^\infty\Bigl(\sqrt[4]{1+t^{4}}-t\Bigr)\,\mathrm{d}t
= 2\sqrt2\int_0^1 \sqrt[4]{1-t^{4}}\mathop{\mathrm{d}t} =3\int_0^1 \sqrt{1-t^4}\,\mathrm dt\\[2mu]
&= 2K(i)
= \tfrac{1}{2}\Beta\bigl( \tfrac14, \tfrac12\bigr)
= \tfrac{1}{2\sqrt2}\Beta\bigl( \tfrac14, \tfrac14\bigr)
= \frac{\Gamma (1/4)^2}{2\sqrt{2\pi}}
= \frac{2-\sqrt2}{4}\frac{\zeta(3/4)^2}{\zeta(1/4)^2}\\[5mu]
&= 2.62205\;75542\;92119\;81046\;48395\;89891\;11941\ldots,
\end{aligned}
where {{mvar|K}} is the complete elliptic integral of the first kind with modulus {{mvar|k}}, {{math|Β}} is the beta function, {{math|Γ}} is the gamma function and {{mvar|ζ}} is the Riemann zeta function.
The lemniscate constant can also be computed by the arithmetic–geometric mean ,
Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of published in 1800:{{sfn|Cox|1984|p=277}}John Todd's lemniscate constants may be given in terms of the beta function B:
A &= \frac\varpi2 = \tfrac14 \Beta \bigl(\tfrac14,\tfrac12\bigr), \\[3mu]
B &= \frac{\pi}{2\varpi} =\tfrac14\Beta \bigl(\tfrac12,\tfrac34\bigr).
\end{aligned}
=As a special value of L-functions=
which is analogous to
where is the Dirichlet beta function and is the Riemann zeta function.{{cite web | url=http://oeis.org/A113847 | title=A113847 - Oeis }}
Analogously to the Leibniz formula for π,
we have{{cite book |last=Cremona |first=J. E. |date= 1997 |edition=2nd|title=Algorithms for Modular Elliptic Curves|url=https://books.google.com/books?id=MtM8AAAAIAAJ|publisher=Cambridge University Press|isbn=0521598206}} p. 31, formula (2.8.10)In fact, the series converges for .{{cite book |last=Murty |first=Vijaya Kumar |author-link=V. Kumar Murty|date= 1995 |page=16 |title=Seminar on Fermat's Last Theorem |publisher= American Mathematical Society|isbn=9780821803134}}{{Cite book| last=Cohen| first=Henri|author-link=Henri Cohen (number theorist)|date=1993|pages=382–406|title=A Course in Computational Algebraic Number Theory|publisher=Springer-Verlag|isbn=978-3-642-08142-2}}{{cite web |url=https://www.lmfdb.org/EllipticCurve/Q/32/a/3 |title=Elliptic curve with LMFDB label 32.a3 (Cremona label 32a2)|website=The L-functions and modular forms database}}
where is the L-function of the elliptic curve over ; this means that is the multiplicative function given by
p - \mathcal{N}_p, & p\in\mathbb{P}, \, n=1 \\[5mu]
0, & p=2,\, n\ge 2 \\[5mu]
\nu (p)\nu (p^{n-1})-p\nu (p^{n-2}), & p\in\mathbb{P}\setminus\{2\},\, n\ge 2
\end{cases}
where is the number of solutions of the congruence
in variables that are non-negative integers ( is the set of all primes).
Equivalently, is given by
where such that and is the eta function.The function is the unique weight level new form and it satisfies the functional equation
:The function is closely related to the function which is the multiplicative function defined by
:
\mathcal{N}_p', & p\in\mathbb{P},\, n=1 \\[5mu]
\xi (p^{n-1}) + \chi (p)^n, & p\in\mathbb{P},\, n\ge 2
\end{cases}
where is the number of solutions of the equation
:
in variables that are non-negative integers (see Fermat's theorem on sums of two squares) and is the Dirichlet character from the Leibniz formula for π; also
:
for any positive integer where the sum extends only over positive divisors; the relation between and is
:
where is any non-negative integer.The function also appears in
:
where is any positive integer and is the set of all Gaussian integers of the form
:
where is odd and is even. The function from the previous note satisfies
:
where is positive odd.
The above result can be equivalently written as
(the number is the conductor of ) and also tells us that the BSD conjecture is true for the above .{{Cite journal |last=Rubin |first=Karl |date=1987 |title=Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication |url=https://eudml.org/doc/143493 |journal=Inventiones Mathematicae |volume=89 |issue=3 |page=528|doi=10.1007/BF01388984 |bibcode=1987InMat..89..527R }}
The first few values of are given by the following table; if such that doesn't appear in the table, then :
n & \nu (n) & n & \nu (n) \\
\hline
1 & 1 & 53 & 14 \\
5 & -2 & 61 & -10 \\
9 & -3 & 65 & -12 \\
13 & 6 & 73 & -6 \\
17 & 2 & 81 & 9 \\
25 & -1 & 85 & -4 \\
29 & -10 & 89 & 10\\
37 & -2 & 97 & 18 \\
41 & 10 & 101 & -2 \\
45 & 6 & 109 & 6 \\
49 & -7 & 113 & -14 \\
\end{array}
=As a special value of other functions=
Let be the minimal weight level new form. Then{{cite web|url=https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1/12/a/a/|title=Newform orbit 1.12.a.a|website=The L-functions and modular forms database}}
The -coefficient of is the Ramanujan tau function.
Series
Viète's formula for {{mvar|π}} can be written:
\frac2\pi = \sqrt\frac12 \cdot \sqrt{\frac12 + \frac12\sqrt\frac12} \cdot \sqrt{\frac12 + \frac12\sqrt{\frac12 + \frac12\sqrt\frac12}} \cdots
An analogous formula for {{mvar|ϖ}} is:Levin (2006)
\frac2\varpi = \sqrt\frac12 \cdot \sqrt{\frac12 + \frac12 \bigg/ \!\sqrt\frac12} \cdot \sqrt{\frac12 + \frac12 \Bigg/ \!\sqrt{\frac12 + \frac12 \bigg/ \!\sqrt\frac12}} \cdots
The Wallis product for {{mvar|π}} is:
\frac{\pi}{2} = \prod_{n=1}^\infty \left(1+\frac{1}{n}\right)^{(-1)^{n+1}}=\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right)
= \biggl(\frac{2}{1} \cdot \frac{2}{3}\biggr) \biggl(\frac{4}{3} \cdot \frac{4}{5}\biggr) \biggl(\frac{6}{5} \cdot \frac{6}{7}\biggr) \cdots
An analogous formula for {{mvar|ϖ}} is:Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
\frac{\varpi}{2} = \prod_{n=1}^\infty \left(1+\frac{1}{2n}\right)^{(-1)^{n+1}}=\prod_{n=1}^{\infty} \left(\frac{4n-1}{4n-2} \cdot \frac{4n}{4n+1}\right)
= \biggl(\frac{3}{2} \cdot \frac{4}{5}\biggr) \biggl(\frac{7}{6} \cdot \frac{8}{9}\biggr) \biggl(\frac{11}{10} \cdot \frac{12}{13}\biggr) \cdots
A related result for Gauss's constant () is:{{cite journal |last1=Hyde |first1=Trevor |year=2014 |title=A Wallis product on clovers |journal=The American Mathematical Monthly |volume=121 |issue=3 |pages=237–243 |url=https://math.uchicago.edu/~tghyde/Hyde%20--%20A%20Wallis%20product%20on%20clovers.pdf |doi=10.4169/amer.math.monthly.121.03.237 |s2cid=34819500 }}
\frac{\varpi}{\pi} = \prod_{n=1}^{\infty} \left(\frac{4n-1}{4n} \cdot \frac{4n+2}{4n+1}\right)
= \biggl(\frac{3}{4} \cdot \frac{6}{5}\biggr) \biggl(\frac{7}{8} \cdot \frac{10}{9}\biggr) \biggl(\frac{11}{12} \cdot \frac{14}{13}\biggr) \cdots
An infinite series discovered by Gauss is:{{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }} p. 60
\frac{\varpi}{\pi} = \sum_{n=0}^\infty (-1)^n \prod_{k=1}^n \frac{(2k-1)^2}{(2k)^2}
= 1 - \frac{1^2}{2^2} + \frac{1^2\cdot3^2}{2^2\cdot4^2} - \frac{1^2\cdot3^2\cdot5^2}{2^2\cdot4^2\cdot6^2} + \cdots
The Machin formula for {{mvar|π}} is and several similar formulas for {{mvar|π}} can be developed using trigonometric angle sum identities, e.g. Euler's formula . Analogous formulas can be developed for {{mvar|ϖ}}, including the following found by Gauss: , where is the lemniscate arcsine.Todd (1975)
The lemniscate constant can be rapidly computed by the series{{harvnb|Cox|1984|p=307|loc=eq. 2.21}} for the first equality. The second equality can be proved by using the pentagonal number theorem.{{Cite book |last1=Berndt |first1=Bruce C. |title=Ramanujan's Notebooks Part V |publisher=Springer |year=1998 |isbn=978-1-4612-7221-2}} p. 326
:
where (these are the generalized pentagonal numbers). AlsoThis formula can be proved by hypergeometric inversion: Let
:
where with . Then
:
where
:
where . The formula in question follows from setting .
:
In a spirit similar to that of the Basel problem,
:
where are the Gaussian integers and is the Eisenstein series of weight {{tmath|4}} (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).{{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=The Number Pi |publisher=American Mathematical Society |year=2004 |isbn=0-8218-3246-8}} p. 232
A related result is
:
where is the sum of positive divisors function.{{cite web |url=http://www-users.math.umn.edu/~garrett/m/mfms/notes_2015-16/10_level_one.pdf |title=Level-one elliptic modular forms |last=Garrett |first=Paul |website=University of Minnesota}} p. 11—13
In 1842, Malmsten found
:
where is Euler's constant and is the Dirichlet-Beta function.
The lemniscate constant is given by the rapidly converging series
The constant is also given by the infinite product
:
AlsoThe formula follows from the hypergeometric transformation
:
where and is the modular lambda function.
:
Continued fractions
A (generalized) continued fraction for {{mvar|π}} is
An analogous formula for {{mvar|ϖ}} is{{r|lemniscate constant A}}
Define Brouncker's continued fraction by{{Cite book |last1=Khrushchev |first1=Sergey |title=Orthogonal Polynomials and Continued Fractions |publisher=Cambridge University Press |year=2008 |edition=First |isbn=978-0-521-85419-1}} p. 140 (eq. 3.34), p. 153. There's an error on p. 153: should be .
Let except for the first equality where . Then{{Cite book |last1=Khrushchev |first1=Sergey |title=Orthogonal Polynomials and Continued Fractions |publisher=Cambridge University Press |year=2008 |edition=First |isbn=978-0-521-85419-1}} p. 146, 155{{Cite book |last1=Perron |first1=Oskar |language=German |author-link=Oskar Perron|title=Die Lehre von den Kettenbrüchen: Band II |publisher=B. G. Teubner |year=1957 |edition=Third}} p. 36, eq. 24
b(4n+1)&=(2n+1)\prod_{k=1}^n \frac{(2k)^2}{(2k-1)(2k+1)}\frac{4}{\pi}\\
b(4n+2)&=(4n+1)\prod_{k=1}^n \frac{(4k-3)(4k+1)}{(4k-1)^2}\frac{\varpi^2}{\pi}\\
b(4n+3)&=(2n+1)\prod_{k=1}^n \frac{(2k-1)(2k+1)}{(2k)^2}\,\pi.\end{align}
For example,
b(1) &= \frac{4}{\pi}, &
b(2) &= \frac{\varpi^2}{\pi}, &
b(3) &= \pi, &
b(4) &= \frac{9\pi}{\varpi^2}.
\end{align}
In fact, the values of and , coupled with the functional equation
determine the values of for all .
=Simple continued fractions=
Simple continued fractions for the lemniscate constant and related constants include{{Cite web |title=A062540 - OEIS |url=http://oeis.org/A062540 |access-date=2022-09-14 |website=oeis.org}}{{Cite web |title=A053002 - OEIS|url=http://oeis.org/A053002|website=oeis.org}}
\varpi &= [2,1,1,1,1,1,4,1,2,\ldots], \\[8mu]
2\varpi &= [5,4,10,2,1,2,3,29,\ldots], \\[5mu]
\frac{\varpi}{2} &= [1,3,4,1,1,1,5,2,\ldots], \\[2mu]
\frac{\varpi}{\pi} &= [0,1,5,21,3,4,14,\ldots].
\end{align}
Integrals
File:Lemniscate constant as an integral.png
The lemniscate constant {{mvar|ϖ}} is related to the area under the curve . Defining , twice the area in the positive quadrant under the curve is In the quartic case,
Furthermore,
and{{cite web | url=https://oeis.org/A068467 | title=A068467 - Oeis }}
a form of Gaussian integral.
The lemniscate constant appears in the evaluation of the integrals
John Todd's lemniscate constants are defined by integrals:{{r|todd}}
= Circumference of an ellipse =
The lemniscate constant satisfies the equation{{sfn|Cox|1984|p=313}}
Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)Levien (2008){{sfn|Cox|1984|p=313}}
Now considering the circumference of the ellipse with axes and , satisfying , Stirling noted that{{sfn|Cox|1984|p=312}}
Hence the full circumference is
This is also the arc length of the sine curve on half a period:{{Cite web|url=https://www.ams.org/notices/201208/rtx120801094p.pdf|title=An Eloquent Formula for the Perimeter of an Ellipse|last=Adlaj|first=Semjon|date=2012|website=American Mathematical Society|page=1097|quote=One might also observe that the length of the “sine” curve over half a period, that is, the length of the graph of the function {{tmath|1=\sin(t)}} from the point where {{tmath|1=t = 0}} to the point where {{tmath|1=t = \pi}} , is .}} In this paper and .
Other limits
Notes
{{Reflist}}
References
- {{mathworld|urlname=LemniscateConstant|title=Lemniscate Constant}}
- Sequences A014549, A053002, and [https://oeis.org/A062539 A062539] in OEIS
- {{cite journal |last1=Cox |first1=David A. |title=The Arithmetic-Geometric Mean of Gauss |journal=L'Enseignement Mathématique |date=January 1984 |volume=30|issue=2 |pages=275–330 |doi=10.5169/seals-53831 |url=https://webspace.science.uu.nl/~wepst101/elliptic/cox_agm.pdf |access-date=25 June 2022}}
- {{cite book |last1=Finch |first1=Steven R. |title=Mathematical Constants |date=18 August 2003 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |pages=420–422 |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |language=en}}
External links
- {{Cite web|date=2021-10-17|title=Gauss's constant and where it occurs|url=https://www.johndcook.com/blog/2021/10/17/gauss-constant/|website=www.johndcook.com|language=en-US}}
{{Irrational number}}