lemniscate constant

{{Short description|Ratio of the perimeter of Bernoulli's lemniscate to its diameter}}

{{Redirect|Gauss's constant|the parameter used in orbital mechanics|Gaussian gravitational constant}}

File:Lemniscate of Bernoulli.svg

In mathematics, the lemniscate constant {{mvar|ϖ}} is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of {{pi}} for the circle.See:

  • {{Cite book |last1=Gauss |first1=C. F. |title=Werke (Band III)|publisher=Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen |language=Latin, German|year=1866|url=https://gdz.sub.uni-goettingen.de/id/PPN235999628}} p. 404
  • {{harvnb|Cox|1984|p=281}}
  • {{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=The Number Pi |publisher=American Mathematical Society |year=2004 |isbn=0-8218-3246-8}} p. 199
  • {{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }} p. 57
  • {{Cite book |last1=Arakawa |first1=Tsuneo |last2=Ibukiyama| first2=Tomoyoshi |last3=Kaneko|first3=Masanobu|title=Bernoulli Numbers and Zeta Functions |publisher=Springer |year=2014 |isbn=978-4-431-54918-5}} p. 203 Equivalently, the perimeter of the lemniscate (x^2+y^2)^2=x^2-y^2 is {{math|2ϖ}}. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.See:
  • {{harvnb|Finch|2003|p=420}}
  • {{citation|title=Applications of generalized trigonometric functions with two parameters|last1=Kobayashi|first1=Hiroyuki|last2=Takeuchi|first2=Shingo|journal=Communications on Pure & Applied Analysis|arxiv=1903.07407|year=2019|volume=18|issue=3|pages=1509–1521|doi=10.3934/cpaa.2019072|s2cid=102487670}}
  • {{citation|title=Elliptic Gauss Sums and Hecke L-values at s=1|last1=Asai|first1=Tetsuya|arxiv=0707.3711|year=2007}}
  • {{cite web | url=http://oeis.org/A062539 | title=A062539 - Oeis }} It also appears in evaluation of the gamma and beta function at certain rational values. The symbol {{mvar|ϖ}} is a cursive variant of {{mvar|π}} known as variant pi represented in Unicode by the character {{unichar|03D6}}.

Sometimes the quantities {{math|2ϖ}} or {{math|ϖ/2}} are referred to as the lemniscate constant.{{Cite web | url=http://oeis.org/A064853 | title=A064853 - Oeis }}{{Cite web|url=http://www.numberworld.org/digits/Lemniscate/|title=Lemniscate Constant}}

As of 2024 over 1.2 trillion digits of this constant have been calculated.{{Cite web |title=Records set by y-cruncher |url=http://numberworld.org/y-cruncher/records.html |access-date=2024-08-20 |website=numberworld.org}}

History

Gauss's constant, denoted by G, is equal to {{math|ϖ /{{pi}} ≈ 0.8346268}}{{cite web |title=A014549 - Oeis |url=http://oeis.org/A014549}} and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as 1/M\bigl(1,\sqrt{2}\bigr).{{sfn|Finch|2003|p=420}} By 1799, Gauss had two proofs of the theorem that M\bigl(1,\sqrt2\bigr)=\pi/\varpi where \varpi is the lemniscate constant.Neither of these proofs was rigorous from the modern point of view. See {{harvnb|Cox|1984|p=281}}

John Todd named two more lemniscate constants, the first lemniscate constant {{math|1=A = ϖ/2 ≈ 1.3110287771}} and the second lemniscate constant {{math|1=B = {{pi}}/(2ϖ) ≈ 0.5990701173}}.{{Cite journal |last=Todd |first=John |date=January 1975 |title=The lemniscate constants |journal=Communications of the ACM |volume=18 |pages=14–19 |doi=10.1145/360569.360580 |s2cid=85873 |doi-access=free |number=1}}{{Cite web |title=A085565 - Oeis |url=http://oeis.org/A085565}} and {{cite web |title=A076390 - Oeis |url=http://oeis.org/A076390}}{{dlmf|first=B. C.|last=Carlson|id=19.20.E2|title=Elliptic Integrals}}

The lemniscate constant \varpi and Todd's first lemniscate constant A were proven transcendental by Carl Ludwig Siegel in 1932 and later by Theodor Schneider in 1937 and Todd's second lemniscate constant B and Gauss's constant G were proven transcendental by Theodor Schneider in 1941.{{r|todd}} In particular, Siegel proved that if \operatorname{G}_4(\omega_1,\omega_2) and \operatorname{G}_6(\omega_1,\omega_2) with \operatorname{Im}(\omega_2/\omega_1)>0 are algebraic, then \omega_1 or \omega_2 is transcendental. Here, \operatorname{G}_4 and \operatorname{G}_6 are Eisenstein series. The fact that \varpi is transcendental follows from \operatorname{G}_4(\varpi,\varpi i)=1/15 and \operatorname{G}_6(\varpi,\varpi i)=0. {{pb}} {{Cite book |last=Apostol |first=T. M. |title=Modular Functions and Dirichlet Series in Number Theory|publisher=Springer |year=1990 |isbn=0-387-97127-0|page=12|edition=Second}} {{pb}} {{Cite journal |last=Siegel |first=C. L. |date=1932 |title=Über die Perioden elliptischer Funktionen. |url=https://eudml.org/doc/149791 |journal=Journal für die reine und angewandte Mathematik |volume=167 |pages=62–69|doi=10.1515/crll.1932.167.62 |language=German}}In particular, Schneider proved that the beta function \Beta (a,b) is transcendental for all a,b\in\mathbb{Q}\setminus\mathbb{Z} such that a+b\notin \mathbb{Z}_0^-. The fact that \varpi is transcendental follows from \varpi=\tfrac{1}{2}\Beta \bigl(\tfrac{1}{4},\tfrac{1}{2}\bigr) and similarly for {{mvar|B}} and {{mvar|G}} from \Beta \bigl(\tfrac{1}{2},\tfrac{3}{4}\bigr). {{pb}} {{cite journal |first=Theodor |last=Schneider |url=https://www.deepdyve.com/lp/de-gruyter/zur-theorie-der-abelschen-funktionen-und-integrale-mn0U50bvkB |title=Zur Theorie der Abelschen Funktionen und Integrale |year=1941 |journal=Journal für die reine und angewandte Mathematik |volume=183 |number=19 |pages=110–128 |doi=10.1515/crll.1941.183.110 |s2cid=118624331 }} In 1975, Gregory Chudnovsky proved that the set \{\pi,\varpi\} is algebraically independent over \mathbb{Q}, which implies that A and B are algebraically independent as well.G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6 But the set \bigl\{\pi,M\bigl(1,1/\sqrt{2}\bigr),M'\bigl(1,1/\sqrt{2}\bigr)\bigr\} (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over \mathbb{Q}.In fact, \pi=2\sqrt{2}\frac{M^3\left(1,\frac{1}{\sqrt{2}}\right)}{M'\left(1,\frac{1}{\sqrt{2}}\right)}=\frac{1}{G^3 M'\left(1,\frac{1}{\sqrt{2}}\right)}. {{pb}} {{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 45 In 1996, Yuri Nesterenko proved that the set \{\pi,\varpi,e^{\pi}\} is algebraically independent over \mathbb{Q}.{{Cite book |last1=Nesterenko |first1=Y. V. |last2=Philippon|first2=P.|title=Introduction to Algebraic Independence Theory|publisher=Springer |year=2001 |isbn=3-540-41496-7|page=27}}

Forms

Usually, \varpi is defined by the first equality below, but it has many equivalent forms:See:

  • {{harvnb|Cox|1984|p=281}}
  • {{harvnb|Finch|2003|pp=420–422}}
  • {{cite book  |chapter=Some milestones of lemniscatomy  |last1=Schappacher |first1=Norbert |author-link1=Norbert Schappacher | date= 1997 |editor1-last=Sertöz |editor1-first=S. |title=Algebraic Geometry |type=Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey |publisher=Marcel Dekker |pages=257–290 | chapter-url=http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1997_LemniscProvis.pdf}}

\begin{aligned}

\varpi

&= 2\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}}

= \sqrt2\int_0^\infty\frac{\mathrm{d}t}{\sqrt{1+t^4}}

= \int_0^1\frac{\mathrm dt}{\sqrt{t-t^3}}

= \int_1^\infty \frac{\mathrm dt}{\sqrt{t^3-t}}\\[6mu]

&= 4\int_0^\infty\Bigl(\sqrt[4]{1+t^{4}}-t\Bigr)\,\mathrm{d}t

= 2\sqrt2\int_0^1 \sqrt[4]{1-t^{4}}\mathop{\mathrm{d}t} =3\int_0^1 \sqrt{1-t^4}\,\mathrm dt\\[2mu]

&= 2K(i)

= \tfrac{1}{2}\Beta\bigl( \tfrac14, \tfrac12\bigr)

= \tfrac{1}{2\sqrt2}\Beta\bigl( \tfrac14, \tfrac14\bigr)

= \frac{\Gamma (1/4)^2}{2\sqrt{2\pi}}

= \frac{2-\sqrt2}{4}\frac{\zeta(3/4)^2}{\zeta(1/4)^2}\\[5mu]

&= 2.62205\;75542\;92119\;81046\;48395\;89891\;11941\ldots,

\end{aligned}

where {{mvar|K}} is the complete elliptic integral of the first kind with modulus {{mvar|k}}, {{math|Β}} is the beta function, {{math|Γ}} is the gamma function and {{mvar|ζ}} is the Riemann zeta function.

The lemniscate constant can also be computed by the arithmetic–geometric mean M,

\varpi=\frac{\pi}{M\bigl(1,\sqrt2\bigr)}.

Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of M\bigl(1, \sqrt2\bigr) published in 1800:{{sfn|Cox|1984|p=277}}G = \frac{1}{M\bigl(1, \sqrt2\bigr)}John Todd's lemniscate constants may be given in terms of the beta function B:

\begin{aligned}

A &= \frac\varpi2 = \tfrac14 \Beta \bigl(\tfrac14,\tfrac12\bigr), \\[3mu]

B &= \frac{\pi}{2\varpi} =\tfrac14\Beta \bigl(\tfrac12,\tfrac34\bigr).

\end{aligned}

=As a special value of L-functions=

\beta'(0)=\log\frac{\varpi}{\sqrt{\pi}}

which is analogous to

\zeta'(0)=\log\frac{1}{\sqrt{2\pi}}

where \beta is the Dirichlet beta function and \zeta is the Riemann zeta function.{{cite web | url=http://oeis.org/A113847 | title=A113847 - Oeis }}

Analogously to the Leibniz formula for π,

\beta (1)=\sum_{n=1}^\infty \frac{\chi (n)}{n}=\frac{\pi}{4},

we have{{cite book |last=Cremona |first=J. E. |date= 1997 |edition=2nd|title=Algorithms for Modular Elliptic Curves|url=https://books.google.com/books?id=MtM8AAAAIAAJ|publisher=Cambridge University Press|isbn=0521598206}} p. 31, formula (2.8.10)In fact, the series \sum_{n=1}^\infty \frac{\nu (n)}{n^s} converges for \operatorname{\Re}s>5/6.{{cite book |last=Murty |first=Vijaya Kumar |author-link=V. Kumar Murty|date= 1995 |page=16 |title=Seminar on Fermat's Last Theorem |publisher= American Mathematical Society|isbn=9780821803134}}{{Cite book| last=Cohen| first=Henri|author-link=Henri Cohen (number theorist)|date=1993|pages=382–406|title=A Course in Computational Algebraic Number Theory|publisher=Springer-Verlag|isbn=978-3-642-08142-2}}{{cite web |url=https://www.lmfdb.org/EllipticCurve/Q/32/a/3 |title=Elliptic curve with LMFDB label 32.a3 (Cremona label 32a2)|website=The L-functions and modular forms database}}

L(E,1)=\sum_{n=1}^\infty \frac{\nu (n)}{n}=\frac{\varpi}{4}

where L is the L-function of the elliptic curve E:\, y^2=x^3-x over \mathbb{Q}; this means that \nu is the multiplicative function given by

\nu (p^n)=\begin{cases}

p - \mathcal{N}_p, & p\in\mathbb{P}, \, n=1 \\[5mu]

0, & p=2,\, n\ge 2 \\[5mu]

\nu (p)\nu (p^{n-1})-p\nu (p^{n-2}), & p\in\mathbb{P}\setminus\{2\},\, n\ge 2

\end{cases}

where \mathcal{N}_p is the number of solutions of the congruence

a^3-a\equiv b^2 \,(\operatorname{mod}p),\quad p\in\mathbb{P}

in variables a,b that are non-negative integers (\mathbb{P} is the set of all primes).

Equivalently, \nu is given by

F(\tau)=\eta (4\tau)^2\eta (8\tau)^2=\sum_{n=1}^\infty \nu (n) q^n,\quad q=e^{2\pi i\tau}

where \tau\in\mathbb{C} such that \operatorname{\Im}\tau >0 and \eta is the eta function.The function F is the unique weight 2 level 32 new form and it satisfies the functional equation

:F\left(-\frac{1}{\tau}\right)=-\frac{\tau^2}{32}F\left(\frac{\tau\vphantom1}{32}\right).The \nu function is closely related to the \xi function which is the multiplicative function defined by

:\xi (p^n) = \begin{cases}

\mathcal{N}_p', & p\in\mathbb{P},\, n=1 \\[5mu]

\xi (p^{n-1}) + \chi (p)^n, & p\in\mathbb{P},\, n\ge 2

\end{cases}

where \mathcal{N}_p' is the number of solutions of the equation

:a^2+b^2=p,\quad p\in\mathbb{P}

in variables a,b that are non-negative integers (see Fermat's theorem on sums of two squares) and \chi is the Dirichlet character from the Leibniz formula for π; also

:\sum_{d|n}\chi (d)=\xi (n)

for any positive integer n where the sum extends only over positive divisors; the relation between \nu and \xi is

:\sum_{k=0}^n (-1)^k \xi (4k+1)\xi (4n-4k+1)=\nu (2n+1)

where n is any non-negative integer.The \nu function also appears in

:\sum_{z\in\mathbb{G};\, z\overline{z}=n}z=\nu (n)

where n is any positive integer and \operatorname{\mathbb{G}} is the set of all Gaussian integers of the form

:(-1)^{\frac{a\pm b-1}{2}}(a\pm bi)

where a is odd and b is even. The \xi function from the previous note satisfies

:\left|\{z:z\in\mathbb{G}\and z\overline{z}=n\}\right|=\xi (n)

where n is positive odd.

The above result can be equivalently written as

\sum_{n=1}^\infty \frac{\nu (n)}{n}e^{-2\pi n/\sqrt{32}}=\frac{\varpi}{8}

(the number 32 is the conductor of E) and also tells us that the BSD conjecture is true for the above E.{{Cite journal |last=Rubin |first=Karl |date=1987 |title=Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication |url=https://eudml.org/doc/143493 |journal=Inventiones Mathematicae |volume=89 |issue=3 |page=528|doi=10.1007/BF01388984 |bibcode=1987InMat..89..527R }}

The first few values of \nu are given by the following table; if 1\le n\le 113 such that n doesn't appear in the table, then \nu (n)=0:

\begin{array}{r|r|r|r}

n & \nu (n) & n & \nu (n) \\

\hline

1 & 1 & 53 & 14 \\

5 & -2 & 61 & -10 \\

9 & -3 & 65 & -12 \\

13 & 6 & 73 & -6 \\

17 & 2 & 81 & 9 \\

25 & -1 & 85 & -4 \\

29 & -10 & 89 & 10\\

37 & -2 & 97 & 18 \\

41 & 10 & 101 & -2 \\

45 & 6 & 109 & 6 \\

49 & -7 & 113 & -14 \\

\end{array}

=As a special value of other functions=

Let \Delta be the minimal weight level 1 new form. Then{{cite web|url=https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1/12/a/a/|title=Newform orbit 1.12.a.a|website=The L-functions and modular forms database}}

\Delta (i)=\frac{1}{64}\left(\frac{\varpi}{\pi}\right)^{12}.

The q-coefficient of \Delta is the Ramanujan tau function.

Series

Viète's formula for {{mvar|π}} can be written:

\frac2\pi = \sqrt\frac12 \cdot \sqrt{\frac12 + \frac12\sqrt\frac12} \cdot \sqrt{\frac12 + \frac12\sqrt{\frac12 + \frac12\sqrt\frac12}} \cdots

An analogous formula for {{mvar|ϖ}} is:Levin (2006)

\frac2\varpi = \sqrt\frac12 \cdot \sqrt{\frac12 + \frac12 \bigg/ \!\sqrt\frac12} \cdot \sqrt{\frac12 + \frac12 \Bigg/ \!\sqrt{\frac12 + \frac12 \bigg/ \!\sqrt\frac12}} \cdots

The Wallis product for {{mvar|π}} is:

\frac{\pi}{2} = \prod_{n=1}^\infty \left(1+\frac{1}{n}\right)^{(-1)^{n+1}}=\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right)

= \biggl(\frac{2}{1} \cdot \frac{2}{3}\biggr) \biggl(\frac{4}{3} \cdot \frac{4}{5}\biggr) \biggl(\frac{6}{5} \cdot \frac{6}{7}\biggr) \cdots

An analogous formula for {{mvar|ϖ}} is:Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.

\frac{\varpi}{2} = \prod_{n=1}^\infty \left(1+\frac{1}{2n}\right)^{(-1)^{n+1}}=\prod_{n=1}^{\infty} \left(\frac{4n-1}{4n-2} \cdot \frac{4n}{4n+1}\right)

= \biggl(\frac{3}{2} \cdot \frac{4}{5}\biggr) \biggl(\frac{7}{6} \cdot \frac{8}{9}\biggr) \biggl(\frac{11}{10} \cdot \frac{12}{13}\biggr) \cdots

A related result for Gauss's constant (G=\varpi / \pi) is:{{cite journal |last1=Hyde |first1=Trevor |year=2014 |title=A Wallis product on clovers |journal=The American Mathematical Monthly |volume=121 |issue=3 |pages=237–243 |url=https://math.uchicago.edu/~tghyde/Hyde%20--%20A%20Wallis%20product%20on%20clovers.pdf |doi=10.4169/amer.math.monthly.121.03.237 |s2cid=34819500 }}

\frac{\varpi}{\pi} = \prod_{n=1}^{\infty} \left(\frac{4n-1}{4n} \cdot \frac{4n+2}{4n+1}\right)

= \biggl(\frac{3}{4} \cdot \frac{6}{5}\biggr) \biggl(\frac{7}{8} \cdot \frac{10}{9}\biggr) \biggl(\frac{11}{12} \cdot \frac{14}{13}\biggr) \cdots

An infinite series discovered by Gauss is:{{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }} p. 60

\frac{\varpi}{\pi} = \sum_{n=0}^\infty (-1)^n \prod_{k=1}^n \frac{(2k-1)^2}{(2k)^2}

= 1 - \frac{1^2}{2^2} + \frac{1^2\cdot3^2}{2^2\cdot4^2} - \frac{1^2\cdot3^2\cdot5^2}{2^2\cdot4^2\cdot6^2} + \cdots

The Machin formula for {{mvar|π}} is \tfrac14\pi = 4 \arctan \tfrac15 - \arctan \tfrac1{239}, and several similar formulas for {{mvar|π}} can be developed using trigonometric angle sum identities, e.g. Euler's formula \tfrac14\pi = \arctan\tfrac12 + \arctan\tfrac13. Analogous formulas can be developed for {{mvar|ϖ}}, including the following found by Gauss: \tfrac12\varpi = 2 \operatorname{arcsl} \tfrac12 + \operatorname{arcsl} \tfrac7{23}, where \operatorname{arcsl} is the lemniscate arcsine.Todd (1975)

The lemniscate constant can be rapidly computed by the series{{harvnb|Cox|1984|p=307|loc=eq. 2.21}} for the first equality. The second equality can be proved by using the pentagonal number theorem.{{Cite book |last1=Berndt |first1=Bruce C. |title=Ramanujan's Notebooks Part V |publisher=Springer |year=1998 |isbn=978-1-4612-7221-2}} p. 326

:\varpi=2^{-1/2}\pi\biggl(\sum_{n\in\mathbb{Z}}e^{-\pi n^2}\biggr)^2=2^{1/4}\pi e^{-\pi/12} \biggl(\sum_{n\in\mathbb{Z}}(-1)^n e^{-\pi p_n}\biggr)^2

where p_n=\tfrac12(3n^2-n) (these are the generalized pentagonal numbers). AlsoThis formula can be proved by hypergeometric inversion: Let

:\operatorname{a}(q)=\sum_{m,n\in\mathbb{Z}}q^{m^2+mn+n^2}

where q\in\mathbb{C} with \left|q\right|<1. Then

:\operatorname{a}(q)={}_2F_1\left(\frac{1}{3},\frac{2}{3},1,z\right)

where

:q=\exp\left(-\frac{2\pi}{\sqrt{3}}\frac{{}_2F_1(1/3,2/3,1,1-z)}{{}_2F_1(1/3,2/3,1,z)}\right)

where z\in\mathbb{C}\setminus\{0,1\}. The formula in question follows from setting z=\tfrac14\bigl(3\sqrt{3}-5\bigr).

:\sum_{m,n\in\mathbb{Z}}e^{-2\pi (m^2 +mn+n^2)}=\sqrt{1+\sqrt{3}}\dfrac{\varpi}{12^{1/8}\pi}.

In a spirit similar to that of the Basel problem,

:\sum_{z\in\mathbb{Z}[i]\setminus\{0\}}\frac{1}{z^4}=G_4(i)=\frac{\varpi ^4}{15}

where \mathbb{Z}[i] are the Gaussian integers and G_4 is the Eisenstein series of weight {{tmath|4}} (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).{{Cite book |last1=Eymard |first1=Pierre |last2=Lafon| first2=Jean-Pierre |title=The Number Pi |publisher=American Mathematical Society |year=2004 |isbn=0-8218-3246-8}} p. 232

A related result is

:\sum_{n=1}^\infty \sigma_3(n)e^{-2\pi n}=\frac{\varpi^4}{80 \pi^4}-\frac{1}{240}

where \sigma_3 is the sum of positive divisors function.{{cite web |url=http://www-users.math.umn.edu/~garrett/m/mfms/notes_2015-16/10_level_one.pdf |title=Level-one elliptic modular forms |last=Garrett |first=Paul |website=University of Minnesota}} p. 11—13

In 1842, Malmsten found

:\beta'(1)=\sum_{n=1}^\infty (-1)^{n+1}\frac{\log (2n+1)}{2n+1}=\frac{\pi}{4}\left(\gamma+2\log\frac{\pi}{\varpi\sqrt{2}}\right)

where \gamma is Euler's constant and \beta(s) is the Dirichlet-Beta function.

The lemniscate constant is given by the rapidly converging series

\varpi = \pi\sqrt[4]{32}e^{-\frac{\pi}{3}}\biggl(\sum_{n = -\infty}^\infty (-1)^n e^{-2n\pi(3n+1)} \biggr)^2.

The constant is also given by the infinite product

:\varpi = \pi\prod_{m = 1}^\infty \tanh^2 \left( \frac{\pi m}{2}\right).

AlsoThe formula follows from the hypergeometric transformation

:{}_3F_2\left(\frac14,\frac12,\frac34,1,1,16z\frac{(1-z)^2}{(1+z)^4}\right)=(1+z)\,{}_2F_1\left(\frac12,\frac12,1,z\right)^2

where z=\lambda (1+5i) and \lambda is the modular lambda function.

:\sum_{n=0}^\infty \frac{(-1)^n}{6635520^n}\frac{(4n)!}{n!^4}=\frac{24}{5^{7/4}}\frac{\varpi^2}{\pi^2}.

Continued fractions

A (generalized) continued fraction for {{mvar|π}} is

\frac\pi2=1 + \cfrac{1}{1 + \cfrac{1\cdot 2}{1 + \cfrac{2\cdot 3}{1 + \cfrac{3\cdot 4}{1+\ddots}}}}

An analogous formula for {{mvar|ϖ}} is{{r|lemniscate constant A}}

\frac\varpi2= 1 + \cfrac{1}{2 + \cfrac{2\cdot 3}{2 + \cfrac{4\cdot 5}{2 + \cfrac{6\cdot 7}{2+\ddots}}}}

Define Brouncker's continued fraction by{{Cite book |last1=Khrushchev |first1=Sergey |title=Orthogonal Polynomials and Continued Fractions |publisher=Cambridge University Press |year=2008 |edition=First |isbn=978-0-521-85419-1}} p. 140 (eq. 3.34), p. 153. There's an error on p. 153: 4 [\Gamma(3+s/4)/\Gamma(1+s/4)]^2 should be 4[\Gamma((3+s)/4)/\Gamma((1+s)/4)]^2.

b(s)=s + \cfrac{1^2}{2s + \cfrac{3^2}{2s + \cfrac{5^2}{2s+\ddots}}},\quad s>0.

Let n\ge 0 except for the first equality where n\ge 1. Then{{Cite book |last1=Khrushchev |first1=Sergey |title=Orthogonal Polynomials and Continued Fractions |publisher=Cambridge University Press |year=2008 |edition=First |isbn=978-0-521-85419-1}} p. 146, 155{{Cite book |last1=Perron |first1=Oskar |language=German |author-link=Oskar Perron|title=Die Lehre von den Kettenbrüchen: Band II |publisher=B. G. Teubner |year=1957 |edition=Third}} p. 36, eq. 24

\begin{align}b(4n)&=(4n+1)\prod_{k=1}^n \frac{(4k-1)^2}{(4k-3)(4k+1)}\frac{\pi}{\varpi^2}\\

b(4n+1)&=(2n+1)\prod_{k=1}^n \frac{(2k)^2}{(2k-1)(2k+1)}\frac{4}{\pi}\\

b(4n+2)&=(4n+1)\prod_{k=1}^n \frac{(4k-3)(4k+1)}{(4k-1)^2}\frac{\varpi^2}{\pi}\\

b(4n+3)&=(2n+1)\prod_{k=1}^n \frac{(2k-1)(2k+1)}{(2k)^2}\,\pi.\end{align}

For example,

\begin{align}

b(1) &= \frac{4}{\pi}, &

b(2) &= \frac{\varpi^2}{\pi}, &

b(3) &= \pi, &

b(4) &= \frac{9\pi}{\varpi^2}.

\end{align}

In fact, the values of b(1) and b(2), coupled with the functional equation

b(s+2)=\frac{(s+1)^2}{b(s)},

determine the values of b(n) for all n.

=Simple continued fractions=

Simple continued fractions for the lemniscate constant and related constants include{{Cite web |title=A062540 - OEIS |url=http://oeis.org/A062540 |access-date=2022-09-14 |website=oeis.org}}{{Cite web |title=A053002 - OEIS|url=http://oeis.org/A053002|website=oeis.org}}

\begin{align}

\varpi &= [2,1,1,1,1,1,4,1,2,\ldots], \\[8mu]

2\varpi &= [5,4,10,2,1,2,3,29,\ldots], \\[5mu]

\frac{\varpi}{2} &= [1,3,4,1,1,1,5,2,\ldots], \\[2mu]

\frac{\varpi}{\pi} &= [0,1,5,21,3,4,14,\ldots].

\end{align}

Integrals

File:Lemniscate constant as an integral.png

The lemniscate constant {{mvar|ϖ}} is related to the area under the curve x^4 + y^4 = 1. Defining \pi_n \mathrel{:=} \Beta\bigl(\tfrac1n, \tfrac1n \bigr), twice the area in the positive quadrant under the curve x^n + y^n = 1 is 2 \int_0^1 \sqrt[n]{1 - x^n}\mathop{\mathrm{d}x} = \tfrac1n \pi_n. In the quartic case, \tfrac14 \pi_4 = \tfrac1\sqrt{2} \varpi.

In 1842, Malmsten discovered that{{cite journal |last1=Blagouchine |first1=Iaroslav V. |date=2014 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://www.researchgate.net/publication/257381156 |journal=The Ramanujan Journal |volume=35 |issue=1 |pages=21–110|doi=10.1007/s11139-013-9528-5 |s2cid=120943474 }}

\int_0^1 \frac{\log (-\log x)}{1+x^2}\, dx=\frac{\pi}{2}\log\frac{\pi}{\varpi\sqrt{2}}.

Furthermore,

\int_0^\infty \frac{\tanh x}{x}e^{-x}\, dx=\log\frac{\varpi^2}{\pi}

and{{cite web | url=https://oeis.org/A068467 | title=A068467 - Oeis }}

\int_0^\infty e^{-x^4}\, dx=\frac{\sqrt{2\varpi\sqrt{2\pi}}}{4},\quad\text{analogous to}\,\int_0^\infty e^{-x^2}\, dx=\frac{\sqrt{\pi}}{2},

a form of Gaussian integral.

The lemniscate constant appears in the evaluation of the integrals

{\frac{\pi}{\varpi}} = \int_0^{\frac{\pi}{2}}\sqrt{\sin(x)}\,dx=\int_0^{\frac{\pi}{2}}\sqrt{\cos(x)}\,dx

\frac{\varpi}{\pi} = \int_0^{\infty}{\frac{dx}{\sqrt{\cosh(\pi x)}}}

John Todd's lemniscate constants are defined by integrals:{{r|todd}}

A = \int_0^1\frac{dx}{\sqrt{1 - x^4}}

B = \int_0^1\frac{x^2\, dx}{\sqrt{1 - x^4}}

= Circumference of an ellipse =

The lemniscate constant satisfies the equation{{sfn|Cox|1984|p=313}}

\frac{\pi}{\varpi} = 2 \int_0^1\frac{x^2\, dx}{\sqrt{1 - x^4}}

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)Levien (2008){{sfn|Cox|1984|p=313}}

\textrm{arc}\ \textrm{length}\cdot\textrm{height} = A \cdot B = \int_0^1 \frac{\mathrm{d}x}{\sqrt{1 - x^4}} \cdot \int_0^1 \frac{x^2 \mathop{\mathrm{d}x}}{\sqrt{1 - x^4}} = \frac\varpi2 \cdot \frac\pi{2\varpi} = \frac\pi4

Now considering the circumference C of the ellipse with axes \sqrt{2} and 1, satisfying 2x^2 + 4y^2 = 1, Stirling noted that{{sfn|Cox|1984|p=312}}

\frac{C}{2} = \int_0^1\frac{dx}{\sqrt{1 - x^4}} + \int_0^1\frac{x^2\,dx}{\sqrt{1 - x^4}}

Hence the full circumference is

C = \frac{\pi}{\varpi} + \varpi =3.820197789\ldots

This is also the arc length of the sine curve on half a period:{{Cite web|url=https://www.ams.org/notices/201208/rtx120801094p.pdf|title=An Eloquent Formula for the Perimeter of an Ellipse|last=Adlaj|first=Semjon|date=2012|website=American Mathematical Society|page=1097|quote=One might also observe that the length of the “sine” curve over half a period, that is, the length of the graph of the function {{tmath|1=\sin(t)}} from the point where {{tmath|1=t = 0}} to the point where {{tmath|1=t = \pi}} , is \sqrt{2} l(1/\sqrt{2}) = L + M.}} In this paper M=1/G=\pi/\varpi and L = \pi/M=G\pi=\varpi.

C = \int_0^\pi \sqrt{1+\cos^2(x)}\,dx

Other limits

Analogously to

2\pi=\lim_{n\to\infty}\left|\frac{(2n)!}{\mathrm{B}_{2n}}\right|^{\frac{1}{2n}}

where \mathrm{B}_n are Bernoulli numbers, we have

2\varpi=\lim_{n\to\infty}\left(\frac{(4n)!}{\mathrm{H}_{4n}}\right)^{\frac{1}{4n}}

where \mathrm{H}_n are Hurwitz numbers.

Notes

{{Reflist}}

References

  • {{mathworld|urlname=LemniscateConstant|title=Lemniscate Constant}}
  • Sequences A014549, A053002, and [https://oeis.org/A062539 A062539] in OEIS
  • {{cite journal |last1=Cox |first1=David A. |title=The Arithmetic-Geometric Mean of Gauss |journal=L'Enseignement Mathématique |date=January 1984 |volume=30|issue=2 |pages=275–330 |doi=10.5169/seals-53831 |url=https://webspace.science.uu.nl/~wepst101/elliptic/cox_agm.pdf |access-date=25 June 2022}}
  • {{cite book |last1=Finch |first1=Steven R. |title=Mathematical Constants |date=18 August 2003 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |pages=420–422 |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |language=en}}