numerical range

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex n \times n matrix A is the set

:W(A)

= \left\{\frac{\mathbf{x}^*A\mathbf{x}}{\mathbf{x}^*\mathbf{x}} \mid \mathbf{x}\in\mathbb{C}^n,\ \mathbf{x}\not=0\right\}

= \left\{\langle\mathbf{x}, A\mathbf{x} \rangle \mid \mathbf{x}\in\mathbb{C}^n,\ \|\mathbf{x}\|_2=1\right\}

where \mathbf{x}^* denotes the conjugate transpose of the vector \mathbf{x}. The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).

In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.

A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.

:r(A) = \sup \{ |\lambda| : \lambda \in W(A) \} = \sup_{\|x\|_2=1} |\langle\mathbf{x}, A\mathbf{x} \rangle|.

Properties

Let sum of sets denote a sumset.

General properties

  1. The numerical range is the range of the Rayleigh quotient.
  2. (Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
  3. W(\alpha A+\beta I)=\alpha W(A)+\{\beta\} for all square matrix A and complex numbers \alpha and \beta. Here I is the identity matrix.
  4. W(A) is a subset of the closed right half-plane if and only if A+A^* is positive semidefinite.
  5. The numerical range W(\cdot) is the only function on the set of square matrices that satisfies (2), (3) and (4).
  6. W(UAU^*) = W(A) for any unitary U.
  7. W(A^*) = W(A)^*.
  8. If A is Hermitian, then W(A) is on the real line. If A is anti-Hermitian, then W(A) is on the imaginary line.
  9. W(A) = \{z\}

if and only if A = zI.

  1. (Sub-additive) W(A+B)\subseteq W(A)+W(B).
  2. W(A) contains all the eigenvalues of A.
  3. The numerical range of a 2 \times 2 matrix is a filled ellipse.
  4. W(A) is a real line segment [\alpha, \beta] if and only if A is a Hermitian matrix with its smallest and the largest eigenvalues being \alpha and \beta.

Normal matrices

  1. If A is normal, and x \in \operatorname{span}(v_1, \dots, v_k), where v_1, \ldots, v_k are eigenvectors of A corresponding to \lambda_1, \ldots, \lambda_k, respectively, then \langle x,Ax\rangle \in \operatorname{hull}\left(\lambda_1, \ldots, \lambda_k\right).
  2. If A is a normal matrix then W(A) is the convex hull of its eigenvalues.
  3. If \alpha is a sharp point on the boundary of W(A), then \alpha is a normal eigenvalue of A.

Numerical radius

  1. r(\cdot) is a unitarily invariant norm on the space of n \times n matrices.
  2. r(A) \leq \|A\|_{\operatorname{op}} \leq 2r(A) , where \|\cdot\|_{\operatorname{op}} denotes the operator norm.{{Cite web | url=https://math.stackexchange.com/questions/3278149/ |title =

"well-known" inequality for numerical radius of an operator | website=StackExchange}}{{Cite web | url=https://math.stackexchange.com/questions/597880/ |title =

Upper bound for norm of Hilbert space operator | website=StackExchange}}{{Cite web |url=https://math.stackexchange.com/questions/4020968/ |title=Inequalities for numerical radius of complex Hilbert space operator |website=StackExchange}}{{Cite web|url=https://web.archive.org/web/20141225190025id_/http://www0.maths.ox.ac.uk:80/system/files/coursematerial/2014/3075/33/14B4b-extsyn9.pdf| title=

B4b hilbert spaces: extended synopses 9. Spectral theory

|author=Hilary Priestley|author-link=Hilary Priestley|quote = In fact, ‖T‖ = max(−mT , MT) = wT. This fails for non-self-adjoint operators, but wT ≤ ‖T‖ ≤ 2wT in the complex case.}}

  1. r(A) = \|A\|_{\operatorname{op}} if (but not only if) A is normal.
  2. r(A^n) \le r(A)^n.

Proofs

Most of the claims are obvious. Some are not.

= General properties =

{{Math proof|title=Proof of (13)|proof=

If A is Hermitian, then it is normal, so it is the convex hull of its eigenvalues, which are all real.

Conversely, assume W(A) is on the real line. Decompose A = B + C, where B is a Hermitian matrix, and C an anti-Hermitian matrix. Since W(C) is on the imaginary line, if C \neq 0, then W(A) would stray from the real line. Thus C = 0, and A is Hermitian.

}}

{{Math proof|title=Proof of (12)|proof=

The elements of W(A) are of the form \operatorname{tr}(AP), where P is projection from \C^2 to a one-dimensional subspace.

The space of all one-dimensional subspaces of \C^2 is \mathbb P\mathbb C^1, which is a 2-sphere. The image of a 2-sphere under a linear projection is a filled ellipse.

In more detail, such P are of the form

\frac 12 I + \frac 12 \begin{bmatrix}\cos2\theta & e^{i\phi} \sin 2\theta \\ e^{-i\phi} \sin 2\theta & -\cos2\theta \end{bmatrix} = \frac 12 \begin{bmatrix}1 + z & x + iy \\ x - iy & 1-z \end{bmatrix}

where x, y, z, satisfying x^2+y^2+z^2 =1, is a point on the unit 2-sphere.

Therefore, the elements of W(A), regarded as elements of \R^2 is the composition of two real linear maps (x,y,z) \mapsto \frac 12 \begin{bmatrix}1 + z & x + iy \\ x - iy & 1-z \end{bmatrix} and M \mapsto \operatorname{tr}(AM), which maps the 2-sphere to a filled ellipse.

}}

{{Math proof|title=Proof of (2)|proof=

W(A) is the image of a continuous map x \mapsto \langle x,Ax\rangle from the closed unit sphere, so it is compact.

For any x, y of unit norm, project A to the span of x, y as P^*AP. Then W(P^*AP) is a filled ellipse by the previous result, and so for any \theta \in [0,1], let z = \theta x + (1 - \theta)y, we have \langle z, Az\rangle = \langle z, P^*APz\rangle \in W(P^*AP) \subset W(A)

}}

{{Math proof|title=Proof of (5)|proof=

Let W satisfy these properties. Let W_0 be the original numerical range.

Fix some matrix A. We show that the supporting planes of W(A) and W_0(A) are identical. This would then imply that W(A) = W_0(A) since they are both convex and compact.

By property (4), W(A) is nonempty. Let z be a point on the boundary of W(A), then we can translate and rotate the complex plane so that the point translates to the origin, and the region W(A) falls entirely within \C^+. That is, for some \phi\in \R, the set e^{i\phi}(W(A)-z) lies entirely within \C^+, while for any t > 0, the set e^{i\phi}(W(A)-z) - tI does not lie entirely in \C^+.

The two properties of W then imply that

e^{i\phi}(A-z) + e^{-i\phi}(A-z)^* \succeq 0

and that inequality is sharp, meaning that e^{i\phi}(A-z) + e^{-i\phi}(A-z)^* has a zero eigenvalue. This is a complete characterization of the supporting planes of W(A).

The same argument applies to W_0(A), so they have the same supporting planes.

}}

= Normal matrices =

{{Math proof|title=Proof of (1), (2)|proof=

For (2), if A is normal, then it has a full eigenbasis, so it reduces to (1).

Since A is normal, by the spectral theorem, there exists a unitary matrix U such that A=U D U^*, where D is a diagonal matrix containing the eigenvalues \lambda_1, \lambda_2, \ldots, \lambda_n of A.

Let x=c_1 v_1+c_2 v_2+\cdots+c_k v_k. Using the linearity of the inner product, that A v_j=\lambda_j v_j, and that \left\{v_i\right\} are orthonormal, we have:

\langle x, A x\rangle=\sum_{i, j=1}^k c_i^* c_j\left\langle v_i, \lambda_j v_j\right\rangle \sum_{i=1}^k\left|c_i\right|^2 \lambda_i \in \operatorname{hull}\left(\lambda_1, \ldots, \lambda_k\right)

}}

{{Math proof|title=Proof (3)|proof=

By affineness of W, we can translate and rotate the complex plane, so that we reduce to the case where \partial W(A) has a sharp point at 0, and that the two supporting planes at that point both make an angle \phi_1, \phi_2 with the imaginary axis, such that \phi_1 < \phi_2, e^{i\phi_1} \neq e^{i\phi_2} since the point is sharp.

Since 0 \in W(A), there exists a unit vector x_0 such that x_0^* Ax_0 = 0.

By general property (4), the numerical range lies in the sectors defined by:

\operatorname{Re}\left(e^{i\theta} \langle x, Ax \rangle\right) \geq 0 \quad \text{for all } \theta \in [\phi_1, \phi_2] \text{ and nonzero } x \in \mathbb{C}^n.

At x = x_0, the directional derivative in any direction y must vanish to maintain non-negativity. Specifically:

\left. \frac{d}{dt} \operatorname{Re}\left(e^{i\theta} \langle x_0 + ty, A(x_0 + ty) \rangle\right) \right|_{t=0} = 0 \quad \forall y \in \mathbb C^n, \theta \in [\phi_1, \phi_2].

Expanding this derivative:

\operatorname{Re}\left(e^{i\theta} \left(\langle y, Ax_0 \rangle + \langle x_0, Ay \rangle\right)\right) = 0 \quad \forall y \in \mathbb{C}^n, \theta \in [\phi_1, \phi_2].

Since the above holds for all \theta \in [\phi_1, \phi_2], we must have:

\langle y, Ax_0 \rangle + \langle x_0, Ay \rangle = 0 \quad \forall y \in \mathbb{C}^n.

For any y \in \mathbb{C}^n and \alpha \in \mathbb{C}, substitute \alpha y into the equation:

\alpha \langle y, Ax_0 \rangle + \alpha^* \langle x_0, Ay \rangle = 0.

Choose \alpha = 1 and \alpha = i, then simplify, we obtain \langle y, Ax_0 \rangle = 0 for all y, thus Ax_0 = 0.

}}

= Numerical radius =

{{Math proof|title=Proof of (2)|proof=

Let v = \arg\max_{\|x\|_2= 1} |\langle x,Ax\rangle|. We have r(A) = |\langle v,Av\rangle|.

By Cauchy–Schwarz,

|\langle v,Av\rangle| \leq \|v\|_2 \|Av\|_2 = \|Av\|_2 \leq \|A\|_{op}

For the other one, let A = B + iC, where B, C are Hermitian.

\|A\|_{op} \leq \|B \|_{op} + \|C \|_{op}

Since W(B) is on the real line, and W(iC) is on the imaginary line, the extremal points of W(B), W(iC) appear in W(A), shifted, thus both \|B\|_{op} = r(B) \leq r(A), \|C\|_{op} = r(iC) \leq r(A).

}}

Generalisations

See also

Bibliography

  • {{cite journal |last=Toeplitz |first=Otto |date=1918 |title=Das algebraische Analogon zu einem Satze von Fejér |url=https://zenodo.org/records/2474150/files/article.pdf |journal=Mathematische Zeitschrift |language=de |volume=2 |issue=1-2 |pages=187–197 |doi=10.1007/BF01212904 |issn=0025-5874 |doi-access=free}}
  • {{cite journal |last=Hausdorff |first=Felix |date=1919 |title=Der Wertvorrat einer Bilinearform |journal=Mathematische Zeitschrift |language=de |volume=3 |issue=1 |pages=314–316 |doi=10.1007/BF01292610 |issn=0025-5874}}
  • {{Citation|last1=Choi|first1=M.D.|last2=Kribs|first2=D.W.|last3=Życzkowski|title=Quantum error correcting codes from the compression formalism |journal=Rep. Math. Phys. |volume=58 |pages=77–91| year=2006|issue=1|bibcode=2006RpMP...58...77C|doi=10.1016/S0034-4877(06)80041-8|arxiv=quant-ph/0511101|s2cid=119427312}}.
  • {{Cite book |last=Bhatia |first=Rajendra |title=Matrix analysis |date=1997 |publisher=Springer |isbn=978-0-387-94846-1 |series=Graduate texts in mathematics |location=New York Berlin Heidelberg}}
  • {{Citation|last1=Dirr|first1=G.|last2=Helmkel|first2=U.|last3=Kleinsteuber|first3=M.|last4=Schulte-Herbrüggen|first4=Th.|title=A new type of C-numerical range arising in quantum computing| journal=Proc. Appl. Math. Mech. |volume=6 |pages=711–712 | year=2006|doi=10.1002/pamm.200610336|doi-access=free}}.
  • {{Citation | last1=Bonsall | first1=F.F. | last2=Duncan | first2=J. | title=Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras | publisher=Cambridge University Press | isbn=978-0-521-07988-4 | year=1971}}.
  • {{Citation | last1=Bonsall | first1=F.F. | last2=Duncan | first2=J. | title=Numerical Ranges II | publisher=Cambridge University Press | isbn=978-0-521-20227-5 | year=1971}}.
  • {{Citation | last1=Horn | first1=Roger A. | last2=Johnson | first2=Charles R. | title=Topics in Matrix Analysis |at=Chapter 1| publisher=Cambridge University Press | isbn=978-0-521-46713-1 | year=1991}}.
  • {{Citation | last1=Horn | first1=Roger A. | last2=Johnson | first2=Charles R. | title=Matrix Analysis | publisher=Cambridge University Press | isbn=0-521-30586-1 | year=1990|at=Ch. 5.7, ex. 21}}
  • {{Citation |last1=Li| first1=C.K.| title=A simple proof of the elliptical range theorem | journal=Proc. Am. Math. Soc. |volume=124 |page=1985 | year=1996| issue=7| doi=10.1090/S0002-9939-96-03307-2| doi-access=free}}.
  • {{Citation |last1=Keeler| first1=Dennis S.|last2=Rodman| first2=Leiba|last3=Spitkovsky|first3=Ilya M.| title=The numerical range of 3 × 3 matrices | journal=Linear Algebra and Its Applications |volume=252 |page=115 | year=1997| issue=1–3| doi=10.1016/0024-3795(95)00674-5|doi-access=free}}.
  • {{cite journal |last=Johnson |first=Charles R. |year=1976 |title=Functional characterizations of the field of values and the convex hull of the spectrum |url=https://www.ams.org/proc/1976-061-02/S0002-9939-1976-0437555-3/S0002-9939-1976-0437555-3.pdf |journal=Proceedings of the American Mathematical Society |publisher=American Mathematical Society (AMS) |volume=61 |issue=2 |pages=201–204 |doi=10.1090/s0002-9939-1976-0437555-3 |issn=0002-9939 |doi-access=free}}

References

{{reflist}}

{{Functional analysis}}

{{DEFAULTSORT:Numerical Range}}

Category:Matrix theory

Category:Spectral theory

Category:Operator theory

Category:Linear algebra