order-5 hexagonal tiling honeycomb#Alternated order-5 hexagonal tiling honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Order-5 hexagonal tiling honeycomb | |
colspan=2 align=center|320px Perspective projection view from center of Poincaré disk model | |
bgcolor=#e7dcc3|Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | {6,3,5} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|6|node|3|node|5|node}} 80px ↔ {{CDD|node_1|6|node_g|3sg|node_g|5g|node_g}} |
bgcolor=#e7dcc3|Cells | {6,3} 40px |
bgcolor=#e7dcc3|Faces | hexagon {6} |
bgcolor=#e7dcc3|Edge figure | pentagon {5} |
bgcolor=#e7dcc3|Vertex figure | icosahedron |
bgcolor=#e7dcc3|Dual | Order-6 dodecahedral honeycomb |
bgcolor=#e7dcc3|Coxeter group | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Regular |
In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The Schläfli symbol of the order-5 hexagonal tiling honeycomb is {6,3,5}. Since that of the hexagonal tiling is {6,3}, this honeycomb has five such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the icosahedron is {3,5}, the vertex figure of this honeycomb is an icosahedron. Thus, 20 hexagonal tilings meet at each vertex of this honeycomb.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
{{Honeycomb}}
Symmetry
A lower-symmetry construction of index 120, [6,(3,5)*], exists with regular dodecahedral fundamental domains, and an icosahedral Coxeter-Dynkin diagram with 6 axial infinite-order (ultraparallel) branches.
Images
The order-5 hexagonal tiling honeycomb is similar to the 2D hyperbolic regular paracompact order-5 apeirogonal tiling, {∞,5}, with five apeirogonal faces meeting around every vertex.
: 180px
Related polytopes and honeycombs
The order-5 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.
{{Regular_paracompact_H3_honeycombs}}
There are 15 uniform honeycombs in the [6,3,5] Coxeter group family, including this regular form, and its regular dual, the order-6 dodecahedral honeycomb.
{{635 family}}
The order-5 hexagonal tiling honeycomb has a related alternation honeycomb, represented by {{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}}, with icosahedron and triangular tiling cells.
It is a part of sequence of regular hyperbolic honeycombs of the form {6,3,p}, with hexagonal tiling facets:
{{Hexagonal tiling cell tessellations}}
It is also part of a sequence of regular polychora and honeycombs with icosahedral vertex figures:
{{Icosahedral vertex figure tessellations}}
= Rectified order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | r{6,3,5} or t1{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node|6|node_1|3|node|5|node}} {{CDD|node_h0|6|node_1|3|node|5|node}} ↔ {{CDD|branch_11|split2|node|5|node}} |
bgcolor=#e7dcc3|Cells | {3,5} 40px r{6,3} or h2{6,3} 40px40px |
bgcolor=#e7dcc3|Faces | triangle {3} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px pentagonal prism |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The rectified order-5 hexagonal tiling honeycomb, t1{6,3,5}, {{CDD|node|6|node_1|3|node|5|node}} has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure.
It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.
: 180px
{{Pentagonal prism vertex figure tessellations}}
{{Clear}}
= Truncated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Truncated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t{6,3,5} or t0,1{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node|5|node}} |
bgcolor=#e7dcc3|Cells | {3,5} 40px t{6,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px pentagonal pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The truncated order-5 hexagonal tiling honeycomb, t0,1{6,3,5}, {{CDD|node_1|6|node_1|3|node|5|node}} has icosahedron and truncated hexagonal tiling facets, with a pentagonal pyramid vertex figure.
{{Clear}}
= Bitruncated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Bitruncated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | 2t{6,3,5} or t1,2{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node|6|node_1|3|node_1|5|node}} {{CDD|node_h0|6|node_1|3|node_1|5|node}} ↔ {{CDD|branch_11|split2|node_1|5|node}} |
bgcolor=#e7dcc3|Cells | t{3,6} 40px t{3,5} 40px |
bgcolor=#e7dcc3|Faces | pentagon {5} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px digonal disphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The bitruncated order-5 hexagonal tiling honeycomb, t1,2{6,3,5}, {{CDD|node|6|node_1|3|node_1|5|node}} has hexagonal tiling and truncated icosahedron facets, with a digonal disphenoid vertex figure.
{{Clear}}
= Cantellated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantellated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | rr{6,3,5} or t0,2{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node|3|node_1|5|node}} |
bgcolor=#e7dcc3|Cells | r{3,5} 40px rr{6,3} 40px {}x{5} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} pentagon {5} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px wedge |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantellated order-5 hexagonal tiling honeycomb, t0,2{6,3,5}, {{CDD|node_1|6|node|3|node_1|5|node}} has icosidodecahedron, rhombitrihexagonal tiling, and pentagonal prism facets, with a wedge vertex figure.
{{Clear}}
= Cantitruncated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | tr{6,3,5} or t0,1,2{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node_1|5|node}} |
bgcolor=#e7dcc3|Cells | t{3,5} 40px tr{6,3} 40px {}x{5} 40px |
bgcolor=#e7dcc3|Faces | square {4} pentagon {5} hexagon {6} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px mirrored sphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantitruncated order-5 hexagonal tiling honeycomb, t0,1,2{6,3,5}, {{CDD|node_1|6|node_1|3|node_1|5|node}} has truncated icosahedron, truncated trihexagonal tiling, and pentagonal prism facets, with a mirrored sphenoid vertex figure.
{{Clear}}
= Runcinated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcinated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node|3|node|5|node_1}} |
bgcolor=#e7dcc3|Cells | {6,3} 40px {5,3} 40px {}x{6} 40px {}x{5} 40px |
bgcolor=#e7dcc3|Faces | square {4} pentagon {5} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px irregular triangular antiprism |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcinated order-5 hexagonal tiling honeycomb, t0,3{6,3,5}, {{CDD|node_1|6|node|3|node|5|node_1}} has dodecahedron, hexagonal tiling, pentagonal prism, and hexagonal prism facets, with an irregular triangular antiprism vertex figure.
{{Clear}}
= Runcitruncated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node|5|node_1}} |
bgcolor=#e7dcc3|Cells | t{6,3} 40px rr{5,3} 40px {}x{5} 40px {}x{12} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} pentagon {5} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px isosceles-trapezoidal pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcitruncated order-5 hexagonal tiling honeycomb, t0,1,3{6,3,5}, {{CDD|node_1|6|node_1|3|node|5|node_1}} has truncated hexagonal tiling, rhombicosidodecahedron, pentagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.
{{Clear}}
= Runcicantellated order-5 hexagonal tiling honeycomb =
The runcicantellated order-5 hexagonal tiling honeycomb is the same as the runcitruncated order-6 dodecahedral honeycomb.
= Omnitruncated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Omnitruncated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node_1|5|node_1}} |
bgcolor=#e7dcc3|Cells | tr{6,3} 40px tr{5,3} 40px {}x{10} 40px {}x{12} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} decagon {10} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px irregular tetrahedron |
bgcolor=#e7dcc3|Coxeter groups | , [5,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The omnitruncated order-5 hexagonal tiling honeycomb, t0,1,2,3{6,3,5}, {{CDD|node_1|6|node_1|3|node_1|5|node_1}} has truncated trihexagonal tiling, truncated icosidodecahedron, decagonal prism, and dodecagonal prism facets, with an irregular tetrahedral vertex figure.
{{Clear}}
= Alternated order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Alternated order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb Semiregular honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}} |
bgcolor=#e7dcc3|Cells | {3[3]} 40px {3,5} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} |
bgcolor=#e7dcc3|Vertex figure | 40px truncated icosahedron |
bgcolor=#e7dcc3|Coxeter groups | , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive, quasiregular |
The alternated order-5 hexagonal tiling honeycomb, h{6,3,5}, {{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}}, has triangular tiling and icosahedron facets, with a truncated icosahedron vertex figure. It is a quasiregular honeycomb.
{{Clear}}
= Cantic order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantic order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h2{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|6|node|3|node_1|5|node}} ↔ {{CDD|branch_10ru|split2|node_1|5|node}} |
bgcolor=#e7dcc3|Cells | h2{6,3} 40px t{3,5} 40px r{5,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} pentagon {5} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular prism |
bgcolor=#e7dcc3|Coxeter groups | , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantic order-5 hexagonal tiling honeycomb, h2{6,3,5}, {{CDD|node_h1|6|node|3|node_1|5|node}} ↔ {{CDD|branch_10ru|split2|node_1|5|node}}, has trihexagonal tiling, truncated icosahedron, and icosidodecahedron facets, with a triangular prism vertex figure.
{{Clear}}
= Runcic order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcic order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h3{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|6|node|3|node|5|node_1}} ↔ {{CDD|branch_10ru|split2|node|5|node_1}} |
bgcolor=#e7dcc3|Cells | {3[3]} 40px rr{5,3} 40px {5,3} 40px {}x{3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} pentagon {5} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular cupola |
bgcolor=#e7dcc3|Coxeter groups | , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcic order-5 hexagonal tiling honeycomb, h3{6,3,5}, {{CDD|node_h1|6|node|3|node|5|node_1}} ↔ {{CDD|branch_10ru|split2|node|5|node_1}}, has triangular tiling, rhombicosidodecahedron, dodecahedron, and triangular prism facets, with a triangular cupola vertex figure.
{{Clear}}
= Runcicantic order-5 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcicantic order-5 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h2,3{6,3,5} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h1|6|node|3|node_1|5|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|5|node_1}} |
bgcolor=#e7dcc3|Cells | h2{6,3} 40px tr{5,3} 40px t{5,3} 40px {}x{3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} decagon {10} |
bgcolor=#e7dcc3|Vertex figure | 80px rectangular pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [5,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcicantic order-5 hexagonal tiling honeycomb, h2,3{6,3,5}, {{CDD|node_h1|6|node|3|node_1|5|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|5|node_1}}, has trihexagonal tiling, truncated icosidodecahedron, truncated dodecahedron, and triangular prism facets, with a rectangular pyramid vertex figure.
{{Clear}}
See also
References
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups