order-5 hexagonal tiling honeycomb#Alternated order-5 hexagonal tiling honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Order-5 hexagonal tiling honeycomb

colspan=2 align=center|320px
Perspective projection view
from center of Poincaré disk model
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol{6,3,5}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node_1|6|node|3|node|5|node}}
80px ↔ {{CDD|node_1|6|node_g|3sg|node_g|5g|node_g}}
bgcolor=#e7dcc3|Cells{6,3} 40px
bgcolor=#e7dcc3|Faceshexagon {6}
bgcolor=#e7dcc3|Edge figurepentagon {5}
bgcolor=#e7dcc3|Vertex figureicosahedron
bgcolor=#e7dcc3|DualOrder-6 dodecahedral honeycomb
bgcolor=#e7dcc3|Coxeter group\overline{HV}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesRegular

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the order-5 hexagonal tiling honeycomb is {6,3,5}. Since that of the hexagonal tiling is {6,3}, this honeycomb has five such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the icosahedron is {3,5}, the vertex figure of this honeycomb is an icosahedron. Thus, 20 hexagonal tilings meet at each vertex of this honeycomb.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III

{{Honeycomb}}

Symmetry

A lower-symmetry construction of index 120, [6,(3,5)*], exists with regular dodecahedral fundamental domains, and an icosahedral Coxeter-Dynkin diagram with 6 axial infinite-order (ultraparallel) branches.

Images

The order-5 hexagonal tiling honeycomb is similar to the 2D hyperbolic regular paracompact order-5 apeirogonal tiling, {∞,5}, with five apeirogonal faces meeting around every vertex.

: 180px

Related polytopes and honeycombs

The order-5 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

{{Regular_paracompact_H3_honeycombs}}

There are 15 uniform honeycombs in the [6,3,5] Coxeter group family, including this regular form, and its regular dual, the order-6 dodecahedral honeycomb.

{{635 family}}

The order-5 hexagonal tiling honeycomb has a related alternation honeycomb, represented by {{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}}, with icosahedron and triangular tiling cells.

It is a part of sequence of regular hyperbolic honeycombs of the form {6,3,p}, with hexagonal tiling facets:

{{Hexagonal tiling cell tessellations}}

It is also part of a sequence of regular polychora and honeycombs with icosahedral vertex figures:

{{Icosahedral vertex figure tessellations}}

= Rectified order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{6,3,5} or t1{6,3,5}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|6|node_1|3|node|5|node}}
{{CDD|node_h0|6|node_1|3|node|5|node}} ↔ {{CDD|branch_11|split2|node|5|node}}
bgcolor=#e7dcc3|Cells{3,5} 40px
r{6,3} or h2{6,3}
40px40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
pentagonal prism
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}_3}, [5,3,6]
{\overline{HP}_3}, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified order-5 hexagonal tiling honeycomb, t1{6,3,5}, {{CDD|node|6|node_1|3|node|5|node}} has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure.

480px

It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.

: 180px

{{Pentagonal prism vertex figure tessellations}}

{{Clear}}

= Truncated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt{6,3,5} or t0,1{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|5|node}}
bgcolor=#e7dcc3|Cells{3,5} 40px
t{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
pentagonal pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated order-5 hexagonal tiling honeycomb, t0,1{6,3,5}, {{CDD|node_1|6|node_1|3|node|5|node}} has icosahedron and truncated hexagonal tiling facets, with a pentagonal pyramid vertex figure.

480px

{{Clear}}

= Bitruncated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Bitruncated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol2t{6,3,5} or t1,2{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|6|node_1|3|node_1|5|node}}
{{CDD|node_h0|6|node_1|3|node_1|5|node}} ↔ {{CDD|branch_11|split2|node_1|5|node}}
bgcolor=#e7dcc3|Cellst{3,6} 40px
t{3,5} 40px
bgcolor=#e7dcc3|Facespentagon {5}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
digonal disphenoid
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
{\overline{HP}}_3, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The bitruncated order-5 hexagonal tiling honeycomb, t1,2{6,3,5}, {{CDD|node|6|node_1|3|node_1|5|node}} has hexagonal tiling and truncated icosahedron facets, with a digonal disphenoid vertex figure.

480px

{{Clear}}

= Cantellated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantellated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolrr{6,3,5} or t0,2{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node_1|5|node}}
bgcolor=#e7dcc3|Cellsr{3,5} 40px
rr{6,3} 40px
{}x{5} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
pentagon {5}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantellated order-5 hexagonal tiling honeycomb, t0,2{6,3,5}, {{CDD|node_1|6|node|3|node_1|5|node}} has icosidodecahedron, rhombitrihexagonal tiling, and pentagonal prism facets, with a wedge vertex figure.

480px

{{Clear}}

= Cantitruncated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{6,3,5} or t0,1,2{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|5|node}}
bgcolor=#e7dcc3|Cellst{3,5} 40px
tr{6,3} 40px
{}x{5} 40px
bgcolor=#e7dcc3|Facessquare {4}
pentagon {5}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
mirrored sphenoid
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantitruncated order-5 hexagonal tiling honeycomb, t0,1,2{6,3,5}, {{CDD|node_1|6|node_1|3|node_1|5|node}} has truncated icosahedron, truncated trihexagonal tiling, and pentagonal prism facets, with a mirrored sphenoid vertex figure.

480px

{{Clear}}

= Runcinated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcinated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,3{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node|5|node_1}}
bgcolor=#e7dcc3|Cells{6,3} 40px
{5,3} 40px
{}x{6} 40px
{}x{5} 40px
bgcolor=#e7dcc3|Facessquare {4}
pentagon {5}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
irregular triangular antiprism
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcinated order-5 hexagonal tiling honeycomb, t0,3{6,3,5}, {{CDD|node_1|6|node|3|node|5|node_1}} has dodecahedron, hexagonal tiling, pentagonal prism, and hexagonal prism facets, with an irregular triangular antiprism vertex figure.

480px

{{Clear}}

= Runcitruncated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,3{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|5|node_1}}
bgcolor=#e7dcc3|Cellst{6,3} 40px
rr{5,3} 40px
{}x{5} 40px
{}x{12} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
pentagon {5}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
isosceles-trapezoidal pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcitruncated order-5 hexagonal tiling honeycomb, t0,1,3{6,3,5}, {{CDD|node_1|6|node_1|3|node|5|node_1}} has truncated hexagonal tiling, rhombicosidodecahedron, pentagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

480px

{{Clear}}

= Runcicantellated order-5 hexagonal tiling honeycomb =

The runcicantellated order-5 hexagonal tiling honeycomb is the same as the runcitruncated order-6 dodecahedral honeycomb.

= Omnitruncated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,3{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|5|node_1}}
bgcolor=#e7dcc3|Cellstr{6,3} 40px
tr{5,3} 40px
{}x{10} 40px
{}x{12} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
decagon {10}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
irregular tetrahedron
bgcolor=#e7dcc3|Coxeter groups{\overline{HV}}_3, [5,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The omnitruncated order-5 hexagonal tiling honeycomb, t0,1,2,3{6,3,5}, {{CDD|node_1|6|node_1|3|node_1|5|node_1}} has truncated trihexagonal tiling, truncated icosidodecahedron, decagonal prism, and dodecagonal prism facets, with an irregular tetrahedral vertex figure.

480px

{{Clear}}

= Alternated order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Alternated order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
Semiregular honeycomb
bgcolor=#e7dcc3|Schläfli symbolh{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}}
bgcolor=#e7dcc3|Cells{3[3]} 40px
{3,5} 40px
bgcolor=#e7dcc3|Facestriangle {3}
bgcolor=#e7dcc3|Vertex figure40px
truncated icosahedron
bgcolor=#e7dcc3|Coxeter groups{\overline{HP}}_3, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive, quasiregular

The alternated order-5 hexagonal tiling honeycomb, h{6,3,5}, {{CDD|node_h1|6|node|3|node|5|node}} ↔ {{CDD|branch_10ru|split2|node|5|node}}, has triangular tiling and icosahedron facets, with a truncated icosahedron vertex figure. It is a quasiregular honeycomb.

{{Clear}}

= Cantic order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantic order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh2{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|6|node|3|node_1|5|node}} ↔ {{CDD|branch_10ru|split2|node_1|5|node}}
bgcolor=#e7dcc3|Cellsh2{6,3} 40px
t{3,5} 40px
r{5,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
pentagon {5}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular prism
bgcolor=#e7dcc3|Coxeter groups{\overline{HP}}_3, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantic order-5 hexagonal tiling honeycomb, h2{6,3,5}, {{CDD|node_h1|6|node|3|node_1|5|node}} ↔ {{CDD|branch_10ru|split2|node_1|5|node}}, has trihexagonal tiling, truncated icosahedron, and icosidodecahedron facets, with a triangular prism vertex figure.

{{Clear}}

= Runcic order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcic order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh3{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|6|node|3|node|5|node_1}} ↔ {{CDD|branch_10ru|split2|node|5|node_1}}
bgcolor=#e7dcc3|Cells{3[3]} 40px
rr{5,3} 40px
{5,3} 40px
{}x{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
pentagon {5}
bgcolor=#e7dcc3|Vertex figure80px
triangular cupola
bgcolor=#e7dcc3|Coxeter groups{\overline{HP}}_3, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcic order-5 hexagonal tiling honeycomb, h3{6,3,5}, {{CDD|node_h1|6|node|3|node|5|node_1}} ↔ {{CDD|branch_10ru|split2|node|5|node_1}}, has triangular tiling, rhombicosidodecahedron, dodecahedron, and triangular prism facets, with a triangular cupola vertex figure.

{{Clear}}

= Runcicantic order-5 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcicantic order-5 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh2,3{6,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h1|6|node|3|node_1|5|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|5|node_1}}
bgcolor=#e7dcc3|Cellsh2{6,3} 40px
tr{5,3} 40px
t{5,3} 40px
{}x{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
decagon {10}
bgcolor=#e7dcc3|Vertex figure80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{HP}}_3, [5,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantic order-5 hexagonal tiling honeycomb, h2,3{6,3,5}, {{CDD|node_h1|6|node|3|node_1|5|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|5|node_1}}, has trihexagonal tiling, truncated icosidodecahedron, truncated dodecahedron, and triangular prism facets, with a rectangular pyramid vertex figure.

{{Clear}}

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups

Category:Hexagonal tilings

Category:Regular 3-honeycombs