Paracompact uniform honeycombs#Regular paracompact honeycombs
{{Short description|Tessellation of convex uniform polyhedron cells}}
class=wikitable align=right width=400
|+ Example paracompact regular honeycombs |
align=center
|100px |100px |100px |
align=center
|100px |100px |
align=center
|100px |
In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.
Regular paracompact honeycombs
Of the uniform paracompact H3 honeycombs, 11 are regular, meaning that their group of symmetries acts transitively on their flags. These have Schläfli symbol {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}, and are shown below. Four have finite Ideal polyhedral cells: {3,3,6}, {4,3,6}, {3,4,4}, and {5,3,6}.
{{Regular_paracompact_H3_honeycombs}}
class="wikitable" | ||||||||
Name
!Schläfli !Coxeter !Cell !Face !Edge !Vertex !Dual | ||||||||
---|---|---|---|---|---|---|---|---|
BGCOLOR="#ffe0e0" align=center | {3,3,6} | {{CDD|node_1|3|node|3|node|6|node}} | {3,3} | {3} | {6} | {3,6} | {6,3,3} | rowspan=2 BGCOLOR="#ffe0ff"|[6,3,3] |
BGCOLOR="#e0e0ff" align=center | {6,3,3} | {{CDD|node_1|6|node|3|node|3|node}} | {6,3} | {6} | {3} | {3,3} | {3,3,6} | |
BGCOLOR="#ffe0e0" align=center | {3,4,4} | {{CDD|node_1|3|node|4|node|4|node}} | {3,4} | {3} | {4} | {4,4} | {4,4,3} | rowspan=2 BGCOLOR="#ffe0ff"|[4,4,3] |
BGCOLOR="#e0e0ff" align=center | {4,4,3} | {{CDD|node_1|4|node|4|node|3|node}} | {4,4} | {4} | {3} | {4,3} | {3,4,4} | |
BGCOLOR="#e0e0e0" align=center | {3,6,3} | {{CDD|node_1|3|node|6|node|3|node}} | {3,6} | {3} | {3} | {6,3} | Self-dual | [3,6,3] |
BGCOLOR="#ffe0e0" align=center
|Order-6 cubic honeycomb | {4,3,6} | {{CDD|node_1|4|node|3|node|6|node}} | {4,3} | {4} | {4} | {3,6} | {6,3,4} | rowspan=2 BGCOLOR="#ffe0ff"|[6,3,4] |
BGCOLOR="#e0e0ff" align=center | {6,3,4} | {{CDD|node_1|6|node|3|node|4|node}} | {6,3} | {6} | {4} | {3,4} | {4,3,6} | |
BGCOLOR="#e0e0e0" align=center | {4,4,4} | {{CDD|node_1|4|node|4|node|4|node}} | {4,4} | {4} | {4} | {4,4} | Self-dual | [4,4,4] |
BGCOLOR="#ffe0e0" align=center | {5,3,6} | {{CDD|node_1|5|node|3|node|6|node}} | {5,3} | {5} | {5} | {3,6} | {6,3,5} | rowspan=2 BGCOLOR="#ffe0ff"|[6,3,5] |
BGCOLOR="#e0e0ff" align=center | {6,3,5} | {{CDD|node_1|6|node|3|node|5|node}} | {6,3} | {6} | {5} | {3,5} | {5,3,6} | |
BGCOLOR="#e0e0e0" align=center | {6,3,6} | {{CDD|node_1|6|node|3|node|6|node}} | {6,3} | {6} | {6} | {3,6} | Self-dual | [6,3,6] |
Coxeter groups of paracompact uniform honeycombs
class=wikitable align=right width=300 |
colspan=2|These graphs show subgroup relations of paracompact hyperbolic Coxeter groups. Order 2 subgroups represent bisecting a Goursat tetrahedron with a plane of mirror symmetry. |
This is a complete enumeration of the 151 unique Wythoffian paracompact uniform honeycombs generated from tetrahedral fundamental domains (rank 4 paracompact coxeter groups). The honeycombs are indexed here for cross-referencing duplicate forms, with brackets around the nonprimary constructions.
The alternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, a Vinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones. Seven uniform honeycombs that arise here as alternations have been numbered 152 to 158, after the 151 Wythoffian forms not requiring alternation for their construction.
class="wikitable sortable"
|+ Tetrahedral hyperbolic paracompact group summary !colspan=2|Coxeter group !Simplex !Unique honeycomb count | ||||
align=center
|[6,3,3] | {{CDD|node|6|node|3|node|3|node}} | 0.0422892336 | [1+,6,(3,3)+] = [3,3[3]]+ | 15 |
align=center
|[4,4,3] | {{CDD|node|4|node|4|node|3|node}} | 0.0763304662 | [1+,4,1+,4,3+] | 15 |
align=center
|[3,3[3]] | {{CDD|node|3|node|split1|branch}} | 0.0845784672 | [3,3[3]]+ | 4 |
align=center
|[6,3,4] | {{CDD|node|6|node|3|node|4|node}} | 0.1057230840 | [1+,6,3+,4,1+] = [3[]x[]]+ | 15 |
align=center
|[3,41,1] | {{CDD|node|3|node|split1-44|nodes}} | 0.1526609324 | [3+,41+,1+] | 4 |
align=center
|[3,6,3] | {{CDD|node|3|node|6|node|3|node}} | 0.1691569344 | [3+,6,3+] | 8 |
align=center
|[6,3,5] | {{CDD|node|6|node|3|node|5|node}} | 0.1715016613 | [1+,6,(3,5)+] = [5,3[3]]+ | 15 |
align=center
|[6,31,1] | {{CDD|node|6|node|split1|nodes}} | 0.2114461680 | [1+,6,(31,1)+] = [3[]x[]]+ | 4 |
align=center
|[4,3[3]] | {{CDD|node|4|node|split1|branch}} | 0.2114461680 | [1+,4,3[3]]+ = [3[]x[]]+ | 4 |
align=center
|[4,4,4] | {{CDD|node|4|node|4|node|4|node}} | 0.2289913985 | [4+,4+,4+]+ | 6 |
align=center
|[6,3,6] | {{CDD|node|6|node|3|node|6|node}} | 0.2537354016 | [1+,6,3+,6,1+] = [3[3,3]]+ | 8 |
align=center
|[(4,4,3,3)] | {{CDD|node|split1-44|nodes|split2|node}} | 0.3053218647 | [(4,1+,4,(3,3)+)] | 4 |
align=center
|[5,3[3]] | {{CDD|node|5|node|split1|branch}} | 0.3430033226 | [5,3[3]]+ | 4 |
align=center
|[(6,3,3,3)] | {{CDD|label6|branch|3ab|branch|2}} | 0.3641071004 | [(6,3,3,3)]+ | 9 |
align=center
|[3[]x[]] | {{CDD|node|split1|branch|split2|node}} | 0.4228923360 | [3[]x[]]+ | 1 |
align=center
|[41,1,1] | {{CDD|node|4|node|split1-44|nodes}} | 0.4579827971 | [1+,41+,1+,1+] | 0 |
align=center
|[6,3[3]] | {{CDD|node|6|node|split1|branch}} | 0.5074708032 | [1+,6,3[3]] = [3[3,3]]+ | 2 |
align=center
|[(6,3,4,3)] | {{CDD|label6|branch|3ab|branch|label4}} | 0.5258402692 | [(6,3+,4,3+)] | 9 |
align=center
|[(4,4,4,3)] | {{CDD|label4|branch|4-4|branch}} | 0.5562821156 | [(4,1+,4,1+,4,3+)] | 9 |
align=center
|[(6,3,5,3)] | {{CDD|label6|branch|3ab|branch|label5}} | 0.6729858045 | [(6,3,5,3)]+ | 9 |
align=center
|[(6,3,6,3)] | {{CDD|label6|branch|3ab|branch|label6}} | 0.8457846720 | [(6,3+,6,3+)] | 5 |
align=center
|[(4,4,4,4)] | {{CDD|label4|branch|4-4|branch|label4}} | 0.9159655942 | [(4+,4+,4+,4+)] | 1 |
align=center
|[3[3,3]] | {{CDD|branch|splitcross|branch}} | 1.014916064 | [3[3,3]]+ | 0 |
The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003.[https://arxiv.org/abs/math/0301133.pdf P. Tumarkin, Hyperbolic Coxeter n-polytopes with n+2 facets (2003)] The smallest paracompact form in H3 can be represented by {{CDD|node|ultra|node|3|node|3|node|ultra|node}} or {{CDD|node|split1|nodes|2a2b-cross|nodes}}, or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4] : {{CDD|node_c1|3|node_c2|4|node_h0|4|node_c3}} = {{CDD|node_c1|split1|nodeab_c2|2a2b-cross|nodeab_c3}}. The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramid is {{CDD|node|ultra|node|4|node|4|node|ultra|node}} or {{CDD|node|split1-44|nodes|2a2b-cross|nodes}}, constructed as [4,4,1+,4] = [∞,4,4,∞] : {{CDD|node_c1|4|node_c2|4|node_h0|4|node_c3}} = {{CDD|node_c1|split1-44|nodeab_c2|2a2b-cross|nodeab_c3}}.
Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or {{CDD|branchu|split2|node|split1|branchu}}, [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or {{CDD|branchu|split2-43|node|split1-43|branchu}}, [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or {{CDD|branchu|split2-44|node|split1-44|branchu}}. {{CDD|labelh|node|split1-44|nodeab_c1-2|split2|node_c3}} = {{CDD|labelinfin|branch_c1-2|split2|node_c3|split1|branch_c1-2|labelinfin}}, {{CDD|labelh|node|split1-44|nodeab_c1-2|split2-43|node_c3}} = {{CDD|labelinfin|branch_c1-2|split2-43|node_c3|split1-43|branch_c1-2|labelinfin}}, {{CDD|labelh|node|split1-44|nodeab_c1-2|split2-44|node_c3}} = {{CDD|labelinfin|branch_c1-2|split2-44|node_c3|split1-44|branch_c1-2|labelinfin}}.
Another nonsimplectic half groups is {{CDD|nodeab_c1-2|split2-44|node_h0|4|node_c3}} ↔ {{CDD|node_c3|split1-uu|nodeab_c1-2|2a2b-cross|nodeab_c1-2|split2-uu|node_c3}}.
A radical nonsimplectic subgroup is {{CDD|label4|branch_c1-2|4a4b|branch|labels}} ↔ {{CDD|node_c1|splitplit1u-44|branch3u_c2|4a4buc-cross|branch3u_c1|splitplit2u-44|node_c2}}, which can be doubled into a triangular prism domain as {{CDD|node_c1|splitplit1u-44|branch3u_c2|4a4buc-cross|branch3u_c3|splitplit2u-44|node_c4}} ↔ {{CDD|branchu_c1-4|4a4b|branch_c2-3|split2-44|node|labelh}}.
class=wikitable
|+ Pyramidal hyperbolic paracompact group summary |
Dimension
!Rank !Graphs |
---|
H3
!5 | {{CDD|node|split1|nodes|2a2b-cross|nodes}} | {{CDD|node|split1-43|nodes|2a2b-cross|nodes}} | {{CDD|node|split1-44|nodes|2a2b-cross|nodes}} | {{CDD|node|split1-53|nodes|2a2b-cross|nodes}} | {{CDD|node|split1-63|nodes|2a2b-cross|nodes}} |
Linear graphs
= [6,3,3] family =
class= "wikitable" |
rowspan="2" |#
! rowspan="2" |Honeycomb name ! colspan= "4" | Cells by location ! rowspan="2" |Vertex figure ! rowspan="2" |Picture |
---|
1 {{CDD|node_n2|3|node_n3|3|node_n4}} !2 !3 !4 |
align=center BGCOLOR="#f0e0e0"
!1 | hexagonal (hexah) | - | - | - |80px {{CDD|node_1|3|node|3|node}} |
align=center BGCOLOR="#f0e0e0"
!2 | rectified hexagonal (rihexah) | - | - |80px {{CDD|node_1|2|node_1|3|node}} |
align=center BGCOLOR="#e0e0f0"
!3 | rectified order-6 tetrahedral (rath) | - | - |80px {{CDD|node|6|node_1|2|node_1}} |
align=center BGCOLOR="#e0e0f0"
!4 |order-6 tetrahedral (thon) | - | - | - |40px {{CDD|node|6|node|3|node_1}} |
align=center BGCOLOR="#f0e0e0"
!5 | truncated hexagonal (thexah) | - | - |
align=center BGCOLOR="#f0e0e0"
!6 |cantellated hexagonal (srihexah) | - |80px |
align=center BGCOLOR="#e0f0e0"
!7 |runcinated hexagonal (sidpithexah) |80px |
align=center BGCOLOR="#e0e0f0"
!8 |cantellated order-6 tetrahedral (srath) | - |80px |
align=center BGCOLOR="#e0f0e0"
!9 |bitruncated hexagonal (tehexah) | - | - |80px |
align=center BGCOLOR="#e0e0f0"
!10 |truncated order-6 tetrahedral (tath) | - | - |80px |
align=center BGCOLOR="#f0e0e0"
!11 |cantitruncated hexagonal (grihexah) | - |80px |
align=center BGCOLOR="#f0e0e0"
!12 |runcitruncated hexagonal (prath) |80px |
align=center BGCOLOR="#e0e0f0"
!13 |runcitruncated order-6 tetrahedral (prihexah) |80px |
align=center BGCOLOR="#e0e0f0"
!14 |cantitruncated order-6 tetrahedral (grath) | - |80px |
align=center BGCOLOR="#e0f0e0"
!15 |omnitruncated hexagonal (gidpithexah) |80px |
class= "wikitable"
|+ Alternated forms |
rowspan="2" |#
! rowspan="2" |Honeycomb name ! colspan= "5" | Cells by location ! rowspan="2" |Vertex figure ! rowspan="2" |Picture |
---|
1 {{CDD|node_n2|3|node_n3|3|node_n4}} !2 !3 !4 !Alt |
align=center BGCOLOR="#e0f0f0"
|[137] |alternated hexagonal (ahexah) | - | - | |40px {{CDD|node_1|3|node_1|3|node}} | |
align=center BGCOLOR="#e0f0f0"
|[138] |cantic hexagonal (tahexah) | - | |80px | |
align=center BGCOLOR="#e0f0f0"
|[139] |runcic hexagonal (birahexah) | |80px | |
align=center BGCOLOR="#e0f0f0"
|[140] |runcicantic hexagonal (bitahexah) | |80px | |
align=center BGCOLOR="#e0f0f0"
| Nonuniform |snub rectified order-6 tetrahedral |40px | | |40px |80px | |
align=center BGCOLOR="#e0f0f0"
| Nonuniform |cantic snub order-6 tetrahedral | | | | | | | |
align=center BGCOLOR="#e0f0f0"
| Nonuniform |omnisnub order-6 tetrahedral |40px | | |40px | | |
= [6,3,4] family =
There are 15 forms, generated by ring permutations of the Coxeter group: [6,3,4] or {{CDD|node|6|node|3|node|4|node}}
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=4|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node_n2|3|node_n3|4|node_n4}} !1 !2 !3 |
---|
BGCOLOR="#f0e0e0" align=center
!16 |(Regular) order-4 hexagonal (shexah) | - | - | - |(8) |
BGCOLOR="#f0e0e0" align=center
!17 |rectified order-4 hexagonal (rishexah) |(2) | - | - |(4) |
BGCOLOR="#e0e0f0" align=center
!18 |rectified order-6 cubic (rihach) |(6) | - | - |(2) |
BGCOLOR="#e0e0f0" align=center
!19 |order-6 cubic (hachon) |(20) | - | - | - |40px {{CDD|node|6|node|3|node_1}} |
BGCOLOR="#f0e0e0" align=center
!20 |truncated order-4 hexagonal (tishexah) |(1) | - | - |(4) |80px |
BGCOLOR="#e0f0e0" align=center
!21 |bitruncated order-6 cubic (chexah) |(2) | - | - |(2) |80px |
BGCOLOR="#e0e0f0" align=center
!22 |truncated order-6 cubic (thach) |(6) | - | - |(1) |80px |
BGCOLOR="#f0e0e0" align=center
!23 |cantellated order-4 hexagonal (srishexah) |(1) |(2) | - |(2) |80px |
BGCOLOR="#e0e0f0" align=center
!24 |cantellated order-6 cubic (srihach) |(2) | - |(2) |(1) |80px |
BGCOLOR="#e0f0e0" align=center
!25 |runcinated order-6 cubic (sidpichexah) |(1) |(3) |(3) |(1) |80px |
BGCOLOR="#f0e0e0" align=center
!26 |cantitruncated order-4 hexagonal (grishexah) |(1) |(1) | - |(2) |80px |
BGCOLOR="#e0e0f0" align=center
!27 |cantitruncated order-6 cubic (grihach) |(2) | - |(1) |(1) |80px |
BGCOLOR="#f0e0e0" align=center
!28 |runcitruncated order-4 hexagonal (prihach) |(1) |(1) |(2) |(1) |80px |
BGCOLOR="#e0e0f0" align=center
!29 |runcitruncated order-6 cubic (prishexah) |(1) |(2) |(1) |(1) |80px |
BGCOLOR="#e0f0e0" align=center
!30 |omnitruncated order-6 cubic (gidpichexah) |(1) |(1) |(1) |(1) |80px |
class=wikitable
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Name of honeycomb !colspan=5|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
---|
0 {{CDD|node_n2|3|node_n3|4|node_n4}} !1 !2 !3 !Alt |
BGCOLOR="#e0f0f0" align=center
|[87] |alternated order-6 cubic (ahach) |40px {{CDD|node|3|node|4|node_h1}} | | | |40px {{CDD|node_1|3|node|6|node}} |{{CDD|node|6|node_1|3|node}} | |
align=center BGCOLOR="#e0f0f0"
|[88] |cantic order-6 cubic (tachach) | - | - |80px | |
align=center BGCOLOR="#e0f0f0"
|[89] |runcic order-6 cubic (birachach) | - | - |80px | |
align=center BGCOLOR="#e0f0f0"
|[90] |runcicantic order-6 cubic (bitachach) | - | - |80px | |
BGCOLOR="#e0f0f0" align=center
|[141] |alternated order-4 hexagonal (ashexah) | - | - | |40px {{CDD|node|4|node_1|3|node_1}} | |
BGCOLOR="#e0f0f0" align=center
|[142] |cantic order-4 hexagonal (tashexah) | - | |80px | |
BGCOLOR="#e0f0f0" align=center
|[143] |runcic order-4 hexagonal (birashexah) | |80px | |
BGCOLOR="#e0f0f0" align=center
|[144] |runcicantic order-4 hexagonal (bitashexah) | |80px | |
BGCOLOR="#e0f0f0" align=center
|[151] |quarter order-4 hexagonal (quishexah) |(3) |(1) | - |(1) |(3) |80px | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |bisnub order-6 cubic |{{CDD|node_h|3|node_h|4|node}} | - | - |{{CDD|node|6|node_h|3|node_h}} |80px | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |runcic bisnub order-6 cubic |{{CDD|node_h|3|node_h|4|node_1}} |{{CDD|node_1|2|node_h|4|node_1}} |{{CDD|node_1|6|node_h|2|node_1}} |{{CDD|node_1|6|node_h|3|node_h}} | | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |snub rectified order-6 cubic |{{CDD|node_h|3|node_h|4|node}} |{{CDD|node_h|2x|node_h|4|node}} |{{CDD|node|6|node_h|2x|node_h}} |{{CDD|node|6|node_h|3|node_h}} | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |runcic snub rectified order-6 cubic |{{CDD|node_h|3|node_h|4|node_h}} |{{CDD|node_1|2|node_h|4|node_h}} |{{CDD|node_1|6|node_h|2x|node_h}} |{{CDD|node_1|6|node_h|3|node_h}} | | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |snub rectified order-4 hexagonal |{{CDD|node_h|3|node_h|4|node}} |{{CDD|node_h|2x|node_h|4|node}} | - |{{CDD|node_h|6|node_h|3|node_h}} | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |runcisnub rectified order-4 hexagonal | | | | | | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |omnisnub rectified order-6 cubic |{{CDD|node_h|3|node_h|4|node_h}} |{{CDD|node_h|2x|node_h|4|node_h}} |{{CDD|node_h|6|node_h|2x|node_h}} |{{CDD|node_h|6|node_h|3|node_h}} | | |
= [6,3,5] family =
class="wikitable" | |
rowspan="2" | #
! rowspan="2" | Honeycomb name ! colspan="4" |Cells by location ! rowspan="2" |Vertex figure ! rowspan="2" |Picture | |
---|---|
align=center
!0 !1 !2 !3 | |
align=center BGCOLOR="#f0e0e0"
! 31 | order-5 hexagonal (phexah) | - | - | - |80px {{CDD|node 1|3|node|5|node}} | |
align=center BGCOLOR="#f0e0e0"
!32 |rectified order-5 hexagonal (riphexah) |(2) | - | - | |
align=center BGCOLOR="#e0e0f0"
!33 |rectified order-6 dodecahedral (rihed) | - | - | 80px {{CDD|node|6|node_1|2|node_1}} (6.4.4) |
align=center BGCOLOR="#e0e0f0"
!34 |order-6 dodecahedral (hedhon) | - | - | - | |
align=center BGCOLOR="#f0e0e0"
!35 |truncated order-5 hexagonal (tiphexah) |(1) | - | - |80px | |
align=center BGCOLOR="#f0e0e0"
!36 |cantellated order-5 hexagonal (sriphexah) | - |80px | |
align=center BGCOLOR="#e0f0e0"
!37 |runcinated order-6 dodecahedral (sidpidohexah) | - |80px | |
align=center BGCOLOR="#e0e0f0"
!38 |cantellated order-6 dodecahedral (srihed) | - |80px | |
align=center BGCOLOR="#e0f0e0"
!39 |bitruncated order-6 dodecahedral (dohexah) | - | - |80px | |
align=center BGCOLOR="#e0e0f0"
!40 |truncated order-6 dodecahedral (thed) | - | - |80px | |
align=center BGCOLOR="#f0e0e0"
!41 |cantitruncated order-5 hexagonal (griphexah) | - |80px | |
align=center BGCOLOR="#f0e0e0"
!42 |runcitruncated order-5 hexagonal (prihed) |80px | |
align=center BGCOLOR="#e0e0f0"
!43 |runcitruncated order-6 dodecahedral (priphaxh) |80px | |
align=center BGCOLOR="#e0e0f0"
!44 |cantitruncated order-6 dodecahedral (grihed) | - |80px | |
align=center BGCOLOR="#e0f0e0"
!45 |omnitruncated order-6 dodecahedral (gidpidohaxh) |80px |
class="wikitable"
|+ Alternated forms |
rowspan="2" | #
! rowspan="2" | Honeycomb name ! colspan="5" |Cells by location ! rowspan="2" |Vertex figure ! rowspan="2" |Picture |
---|
align=center
!0 !1 !2 !3 !Alt |
align=center BGCOLOR="#e0f0f0"
| [145] |alternated order-5 hexagonal (aphexah) | - | - | - |40px {{CDD|node|5|node_1|3|node_1}} | |
align=center BGCOLOR="#e0f0f0"
|[146] |cantic order-5 hexagonal (taphexah) | - | |80px | |
align=center BGCOLOR="#e0f0f0"
|[147] |runcic order-5 hexagonal (biraphexah) | |80px | |
align=center BGCOLOR="#e0f0f0"
|[148] |runcicantic order-5 hexagonal (bitaphexah) | |80px | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |snub rectified order-6 dodecahedral |40px | - |40px |40px |40px | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub order-5 hexagonal |40px |40px |40px |40px |40px | | |
= [6,3,6] family =
There are 9 forms, generated by ring permutations of the Coxeter group: [6,3,6] or {{CDD|node|6|node|3|node|6|node}}
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=4|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node_n2|3|node_n3|6|node_n4}} !1 !2 !3 |
---|
align=center BGCOLOR="#f0e0e0"
!46 |order-6 hexagonal (hihexah) | - | - | - |(20) |40px {{CDD|node_1|3|node|6|node}} |
align=center BGCOLOR="#f0e0e0"
!47 |rectified order-6 hexagonal (rihihexah) |(2) | - | - |
align=center BGCOLOR="#f0e0e0"
!48 |truncated order-6 hexagonal (thihexah) | - | - |80px |
align=center BGCOLOR="#f0e0e0"
!49 |cantellated order-6 hexagonal (srihihexah) | - |80px |
align=center BGCOLOR="#e0f0e0"
!50 |Runcinated order-6 hexagonal (spiddihexah) |80px |
align=center BGCOLOR="#f0e0e0"
!51 |cantitruncated order-6 hexagonal (grihihexah) | - |80px |
align=center BGCOLOR="#f0e0e0"
!52 |runcitruncated order-6 hexagonal (prihihexah) |80px |
align=center BGCOLOR="#e0f0e0"
!53 |omnitruncated order-6 hexagonal (gidpiddihexah) |80px |
align=center BGCOLOR="#e0f0e0"
|[1] |bitruncated order-6 hexagonal (hexah) | - | - |80px |
class=wikitable
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Name of honeycomb !colspan=5|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
---|
0 {{CDD|node_n2|3|node_n3|6|node_n4}} !1 !2 !3 !Alt |
align=center BGCOLOR="#e0f0f0"
|[47] |rectified order-6 hexagonal (rihihexah) |(2) | - | - | |
align=center BGCOLOR="#e0f0f0"
| [54] |triangular (trah) | - | - | - |{{CDD|node_h|6|node|3|node}} |{{CDD|node_1|3|node|6|node}} |
align=center BGCOLOR="#e0f0f0"
|[55] |cantic order-6 hexagonal (ritrah) | - | |80px |
align=center BGCOLOR="#e0f0f0"
|[149] |runcic order-6 hexagonal | |80px | |
align=center BGCOLOR="#e0f0f0"
|[150] |runcicantic order-6 hexagonal | |80px | |
align=center BGCOLOR="#e0f0f0"
|[137] |alternated hexagonal (ahexah) |{{CDD|node_h|3|node_h|6|node}} | - | - |{{CDD|node|6|node_h|3|node_h}} |40px {{CDD|node_1|3|node_1|3|node}} | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |snub rectified order-6 hexagonal |{{CDD|node_h|3|node_h|6|node}} |{{CDD|node_h|2x|node_h|6|node}} | - |{{CDD|node_h|6|node_h|3|node_h}} | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |alternated runcinated order-6 hexagonal |{{CDD|node|3|node|6|node_h}} |{{CDD|node|6|node_h|2x|node_h}} |{{CDD|node|6|node_h|2x|node_h}} |{{CDD|node_h|6|node|3|node}} | | |
BGCOLOR="#e0f0f0" align=center
|Nonuniform |omnisnub order-6 hexagonal |{{CDD|node_h|3|node_h|6|node_h}} |{{CDD|node_h|2x|node_h|6|node_h}} |{{CDD|node_h|6|node_h|2x|node_h}} |{{CDD|node_h|6|node_h|3|node_h}} | | |
= [3,6,3] family =
There are 9 forms, generated by ring permutations of the Coxeter group: [3,6,3] or {{CDD|node|3|node|6|node|3|node}}
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
align=center
!0 !1 !2 !3 |
align=center BGCOLOR="#f0e0e0"
!54 |triangular (trah) | - | - | - |
align=center BGCOLOR="#f0e0e0"
!55 |rectified triangular (ritrah) | - | - |
align=center BGCOLOR="#f0e0e0"
!56 |cantellated triangular (sritrah) | - |80px |
align=center BGCOLOR="#e0f0e0"
!57 |runcinated triangular (spidditrah) |80px |
align=center BGCOLOR="#e0f0e0"
!58 |bitruncated triangular (ditrah) | - | - |80px |
align=center BGCOLOR="#f0e0e0"
!59 |cantitruncated triangular (gritrah) | - |80px |
align=center BGCOLOR="#f0e0e0"
!60 |runcitruncated triangular (pritrah) |80px |
align=center BGCOLOR="#e0f0e0"
!61 |omnitruncated triangular (gipidditrah) |80px |
align=center BGCOLOR="#f0e0e0"
|[1] |truncated triangular (hexah) | - | - |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
---|
align=center
!0 !1 !2 !3 !Alt |
align=center BGCOLOR="#e0f0f0"
|[56] |cantellated triangular (sritrah) |(1) | - | - |(2) |80px |
align=center BGCOLOR="#e0f0f0"
|[60] |runcitruncated triangular (pritrah) |(1) | - |(1) |(1) |80px |
align=center BGCOLOR="#e0f0f0"
|[137] |alternated hexagonal (ahexah) | 40px | - | - |40px |40px {{CDD|node_1|3|node_1|3|node}} | |
align=center BGCOLOR="#e0f0f0"
|runcisnub triangular (pristrah) |40px | - |40px |40px | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub triangular tiling honeycomb (snatrah) |40px |40px |40px |40px | | |
= [4,4,3] family =
There are 15 forms, generated by ring permutations of the Coxeter group: [4,4,3] or {{CDD|node|4|node|4|node|3|node}}
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture | |||||||
align=center
!0 !1 !2 !3 | |||||||
align=center BGCOLOR="#f0e0e0"
!62 | square (squah) {{CDD|node_1|4|node|4|node|3|node}} = {{CDD|node|4|node_1|4|node|4|node}} {4,4,3} | - | - | - | (6) {{CDD|node_1|4|node|4|node}} 40px | 80px {{CDD|node_1|4|node|3|node}} Cube | 120px |
align=center BGCOLOR="#f0e0e0"
!63 | rectified square (risquah) {{CDD|node|4|node_1|4|node|3|node}} = {{CDD|node_1|4|node|4|node_1|4|node}} t1{4,4,3} or r{4,4,3} | (2) {{CDD|node_1|4|node|3|node}} 40px | - | - | (3) {{CDD|node|4|node_1|4|node}} 40px | 80px {{CDD|node_1|2|node_1|3|node}} Triangular prism | 120px |
align=center BGCOLOR="#e0e0f0"
!64 | rectified order-4 octahedral (rocth) {{CDD|node|4|node|4|node_1|3|node}} t1{3,4,4} or r{3,4,4} | (4) {{CDD|node|4|node_1|3|node}} 40px | - | - | (2) {{CDD|node|4|node|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#e0e0f0"
!65 | order-4 octahedral (octh) {{CDD|node|4|node|4|node|3|node_1}} {3,4,4} | (∞) {{CDD|node|4|node|3|node_1}} 40px | - | - | - | 40px {{CDD|node|4|node|4|node_1}} | 120px |
align=center BGCOLOR="#f0e0e0"
!66 | truncated square (tisquah) {{CDD|node_1|4|node_1|4|node|3|node}} = {{CDD|node_1|4|node_1|4|node_1|4|node}} t0,1{4,4,3} or t{4,4,3} | (1) {{CDD|node_1|4|node|3|node}} 40px | - | - | (3) {{CDD|node_1|4|node_1|4|node}} 40px | 80px | 120px |
align=center BGCOLOR="#e0e0f0"
!67 | truncated order-4 octahedral (tocth) {{CDD|node|4|node|4|node_1|3|node_1}} t0,1{3,4,4} or t{3,4,4} | (4) {{CDD|node|4|node_1|3|node_1}} 40px | - | - | (1) {{CDD|node|4|node|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#e0f0e0"
!68 | bitruncated square (osquah) {{CDD|node|4|node_1|4|node_1|3|node}} t1,2{4,4,3} or 2t{4,4,3} | (2) {{CDD|node_1|4|node_1|3|node}} 40px | - | - | (2) {{CDD|node|4|node_1|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#f0e0e0"
!69 | cantellated square (srisquah) {{CDD|node_1|4|node|4|node_1|3|node}} t0,2{4,4,3} or rr{4,4,3} | (1) {{CDD|node|4|node_1|3|node}} 40px | (2) {{CDD|node_1|2|node_1|3|node}} 40px | - | (2) {{CDD|node_1|4|node|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#e0e0f0"
!70 | cantellated order-4 octahedral (srocth) {{CDD|node|4|node_1|4|node|3|node_1}} t0,2{3,4,4} or rr{3,4,4} | (2) {{CDD|node_1|4|node|3|node_1}} 40px | - | (2) {{CDD|node|4|node_1|2|node_1}} 40px | (1) {{CDD|node|4|node_1|4|node}} 40px | 80px | 120px |
align=center BGCOLOR="#e0f0e0"
!71 | runcinated square (sidposquah) {{CDD|node_1|4|node|4|node|3|node_1}} t0,3{4,4,3} | (1) {{CDD|node|4|node|3|node_1}} 40px | (3) {{CDD|node_1|2|node|3|node_1}} 40px | (3) {{CDD|node_1|4|node|2|node_1}} 40px | (1) {{CDD|node_1|4|node|4|node}} 40px | 80px | 120px |
align=center BGCOLOR="#f0e0e0"
!72 | cantitruncated square (grisquah) {{CDD|node_1|4|node_1|4|node_1|3|node}} t0,1,2{4,4,3} or tr{4,4,3} | (1) {{CDD|node_1|4|node_1|3|node}} 40px | (1) {{CDD|node_1|2|node_1|3|node}} 40px | - | (2) {{CDD|node_1|4|node_1|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#e0e0f0"
!73 | cantitruncated order-4 octahedral (grocth) {{CDD|node|4|node_1|4|node_1|3|node_1}} t0,1,2{3,4,4} or tr{3,4,4} | (2) {{CDD|node_1|4|node_1|3|node_1}} 40px | - | (1) {{CDD|node|4|node_1|2|node_1}} 40px | (1) {{CDD|node|4|node_1|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#f0e0e0"
!74 | runcitruncated square (procth) {{CDD|node_1|4|node_1|4|node|3|node_1}} t0,1,3{4,4,3} | (1) {{CDD|node_1|4|node|3|node_1}} 40px | (1) {{CDD|node_1|2|node|3|node_1}} 40px | (2) {{CDD|node_1|4|node_1|2|node_1}} 40px | (1) {{CDD|node_1|4|node_1|4|node}} 40px | 80px | 120px |
align=center BGCOLOR="#e0e0f0"
!75 | runcitruncated order-4 octahedral (prisquah) {{CDD|node_1|4|node|4|node_1|3|node_1}} t0,1,3{3,4,4} | (1) {{CDD|node|4|node_1|3|node_1}} 40px | (2) {{CDD|node_1|2|node_1|3|node_1}} 40px | (1) {{CDD|node_1|4|node|2|node_1}} 40px | (1) {{CDD|node_1|4|node|4|node_1}} 40px | 80px | 120px |
align=center BGCOLOR="#f0e0e0"
!76 | omnitruncated square (gidposquah) {{CDD|node_1|4|node_1|4|node_1|3|node_1}} t0,1,2,3{4,4,3} | (1) {{CDD|node_1|4|node_1|3|node_1}} 40px | (1) {{CDD|node_1|2|node_1|3|node_1}} 40px | (1) {{CDD|node_1|4|node_1|2|node_1}} 40px | (1) {{CDD|node_1|4|node_1|4|node_1}} 40px | 80px | 120px |
class="wikitable"
|+ Alternated forms | ||||||||
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture | ||||||||
---|---|---|---|---|---|---|---|---|
align=center
!0 !1 !2 !3 !Alt | ||||||||
align=center BGCOLOR="#e0f0f0"
|[83] | alternated square {{CDD|node_h1|4|node|4|node|3|node}} ↔ {{CDD|nodes_10ru|split2-44|node|3|node}} h{4,4,3} | - | - | - | (6) {{CDD|node_h1|4|node|4|node}} 40px | (8) {{CDD|node_1|4|node|3|node}} 40px | 40px {{CDD|node|4|node_1|3|node}} | |
align=center BGCOLOR="#e0f0f0"
|[84] | cantic square {{CDD|node_h1|4|node|4|node_1|3|node}} ↔ {{CDD|nodes_10ru|split2-44|node_1|3|node}} h2{4,4,3} |(1) | - | - |(2) |(2) |80px | | |||||||
align=center BGCOLOR="#e0f0f0"
|[85] | runcic square {{CDD|node_h1|4|node|4|node|3|node_1}} ↔ {{CDD|nodes_10ru|split2-44|node|3|node_1}} h3{4,4,3} |(1) | - | - |(1) |(4) |80px | | |||||||
align=center BGCOLOR="#e0f0f0"
|[86] |runcicantic square |(1) | - | - |(1) |(2) |80px | | ||||||||
align=center BGCOLOR="#e0f0f0"
|[153] | alternated rectified square {{CDD|node|4|node_h1|4|node|3|node}} ↔ {{CDD|nodes_10|2a2b-cross|nodes_10ru|split2|node}} hr{4,4,3} | {{CDD|node_h1|4|node|3|node}} 40px | - | - | {{CDD|node|4|node_h1|4|node}} 40px | {}x{3} | ||
align=center BGCOLOR="#e0f0f0"
|157 | {{CDD|node|4|node_h1|4|node|3|node_1}} | {{CDD|node_h1|4|node|3|node_1}} 40px | - | - | {{CDD|node|4|node_h1|4|node}} 40px | {}x{6} | ||
align=center BGCOLOR="#e0f0f0" | snub order-4 octahedral {{CDD|node|4|node|4|node_h|3|node_h}} = {{CDD|nodes|split2-44|node_h|3|node_h}} = {{CDD|node|split1-44|nodes_hh|split2|node_h}} s{3,4,4} | {{CDD|node|4|node_h|3|node_h}} 40px | - | - | {{CDD|node|4|node|4|node_h}} 40px | {}v{4} | ||
align=center BGCOLOR="#e0f0f0" | runcisnub order-4 octahedral {{CDD|node_1|4|node|4|node_h|3|node_h}} s3{3,4,4} | {{CDD|node|4|node_h|3|node_h}} 40px | {{CDD|node_1|2|node_h|3|node_h}} 40px | {{CDD|node_1|4|node|2|node_h}} 40px | {{CDD|node_1|4|node|4|node_h}} 40px | cup-4 | ||
align=center BGCOLOR="#e0f0f0"
|152 | snub square {{CDD|node_h|4|node_h|4|node|3|node}} = {{CDD|node_h|4|node_h|4|node_h|4|node}} s{4,4,3} | {{CDD|node_h|4|node|3|node}} 40px | - | - | {{CDD|node_h|4|node_h|4|node}} 40px | {3,3} | 80px | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform | snub rectified order-4 octahedral {{CDD|node|4|node_h|4|node_h|3|node_h}} sr{3,4,4} | {{CDD|node_h|4|node_h|3|node_h}} 40px | - | {{CDD|node|4|node_h|2x|node_h}} 40px | {{CDD|node|4|node_h|4|node_h}} 40px | irr. {3,3} | ||
align=center BGCOLOR="#e0f0f0"
|Nonuniform | alternated runcitruncated square {{CDD|node_h|4|node|4|node_h|3|node_h}} ht0,1,3{3,4,4} | {{CDD|node|4|node_h|3|node_h}} 40px | {{CDD|node_h|2x|node_h|3|node_h}} 40px | {{CDD|node|4|node_h|2x|node_h}} 40px | {{CDD|node_h|4|node|4|node_h}} 40px | irr. {}v{4} | ||
align=center BGCOLOR="#e0f0f0"
|Nonuniform | omnisnub square {{CDD|node_h|4|node_h|4|node_h|3|node_h}} ht0,1,2,3{4,4,3} | {{CDD|node_h|4|node_h|3|node_h}} 40px | {{CDD|node_h|2x|node_h|3|node_h}} 40px | {{CDD|node_h|4|node_h|2x|node_h}} 40px | {{CDD|node_h|4|node_h|4|node_h}} 40px | irr. {3,3} |
= [4,4,4] family =
There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or {{CDD|node|4|node|4|node|4|node}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cell counts/vertex !rowspan=2|Symmetry !rowspan=2|Vertex figure !rowspan=2|Picture | ||||||||
align=center
!0 !1 !2 !3 | ||||||||
align=center BGCOLOR="#f0e0e0"
!77 | order-4 square (sisquah) {{CDD|node_1|4|node|4|node|4|node}} {4,4,4} | - | - | - | {{CDD|node_1|4|node|4|node}} 40px | [4,4,4] | {{CDD|node_1|4|node|4|node}} 40px Cube | 120px |
align=center BGCOLOR="#f0e0e0"
!78 | truncated order-4 square (tissish) {{CDD|node_1|4|node_1|4|node|4|node}} t0,1{4,4,4} or t{4,4,4} | {{CDD|node_1|4|node|4|node}} 40px | - | - | {{CDD|node_1|4|node_1|4|node}} 40px | [4,4,4] | 80px | 120px |
align=center BGCOLOR="#e0f0e0"
!79 | bitruncated order-4 square (dish) {{CDD|node|4|node_1|4|node_1|4|node}} t1,2{4,4,4} or 2t{4,4,4} | {{CDD|node_1|4|node_1|4|node}} 40px | - | - | {{CDD|node|4|node_1|4|node_1}} 40px | 80px | 120px | |
align=center BGCOLOR="#e0f0e0"
!80 | runcinated order-4 square (spiddish) {{CDD|node_1|4|node|4|node|4|node_1}} t0,3{4,4,4} | {{CDD|node|4|node|4|node_1}} 40px | {{CDD|node_1|2|node|4|node_1}} 40px | {{CDD|node_1|4|node|2|node_1}} 40px | {{CDD|node_1|4|node|4|node}} 40px | 80px | 120px | |
align=center BGCOLOR="#f0e0e0"
!81 | runcitruncated order-4 square (prissish) {{CDD|node_1|4|node_1|4|node|4|node_1}} t0,1,3{4,4,4} | {{CDD|node_1|4|node|4|node_1}} 40px | {{CDD|node_1|2|node|4|node_1}} 40px | {{CDD|node_1|4|node_1|2|node_1}} 40px | {{CDD|node_1|4|node_1|4|node}} 40px | [4,4,4] | 80px | 120px |
align=center BGCOLOR="#e0f0e0"
!82 | omnitruncated order-4 square (gipiddish) {{CDD|node_1|4|node_1|4|node_1|4|node_1}} t0,1,2,3{4,4,4} | {{CDD|node_1|4|node_1|4|node_1}} 40px | {{CDD|node_1|2|node_1|4|node_1}} 40px | {{CDD|node_1|4|node_1|2|node_1}} 40px | {{CDD|node_1|4|node_1|4|node_1}} 40px | 80px | 120px | |
align=center BGCOLOR="#f0e0e0"
|[62] | square (squah) {{CDD|node|4|node_1|4|node|4|node_h0}} ↔ {{CDD|node_1|4|node|4|node_g|3sg|node_g}} t1{4,4,4} or r{4,4,4} | {{CDD|node_1|4|node|4|node}} 40px | - | - | {{CDD|node|4|node_1|4|node}} 40px | [4,4,4] | 40px Square tiling | 120px |
align=center BGCOLOR="#f0e0e0"
|[63] | rectified square (risquah) {{CDD|node_1|4|node|4|node_1|4|node_h0}} ↔ {{CDD|node|4|node_1|4|node_g|3sg|node_g}} t0,2{4,4,4} or rr{4,4,4} | {{CDD|node|4|node_1|4|node}} 40px | {{CDD|node_1|2|node_1|4|node}} 40px | - | {{CDD|node_1|4|node|4|node_1}} 40px | [4,4,4] | 80px | 120px |
align=center BGCOLOR="#f0e0e0"
|[66] | truncated order-4 square (tisquah) {{CDD|node_1|4|node_1|4|node_1|4|node_h0}} ↔ {{CDD|node_1|4|node_1|4|node_g|3sg|node_g}} t0,1,2{4,4,4} or tr{4,4,4} | {{CDD|node_1|4|node_1|4|node}} 40px | {{CDD|node_1|2|node_1|4|node}} 40px | - | {{CDD|node_1|4|node_1|4|node_1}} 40px | [4,4,4] | 80px | 120px |
class="wikitable"
|+ Alternated constructions | |||||||||
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cell counts/vertex !rowspan=2|Symmetry !rowspan=2|Vertex figure !rowspan=2|Picture | |||||||||
---|---|---|---|---|---|---|---|---|---|
align=center
!0 !1 !2 !3 !Alt | |||||||||
align=center BGCOLOR="#e0f0f0"
| [62] |Square (squah) | - | - | |[1+,4,4,4] |80px | |||||||||
align=center BGCOLOR="#e0f0f0"
|[63] | rectified square (risquah) {{CDD|node_h|4|node_h|4|node_1|4|node}} = {{CDD|node_1|4|node|4|node_1|4|node}} s2{4,4,4} | {{CDD|node|4|node_1|4|node}} 40px | {{CDD|node_1|2|node_1|4|node}} 40px | - | {{CDD|node_1|4|node|4|node_1}} 40px | [4+,4,4] | 80px | 120px | |
align=center BGCOLOR="#e0f0f0"
|[77] | order-4 square (sisquah) {{CDD|node_h1|4|node|4|node|4|node}} ↔ {{CDD|nodes_10ru|split2-44|node|4|node}} ↔ {{CDD|node_1|4|node|split1-44|nodes}} ↔ {{CDD|node_1|4|node|4|node|4|node_h0}} | - | - | - | {{CDD|node_h1|4|node|4|node}} 40px | {{CDD|node_1|4|node|4|node}} 40px | [1+,4,4,4] =[4,4,4] | {{CDD|node_1|4|node|4|node}} 40px Cube | 120px |
align=center BGCOLOR="#e0f0f0"
| [78] |truncated order-4 square (tissish) | - | - |[1+,4,4,4] |80px | 120px | |||||||||
align=center BGCOLOR="#e0f0f0"
| [79] |bitruncated order-4 square (dish) | - | - |[1+,4,4,4] |80px | |||||||||
align=center BGCOLOR="#e0f0f0"
|[81] | runcitruncated order-4 square tiling (prissish) {{CDD|node_h|4|node_h|4|node_1|4|node_1}} = {{CDD|node_1|4|node|4|node_1|4|node_1}} s2,3{4,4,4} | {{CDD|node_1|4|node|4|node_1}} 40px | {{CDD|node_1|2|node|4|node_1}} 40px | {{CDD|node_1|4|node_1|2|node_1}} 40px | {{CDD|node_1|4|node_1|4|node}} 40px | [4,4,4] | 80px | 120px | |
align=center BGCOLOR="#e0f0f0"
|[83] | alternated square ( {{CDD|node|4|node_h1|4|node|4|node}} ↔ {{CDD|node_1|ultra|node|4|node|4|node_1|ultra|node}} ) ↔ {{CDD|nodes_10ru|split2-44|node|3|node}} hr{4,4,4} | {{CDD|node_h1|4|node|4|node}} 40px | - | - | {{CDD|node|4|node_h1|4|node}} 40px | {{CDD|node_1|4|node|3|node}}40px | [4,1+,4,4] | 40px (4.3.4.3) | |
align=center BGCOLOR="#e0f0f0"
|[104] | quarter order-4 square {{CDD|node_h1|4|node|4|node|4|node_h1}} ↔ {{CDD|label4|branch_11|4a4b|branch|label4}} q{4,4,4} | | = | 80px |
= [(4,4,4,4)] family =
There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: {{CDD|label4|branch|4a4b|branch|label4}}. Repeat constructions are related as: {{CDD|node_c3|split1-44|nodeab_c1-2|split2-44|node_c3}} ↔ {{CDD|node_h0|4|node_c3|split1-44|nodeab_c1-2}}, {{CDD|node_c1|split1-44|nodeab_c2|split2-44|node_c1}} ↔ {{CDD|node_h0|4|node_c1|4|node_c2|4|node_h0}}, and {{CDD|label4|branch_c1|4-4|branch_c1|label4}} ↔ {{CDD|label4|branch_c1|4-4|nodes}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node|4|node|4|node}} !1 !2 !3 |
---|
align=center
!104 |quarter order-4 square |40px |40px |40px |40px |80px | |
align=center
|[62] |square (squah) |40px |40px |40px |40px |80px |
align=center
|[77] |order-4 square (sisquah) |40px | - |40px |
align=center
|[78] |truncated order-4 square (tissish) |40px |40px |40px |40px |80px |
align=center
|[79] |bitruncated order-4 square (dish) |40px |40px |40px |40px |80px |
class="wikitable"
|+ Alternated forms !rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure |
0 {{CDD|node|4|node|4|node}} !1 !2 !3 !Alt |
---|
align=center
|[83] |alternated square |(6) |(6) |(6) |
align=center
|[77] |alternated order-4 square (sisquah) | | - | | | | |
align=center
|158 |cantic order-4 square | | | | | | |
align=center
|Nonuniform |cyclosnub square | | | | | | |
align=center
|Nonuniform |snub order-4 square | | | | | | |
align=center
|Nonuniform |bisnub order-4 square | 40px | 40px | 40px | 40px | 80px |
= [(6,3,3,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD|label6|branch|3ab|branch}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure |
0 {{CDD|nodea|3a|branch}} !1 !2 !3 |
---|
align=center
!105 |tetrahedral-hexagonal | - |
align=center
!106 |tetrahedral-triangular | - |
align=center
!107 |cyclotruncated tetrahedral-hexagonal |80px |
align=center
!108 |cyclotruncated hexagonal-tetrahedral |80px |
align=center
!109 |cyclotruncated tetrahedral-triangular | (1) | (1) |80px |
align=center
!110 |rectified tetrahedral-hexagonal |80px |
align=center
!111 |truncated tetrahedral-hexagonal |80px |
align=center
!112 |truncated tetrahedral-triangular |80px |
align=center
!113 |omnitruncated tetrahedral-hexagonal |80px |
class="wikitable"
|+ Alternated forms !rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure |
0 {{CDD|nodea|3a|branch}} !1 !2 !3 !Alt |
---|
align=center
|Nonuniform |omnisnub tetrahedral-hexagonal |80px |
= [(6,3,4,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD|label6|branch|3ab|branch|label4}}
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure |
0 {{CDD|nodea|3a|branch|label4}} !1 !2 !3 |
---|
align=center
!114 |octahedral-hexagonal | (6) | - | (8) | (12) | 80px |
align=center
!115 |cubic-triangular | (∞) | (∞) | - | (∞) |
align=center
!116 |cyclotruncated octahedral-hexagonal | (3) | (1) | (1) | (3) |80px |
align=center
!117 |cyclotruncated hexagonal-octahedral | (1) | (1) | (4) | (4) |80px |
align=center
!118 |cyclotruncated cubic-triangular | (6) | (6) | (1) | (1) |80px |
align=center
!119 |rectified octahedral-hexagonal | (1) | (2) | (1) | (2) |80px |
align=center
!120 |truncated octahedral-hexagonal | (1) | (1) | (1) | (2) |80px |
align=center
!121 |truncated cubic-triangular | (2) | (1) | (1) | (1) |80px |
align=center
!122 |omnitruncated octahedral-hexagonal | (1) | (1) | (1) | (1) |80px |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure |
---|
0 {{CDD|nodea|3a|branch|label4}} !1 !2 !3 !Alt |
align=center
|Nonuniform |cyclosnub octahedral-hexagonal | 40px | 40px | 40px | 40px | 80px |
align=center
|Nonuniform |omnisnub octahedral-hexagonal | 40px | 40px | 40px | 40px | 80px |
= [(6,3,5,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD|label6|branch|3ab|branch|label5}}
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|branch|label5}} !1 !2 !3 |
---|
align=center
!123 |icosahedral-hexagonal | (6) | - | |
align=center
!124 |dodecahedral-triangular | - | (12) | |
align=center
!125 |cyclotruncated icosahedral-hexagonal |80px | |
align=center
!126 |cyclotruncated hexagonal-icosahedral | (1) | (1) |80px | |
align=center
!127 |cyclotruncated dodecahedral-triangular | (1) | (1) |80px | |
align=center
!128 |rectified icosahedral-hexagonal |80px | |
align=center
!129 |truncated icosahedral-hexagonal |80px | |
align=center
!130 |truncated dodecahedral-triangular |80px | |
align=center
!131 |omnitruncated icosahedral-hexagonal |80px | |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
---|
0 {{CDD|nodea|3a|branch|label5}} !1 !2 !3 !Alt |
align=center
|Nonuniform |omnisnub icosahedral-hexagonal |80px | |
= [(6,3,6,3)] family =
There are 6 forms, generated by ring permutations of the Coxeter group: {{CDD|label6|branch|3ab|branch|label6}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|branch|label6}} !1 !2 !3 |
---|
align=center
!132 |hexagonal-triangular | - | |
align=center
!133 |cyclotruncated hexagonal-triangular | (1) | (1) |80px | |
align=center
!134 |cyclotruncated triangular-hexagonal |80px | |
align=center
!135 |rectified hexagonal-triangular |80px | |
align=center
!136 |truncated hexagonal-triangular |80px | |
align=center
|[16] |order-4 hexagonal tiling (shexah) |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
---|
0 {{CDD|nodea|3a|branch|label6}} !1 !2 !3 !Alt |
align=center
|[141] |alternated order-4 hexagonal (ashexah) | |
align=center
|Nonuniform |cyclocantisnub hexagonal-triangular | | | | | | | |
align=center
|Nonuniform |cycloruncicantisnub hexagonal-triangular | | | | | | | |
align=center
|Nonuniform |snub rectified hexagonal-triangular |80px | |
Loop-n-tail graphs
= [3,3<sup>[3]</sup>] family =
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3[3]] or {{CDD|node|3|node|split1|branch}}. 7 are half symmetry forms of [3,3,6]: {{CDD|node_c1|3|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|3|node_c2|3|node_c3|6|node_h0}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|nodea|3a|nodea}} !1 !0' !3 |
---|
align=center
!137 |alternated hexagonal (ahexah) | - | - |40px {{CDD|node_1|3|node_1|3|node}} | |
align=center
!138 |cantic hexagonal (tahexah) | - |80px | |
align=center
!139 |runcic hexagonal (birahexah) | (1) |80px | |
align=center
!140 |runcicantic hexagonal (bitahexah) |80px | |
align=center
|[2] |rectified hexagonal (rihexah) | - |80px {{CDD|node_1|2|node_1|3|node}} |
align=center
|[3] |rectified order-6 tetrahedral (rath) | - | (2) |80px {{CDD|node|6|node_1|2|node_1}} |
align=center
|[4] |order-6 tetrahedral (thon) | - | - |60px {{CDD|node|6|node|3|node_1}} |
align=center
|[8] |cantellated order-6 tetrahedral (srath) |80px |
align=center
|[9] |bitruncated order-6 tetrahedral (tehexah) | - |80px |
align=center
|[10] |truncated order-6 tetrahedral (tath) | - |80px |
align=center
|[14] |cantitruncated order-6 tetrahedral (grath) |80px |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure |
---|
0 {{CDD|nodea|3a|nodea|3a|nodea}} !1 !0' !3 !Alt |
align=center
|Nonuniform |snub rectified order-6 tetrahedral | 80px |
= [4,3<sup>[3]</sup>] family =
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3[3]] or {{CDD|node|4|node|split1|branch}}. 7 are half symmetry forms of [4,3,6]: {{CDD|node_c1|4|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|4|node_c2|3|node_c3|6|node_h0}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|nodea|4a|nodea}} !1 !0' !3 |
---|
align=center
!141 |alternated order-4 hexagonal (ashexah) | - | - |40px {{CDD|node|4|node_1|3|node_1}} | |
align=center
!142 |cantic order-4 hexagonal (tashexah) | - |80px | |
align=center
!143 |runcic order-4 hexagonal (birashexah) | (1) |80px | |
align=center
!144 |runcicantic order-4 hexagonal (bitashexah) |80px | |
align=center
|[16] |order-4 hexagonal (shexah) | - | - |80px |
align=center
|[17] |rectified order-4 hexagonal (rishexah) | - |80px |
align=center
|[18] |rectified order-6 cubic (rihach) | - | (2) |80px |
align=center
| [21] |bitruncated order-4 hexagonal (chexah) | - |80px |
align=center
|[22] |truncated order-6 cubic (thach) | - |80px |
align=center
|[23] |cantellated order-4 hexagonal (srishexah) |80px |
align=center
|[26] |cantitruncated order-4 hexagonal (grishexah) |80px |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure |
---|
0 {{CDD|nodea|3a|nodea|4a|nodea}} !1 !0' !3 !Alt |
align=center
|Nonuniform |snub rectified order-4 hexagonal | |
= [5,3<sup>[3]</sup>] family =
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3[3]] or {{CDD|node|5|node|split1|branch}}. 7 are half symmetry forms of [5,3,6]: {{CDD|node_c1|5|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|5|node_c2|3|node_c3|6|node_h0}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|nodea|5a|nodea}} !1 !0' !3 |
---|
align=center
!145 |alternated order-5 hexagonal (aphexah) | - | - |40px {{CDD|node|5|node_1|3|node}} | |
align=center
!146 |cantic order-5 hexagonal (taphexah) | - |80px | |
align=center
!147 |runcic order-5 hexagonal (biraphexah) | (1) |80px | |
align=center
!148 |runcicantic order-5 hexagonal (bitaphexah) |80px | |
align=center
|[32] |rectified order-5 hexagonal (riphexah) |(1) | - |(1) |80px |
align=center
|[33] |rectified order-6 dodecahedral (rihed) | - | (2) |80px |
align=center
| [34] |Order-5 hexagonal (hedhon) | - | - |80px |
align=center
| [40] |truncated order-6 dodecahedral (thed) | - |80px |
align=center
| [36] |cantellated order-5 hexagonal (sriphexah) |80px |
align=center
|[39] |bitruncated order-5 hexagonal (dohexah) | - |80px |
align=center
|[41] |cantitruncated order-5 hexagonal (griphexah) |80px |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
---|
0 {{CDD|nodea|3a|nodea|5a|nodea}} !1 !0' !3 !Alt |
align=center
|Nonuniform |snub rectified order-5 hexagonal | | |
= [6,3<sup>[3]</sup>] family =
There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3[3]] or {{CDD|branch|split2|node|6|node}}. 7 are half symmetry forms of [6,3,6]: {{CDD|node_c1|6|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|6|node_c2|3|node_c3|6|node_h0}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|nodea|6a|nodea}} !1 !0' !3 |
---|
align=center
!149 |runcic order-6 hexagonal |80px | |
align=center
!150 |runcicantic order-6 hexagonal |80px | |
align=center
| [1] |hexagonal (hexah) | - | 80px |
align=center
| [46] |order-6 hexagonal (hihexah) | - | - |40px |
align=center
| [47] |rectified order-6 hexagonal (rihihexah) | - | (2) | 80px |
align=center
| [47] |rectified order-6 hexagonal (rihihexah) | (1) | - | (1) | 80px |
align=center
| [48] |truncated order-6 hexagonal (thihexah) | - | (1) | 80px |
align=center
| [49] |cantellated order-6 hexagonal (srihihexah) | 80px |
align=center
| [51] |cantitruncated order-6 hexagonal (grihihexah) | 80px |
align=center
|[54] |triangular tiling honeycomb (trah) | - | - |
align=center
|[55] |cantic order-6 hexagonal (ritrah) | - |80px |
class="wikitable"
|+ Alternated forms |
rowspan=2|#
!rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
---|
0 {{CDD|nodea|3a|nodea|6a|nodea}} !1 !0' !3 !Alt |
align=center
| [54] |triangular tiling honeycomb (trah) |40px | - |40px | - |40px |
align=center
|[137] |alternated hexagonal (ahexah) |40px | - |40px |40px |40px {{CDD|node_1|3|node_1|3|node}} | |
align=center
|[47] |rectified order-6 hexagonal (rihihexah) | - | | 80px |
align=center
|[55] |cantic order-6 hexagonal (ritrah) | - | |80px |
align=center
|Nonuniform |snub rectified order-6 hexagonal |{{CDD|node_h|3|node_h|6|node_h}} |{{CDD|branch_hh|2x|node_h}} |{{CDD|node_h|3|node_h|6|node_h}} |{{CDD|branch_hh|split2|node_h}} | | |
Multicyclic graphs
= [3<sup>[ ]×[ ]</sup>] family =
There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: {{CDD|node|split1|branch|split2|node}}. Two are duplicated as {{CDD|node_c1|split1-44|branch_c3|split2|node_c2}} ↔ {{CDD|node_h0|6|node_c3|split1|nodeab_c1-2}}, two as {{CDD|node_c3|split1-44|branch_c1-2|split2|node_c3}} ↔ {{CDD|node_h0|4|node_c3|split1|branch_c1-2}}, and three as {{CDD|node_c2|split1|branch_c1|split2|node_c2}} ↔ {{CDD|node_h0|6|node_c1|3|node_c2|4|node_h0}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|branch|split2|node}} !1 !2 !3 |
---|
align=center
!151 |Quarter order-4 hexagonal (quishexah) |{{CDD|branch_10ru|split2|node}} |{{CDD|node_1|3|node|3|node}} |{{CDD|node_1|3|node_1|3|node}} |{{CDD|node_1|split1|branch_10lu}} |80px | |
align=center
|[17] |rectified order-4 hexagonal (rishexah) |{{CDD|branch_11|split2|node}} |{{CDD|node|3|node_1|3|node}} |{{CDD|node|3|node_1|3|node}} |{{CDD|node|split1|branch_11}} |
align=center
|[18] |rectified order-6 cubic (rihach) |{{CDD|branch|split2|node_1}} |{{CDD|node_1|3|node|3|node_1}} |{{CDD|node_1|3|node|3|node_1}} |{{CDD|node_1|split1|branch}} |
align=center
|[21] |bitruncated order-6 cubic (chexah) |{{CDD|branch_11|split2|node_1}} |{{CDD|node_1|3|node_1|3|node_1}} |{{CDD|node_1|3|node_1|3|node_1}} |{{CDD|node_1|split1|branch_11}} |60px |
align=center
|[87] |alternated order-6 cubic (ahach) | - |{{CDD|node_1|3|node|3|node}} |{{CDD|node_1|3|node|3|node}} |{{CDD|node_1|split1|branch}} |40px {{CDD|branch_11|split2|node}} | |
align=center
|[88] |cantic order-6 cubic (tachach) |{{CDD|branch_11|split2|node}} |{{CDD|node_1|3|node_1|3|node}} |{{CDD|node_1|3|node_1|3|node}} |{{CDD|node_1|split1|branch_11}} |60px | |
align=center
|[141] |alternated order-4 hexagonal (ashexah) |{{CDD|branch_10ru|split2|node}} | - |{{CDD|node|3|node_1|3|node}} |{{CDD|node|split1|branch_10lu}} |40px {{CDD|node_1|3|node_1|3|node_1}} | |
align=center
|[142] |cantic order-4 hexagonal (tashexah) |{{CDD|branch_10ru|split2|node_1}} |{{CDD|node_1|3|node|3|node_1}} |{{CDD|node_1|3|node_1|3|node_1}} |{{CDD|node_1|split1|branch_10lu}} |80px | |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|branch|split2|node}} !1 !2 !3 !Alt |
---|
align=center |
align=center
|Nonuniform |bisnub order-6 cubic |40px |40px |40px |40px |80px | |
= [3<sup>[3,3]</sup>] family =
There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: {{CDD|branch|splitcross|branch}}. They are repeated in four families: {{CDD|node_c3|splitsplit1|branch4_c1-2|splitsplit2|node_c3}} ↔ {{CDD|node_h0|6|node_c3|split1|branch_c1-2}} (index 2 subgroup),
{{CDD|node_c2|splitsplit1|branch4_c1|splitsplit2|node_c2}} ↔ {{CDD|node_h0|6|node_c1|3|node_c2|6|node_h0}} (index 4 subgroup),
{{CDD|node_c2|splitsplit1|branch4_c1|splitsplit2|node_c1}} ↔ {{CDD|node_c2|3|node_c1|6|node_g|3sg|node_g}} (index 6 subgroup), and
{{CDD|branch_c1|splitcross|branch_c1}} ↔ {{CDD|node_c1|6|node_g|3sg|node_g|3g|node_g}} (index 24 subgroup).
class=wikitable
!# !Name !0 !1 !2 !3 !Picture |
align=center
|[1] |hexagonal (hexah) |40px |40px |40px |40px |
align=center
|[47] |rectified order-6 hexagonal (rihihexah) |40px |40px |40px |40px |
align=center
|[54] |triangular tiling honeycomb (trah) |40px | - |40px |40px |
align=center
|[55] |rectified triangular (ritrah) |40px |40px |40px |40px |
class=wikitable
!# !Name !0 !1 !2 !3 !Alt !Picture |
align=center |
align=center
|[137] |alternated hexagonal (ahexah) |40px |40px |40px |40px |
Summary enumerations by family
= Linear graphs =
class=wikitable
|+ Paracompact hyperbolic enumeration !Group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
!rowspan=2| |rowspan=2|[4,4,3] | rowspan=2|15
|rowspan=2|{{CDD|node_1|4|node|4|node|3|node}} | {{CDD|node|4|node_1|4|node|3|node}} | {{CDD|node|4|node|4|node_1|3|node}} | {{CDD|node|4|node|4|node|3|node_1}} | {{CDD|node_1|4|node_1|4|node|3|node}} |[1+,4,1+,4,3+] | (6)
|{{CDD|node_h1|4|node|4|node|3|node}} (↔ {{CDD|nodes_10ru|split2-44|node|3|node}}) | ||
align=center
|[4,4,3]+ | (1)
|{{CDD|node_h|4|node_h|4|node_h|3|node_h}} | |||
align=center
!rowspan=4| |[4,4,4] | 3
| {{CDD|node_1|4|node|4|node|4|node}} | {{CDD|node_1|4|node_1|4|node|4|node}} | {{CDD|node_1|4|node_1|4|node|4|node_1}} |[1+,4,1+,4,1+,4,1+] | (3)
| {{CDD|node_h1|4|node|4|node|4|node}} (↔ {{CDD|nodes_10ru|split2-44|node|4|node}} = {{CDD|node_1|4|node|4|node|4|node}}) | ||
align=center BGCOLOR="#e0f0e0"
|[4,4,4] |(3) | {{CDD|node|4|node_1|4|node|4|node}} | {{CDD|node_1|4|node|4|node_1|4|node}} | {{CDD|node_1|4|node_1|4|node_1|4|node}} |[1+,4,1+,4,1+,4,1+] | (3)
| {{CDD|node|4|node_h1|4|node|4|node}} (↔ {{CDD|node_1|ultra|node|4|node|4|node_1|ultra|node}}) | |||
align=center
|rowspan=2|[2+[4,4,4]] | rowspan=2|3
|rowspan=2|{{CDD|node_1|4|node|4|node|4|node_1}} | {{CDD|node|4|node_1|4|node_1|4|node}} | {{CDD|node_1|4|node_1|4|node_1|4|node_1}} | [2+[(4,4+,4,2+)]] | (2)
|{{CDD|node_h|4|node|4|node|4|node_h}} | {{CDD|node|4|node_h|4|node_h|4|node}} | |
align=center | [2+[4,4,4]]+ | (1)
|{{CDD|node_h|4|node_h|4|node_h|4|node_h}} | ||
align=center
!rowspan=2| |rowspan=2|[6,3,3] | rowspan=2|15
|rowspan=2|{{CDD|node_1|6|node|3|node|3|node}} | {{CDD|node|6|node_1|3|node|3|node}} | {{CDD|node|6|node|3|node_1|3|node}} | {{CDD|node|6|node|3|node|3|node_1}} | {{CDD|node_1|6|node_1|3|node|3|node}} |[1+,6,(3,3)+] | (2)
| {{CDD|node_h1|6|node|3|node|3|node}} (↔ {{CDD|branch_10ru|split2|node|3|node}}) | ||
align=center
|[6,3,3]+ | (1)
| {{CDD|node_h|6|node_h|3|node_h|3|node_h}} | |||
align=center
!rowspan=2| |rowspan=2|[6,3,4] | rowspan=2|15
|rowspan=2|{{CDD|node_1|6|node|3|node|4|node}} | {{CDD|node|6|node_1|3|node|4|node}} | {{CDD|node|6|node|3|node_1|4|node}} | {{CDD|node|6|node|3|node|4|node_1}} | {{CDD|node_1|6|node_1|3|node|4|node}} |[1+,6,3+,4,1+] | (6)
| {{CDD|node_h1|6|node|3|node|4|node}} (↔ {{CDD|branch_10ru|split2|node|4|node}}) | ||
align=center
|[6,3,4]+ | (1)
|{{CDD|node_h|6|node_h|3|node_h|4|node_h}} | |||
align=center
!rowspan=2| |rowspan=2|[6,3,5] | rowspan=2|15
|rowspan=2|{{CDD|node_1|6|node|3|node|5|node}} | {{CDD|node|6|node_1|3|node|5|node}} | {{CDD|node|6|node|3|node_1|5|node}} | {{CDD|node|6|node|3|node|5|node_1}} | {{CDD|node_1|6|node_1|3|node|5|node}} |[1+,6,(3,5)+] | (2)
|{{CDD|node_h1|6|node|3|node|5|node}} (↔ {{CDD|branch_10ru|split2|node|5|node}}) | ||
align=center
|[6,3,5]+ | (1)
|{{CDD|node_h|6|node_h|3|node_h|5|node_h}} | |||
align=center
!rowspan=3| |[3,6,3] | 5
| {{CDD|node_1|3|node|6|node|3|node}} | {{CDD|node|3|node_1|6|node|3|node}} | {{CDD|node_1|3|node|6|node_1|3|node}} | {{CDD|node_1|3|node_1|6|node_1|3|node}} | {{CDD|node_1|3|node_1|6|node|3|node_1}} | |||
align=center BGCOLOR="#e0f0e0"
|[3,6,3] | (1)
| {{CDD|node_1|3|node_1|6|node|3|node}} | [2+[3+,6,3+]] | (1)
| {{CDD|node_h|3|node_h|6|node|3|node}} | |
align=center | [2+[3,6,3]] {{CDD|node_c1|3|node_c2|6|node_c2|3|node_c1}} | 3
|{{CDD|node_1|3|node|6|node|3|node_1}} | {{CDD|node|3|node_1|6|node_1|3|node}} | {{CDD|node_1|3|node_1|6|node_1|3|node_1}} | [2+[3,6,3]]+ | (1)
|{{CDD|node_h|3|node_h|6|node_h|3|node_h}} |
align=center
!rowspan=4| |[6,3,6] | 6
| {{CDD|node_1|6|node|3|node|6|node}} | {{CDD|node|6|node_1|3|node|6|node}} | {{CDD|node_1|6|node_1|3|node|6|node}} |[1+,6,3+,6,1+] | (2)
|{{CDD|node_h1|6|node|3|node|6|node}} (↔ {{CDD|branch_10ru|split2|node|6|node}}) | ||
align=center BGCOLOR="#e0f0e0"
|[2+[6,3,6]] | (1)
|{{CDD|node|6|node_1|3|node_1|6|node}} |rowspan=2|[2+[(6,3+,6,2+)]] | rowspan=2|(2)
|{{CDD|node|6|node_h|3|node_h|6|node}} | ||
align=center
|rowspan=2|[2+[6,3,6]] | rowspan=2|2
|rowspan=2|{{CDD|node_1|6|node|3|node|6|node_1}} | {{CDD|node_1|6|node_1|3|node_1|6|node_1}} |{{CDD|node_h|6|node|3|node|6|node_h}} | |||
align=center
|[2+[6,3,6]]+ | (1)
|{{CDD|node_h|6|node_h|3|node_h|6|node_h}} |
= Tridental graphs =
class=wikitable
|+ Paracompact hyperbolic enumeration !Group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
|rowspan=3| | [6,31,1] | 4
| {{CDD|node|6|node|split1|nodes_10lu}} | {{CDD|node_1|6|node|split1|nodes_10lu}} | {{CDD|node|6|node_1|split1|nodes_10lu}} | {{CDD|node_1|6|node_1|split1|nodes_10lu}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[1[6,31,1]]=[6,3,4] | rowspan=2|(7)
|rowspan=2|{{CDD|node_1|6|node|split1|nodes}} | {{CDD|node|6|node_1|split1|nodes}} | {{CDD|node_1|6|node_1|split1|nodes}} | {{CDD|node|6|node|split1|nodes_11}} | {{CDD|node_1|6|node|split1|nodes_11}} | {{CDD|node|6|node_1|split1|nodes_11}} | {{CDD|node_1|6|node_1|split1|nodes_11}} | [1[1+,6,31,1]]+ | (2)
|{{CDD|node_h1|6|node|split1|nodes}} (↔ {{CDD|node|split1|branch_10luru|split2|node}}) | |
BGCOLOR="#e0f0e0" align=center | [1[6,31,1]]+=[6,3,4]+ | (1)
|{{CDD|node_h|6|node_h|split1|nodes_hh}} | ||
align=center
|rowspan=3| | [3,41,1] | 4
| {{CDD|node|3|node|split1-44|nodes_10lu}} | {{CDD|node_1|3|node|split1-44|nodes_10lu}} | {{CDD|node|3|node_1|split1-44|nodes_10lu}} | {{CDD|node_1|3|node_1|split1-44|nodes_10lu}} |[3+,41,1]+ | (2)
|{{CDD|node|3|node|split1-44|nodes_h0l}} ↔ {{CDD|node|split1-44|nodes_10luru|split2|node}} | |
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[1[3,41,1]]=[3,4,4] | rowspan=2|(7)
|rowspan=2|{{CDD|node_1|3|node|split1-44|nodes}} | {{CDD|node|3|node_1|split1-44|nodes}} | {{CDD|node_1|3|node_1|split1-44|nodes}} | {{CDD|node|3|node|split1-44|nodes_11}} | {{CDD|node_1|3|node|split1-44|nodes_11}} | {{CDD|node|3|node_1|split1-44|nodes_11}} | {{CDD|node_1|3|node_1|split1-44|nodes_11}} |[1[3+,41,1]]+ | (2)
|{{CDD|node_h|3|node_h|split1-44|nodes}} | {{CDD|node|3|node|split1-44|nodes_hh}} | ||
BGCOLOR="#e0f0e0" align=center
|[1[3,41,1]]+ | (1)
|{{CDD|node_h|3|node_h|split1-44|nodes_hh}} | |||
align=center
|rowspan=4| | [41,1,1] | 0
| (none) | ||
BGCOLOR="#e0f0e0" align=center | [1[41,1,1]]=[4,4,4] {{CDD|node_c1|4|node_c2|split1-44|nodeab_c3}} ↔ {{CDD|node_c1|4|node_c2|4|node_c3|4|node_h0}} | (4)
| {{CDD|node_1|4|node|split1-44|nodes}} | {{CDD|node|4|node|split1-44|nodes_11}} | {{CDD|node_1|4|node_1|split1-44|nodes}} | {{CDD|node|4|node_1|split1-44|nodes_11}} | [1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)] | (4)
| {{CDD|node_h1|4|node|split1-44|nodes}} (↔ {{CDD|node_1|split1-44|nodes|split2-44|node}}) |
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[3[41,1,1]]=[4,4,3] | rowspan=2|(3)
|rowspan=2|{{CDD|node|4|node_1|split1-44|nodes}} | {{CDD|node_1|4|node|split1-44|nodes_11}} | {{CDD|node_1|4|node_1|split1-44|nodes_11}} | [3[1+,41,1,1]]+=[1+,4,1+,4,3+] | (2)
| {{CDD|node|4|node_h1|split1-44|nodes}} (↔ {{CDD|node_1|split1-uu|nodes|2a2b-cross|nodes_11|split2-uu|node}}) | |
BGCOLOR="#e0f0e0" align=center | [3[41,1,1]]+=[4,4,3]+ | (1)
| {{CDD|node_h|4|node_h|split1-44|nodes_hh}} |
= Cyclic graphs =
class=wikitable
|+ Paracompact hyperbolic enumeration !Group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
|rowspan=3| | [(4,4,4,3)] | 6
|{{CDD|label4|branch_10r|4-4|branch}} | {{CDD|label4|branch|4-4|branch_10l}} | {{CDD|label4|branch_01r|4-4|branch_10l}} | {{CDD|label4|branch_10r|4-4|branch_10l}} | {{CDD|label4|branch_11|4-4|branch_10l}} | {{CDD|label4|branch_10r|4-4|branch_11}} |[(4,1+,4,1+,4,3+)] |(2) | {{CDD|label4|branch_h0r|4-4|branch}} ↔ {{CDD|branchu_10|split2-43|node|split1-43|branchu_01}} {{CDD|label4|branch_h0r|4-4|branch_hh}} | |
align=center
|rowspan=2|[2+[(4,4,4,3)]] | rowspan=2|3
| rowspan=2|{{CDD|label4|branch_11|4-4|branch}} | {{CDD|label4|branch|4-4|branch_11}} | {{CDD|label4|branch_11|4-4|branch_11}} | [2+[(4,4+,4,3+)]]
|(2) | {{CDD|label4|branch_hh|4-4|branch}} | {{CDD|label4|branch|4-4|branch_hh}} | |
align=center | [2+[(4,4,4,3)]]+
|(1) | {{CDD|label4|branch_hh|4-4|branch_hh}} | ||
align=center
|rowspan=5| | [4[4]]
|colspan=5|(none) | |||
align=center | [2+[4[4]]] {{CDD|label4|branch_c1|4-4|branch_c2|label4}} | 1
| {{CDD|label4|branch_11|4-4|branch|label4}} |[2+[(4+,4)[2]]] |(1) | {{CDD|label4|branch_hh|4-4|branch|label4}} | |
BGCOLOR="#e0f0e0" align=center | [1[4[4]]]=[4,41,1] {{CDD|node_c3|split1-44|nodeab_c1-2|split2-44|node_c3}} ↔ {{CDD|node_h0|4|node_c3|split1-44|nodeab_c1-2}} | (2)
|{{CDD|node_1|split1-44|nodes|split2-44|node}} {{CDD|node_1|split1-44|nodes_11|split2-44|node}} |[(1+,4)[4]] |(2) | {{CDD|node_h1|split1-44|nodes|split2-44|node}} ↔ {{CDD|branchu_10|split2-44|node|split1-44|branchu_01}} {{CDD|node_h|split1-44|nodes_hh|split2-44|node}} | |
align=center BGCOLOR="#e0f0e0" | [2[4[4]]]=[4,4,4] {{CDD|node_c1|split1-44|nodeab_c2|split2-44|node_c1}} ↔ {{CDD|node_h0|4|node_c1|4|node_c2|4|node_h0}} | (1)
| {{CDD|node_1|split1-44|nodes|split2-44|node_1}} |[2+[(1+,4,4)[2]]] |(1) | {{CDD|node_h|split1-44|nodes|split2-44|node_h}} | |
BGCOLOR="#e0f0e0" align=center
|[(2+,4)[4[4]]]=[2+[4,4,4]] | (1)
| {{CDD|label4|branch_11|4-4|branch_11|label4}} |[(2+,4)[4[4]]]+ |(1) | {{CDD|label4|branch_hh|4-4|branch_hh|label4}} | ||
align=center
|rowspan=2| | [(6,3,3,3)] | 6
|{{CDD|label6|branch_10r|3ab|branch}} | {{CDD|label6|branch|3ab|branch_10l}} | {{CDD|label6|branch_01r|3ab|branch_10l}} | {{CDD|label6|branch_10r|3ab|branch_10l}} | {{CDD|label6|branch_11|3ab|branch_10l}} | {{CDD|label6|branch_10r|3ab|branch_11}} |colspan=3| | ||
align=center | [2+[(6,3,3,3)]] {{CDD|label6|branch_c1|3ab|branch_c2}} | 3
| {{CDD|label6|branch_11|3ab|branch}} | {{CDD|label6|branch|3ab|branch_11}} | {{CDD|label6|branch_11|3ab|branch_11}} | [2+[(6,3,3,3)]]+ | (1)
| {{CDD|label6|branch_hh|3ab|branch_hh}} |
align=center
|rowspan=2| | [(3,4,3,6)] | 6
|{{CDD|label6|branch_10r|3ab|branch|label4}} | {{CDD|label6|branch|3ab|branch_10l|label4}} | {{CDD|label6|branch_01r|3ab|branch_10l|label4}} | {{CDD|label6|branch_10r|3ab|branch_10l|label4}} | {{CDD|label6|branch_11|3ab|branch_10l|label4}} | {{CDD|label6|branch_10r|3ab|branch_11|label4}} |[(3+,4,3+,6)] | (1)
|{{CDD|label6|branch_h0r|3ab|branch_h0l|label4}} | |
align=center | [2+[(3,4,3,6)]] {{CDD|label6|branch_c1|3ab|branch_c2|label4}} | 3
| {{CDD|label6|branch_11|3ab|branch|label4}} | {{CDD|label6|branch|3ab|branch_11|label4}} | {{CDD|label6|branch_11|3ab|branch_11|label4}} | [2+[(3,4,3,6)]]+ | (1)
| {{CDD|label6|branch_hh|3ab|branch_hh|label4}} |
align=center
|rowspan=2| | [(3,5,3,6)] | 6
|{{CDD|label6|branch_10r|3ab|branch|label5}} | {{CDD|label6|branch|3ab|branch_10l|label5}} | {{CDD|label6|branch_01r|3ab|branch_10l|label5}} | {{CDD|label6|branch_10r|3ab|branch_10l|label5}} | {{CDD|label6|branch_11|3ab|branch_10l|label5}} | {{CDD|label6|branch_10r|3ab|branch_11|label5}} |colspan=3| | ||
align=center | [2+[(3,5,3,6)]] {{CDD|label6|branch_c1|3ab|branch_c2|label5}} | 3
|{{CDD|label6|branch_11|3ab|branch|label5}} | {{CDD|label6|branch|3ab|branch_11|label5}} | {{CDD|label6|branch_11|3ab|branch_11|label5}} | [2+[(3,5,3,6)]]+ | (1)
|{{CDD|label6|branch_hh|3ab|branch_hh|label5}} |
align=center
|rowspan=5| | [(3,6)[2]] | 2
|{{CDD|label6|branch_10r|3ab|branch|label6}} | {{CDD|label6|branch_11|3ab|branch_10l|label6}} |colspan=3| | ||
align=center | [2+[(3,6)[2]]] {{CDD|label6|branch_c1-2|3ab|branch_c2-1|label6}} | 1
|{{CDD|label6|branch_01r|3ab|branch_10l|label6}} |colspan=3| | ||
align=center | [2+[(3,6)[2]]] {{CDD|label6|branch_c1|3ab|branch_c2|label6}} | 1
|{{CDD|label6|branch_11|3ab|branch|label6}} |colspan=3| | ||
align=center BGCOLOR="#e0f0e0" | [2+[(3,6)[2]]] {{CDD|label6|branch_c1-0|3ab|branch_c1-0|label6}} = {{CDD|node_c1|6|node|3|node|4|node}} | (1)
|{{CDD|label6|branch_10r|3ab|branch_10l|label6}} | [2+[(3+,6)[2]]] | (1)
|{{CDD|label6|branch_h0r|3ab|branch_h0l|label6}} |
align=center | [(2,2)+[(3,6)[2]]] {{CDD|label6|branch_c1|3ab|branch_c1|label6}} | 1
| {{CDD|label6|branch_11|3ab|branch_11|label6}} | [(2,2)+[(3,6)[2]]]+ | (1)
| {{CDD|label6|branch_hh|3ab|branch_hh|label6}} |
class=wikitable
|+ Paracompact hyperbolic enumeration !Group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
!rowspan=3| | [(3,3,4,4)] | 4
|{{CDD|node|split1-44|nodes_10luru|split2|node}} | {{CDD|node_1|split1-44|nodes_10luru|split2|node}} | {{CDD|node|split1-44|nodes_10luru|split2|node_1}} | {{CDD|node_1|split1-44|nodes_10luru|split2|node_1}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[1[(4,4,3,3)]]=[3,41,1] | rowspan=2|(7)
|rowspan=2|{{CDD|node_1|split1-44|nodes|split2|node}} | {{CDD|node|split1-44|nodes|split2|node_1}} | {{CDD|node_1|split1-44|nodes|split2|node_1}} | {{CDD|node|split1-44|nodes_11|split2|node}} | {{CDD|node_1|split1-44|nodes_11|split2|node}} | {{CDD|node|split1-44|nodes_11|split2|node_1}} | {{CDD|node_1|split1-44|nodes_11|split2|node_1}} |[1[(3,3,4,1+,4)]]+ | (2)
|{{CDD|node_h1|split1-44|nodes|split2|node}} (= {{CDD|branchu_10|split2|node|split1|branchu_01}}) | ||
BGCOLOR="#e0f0e0" align=center | [1[(3,3,4,4)]]+ = [3,41,1]+ | (1)
|{{CDD|node_h|split1-44|nodes_hh|split2|node_h}} | ||
align=center
!rowspan=4| | [3[ ]x[ ]] | 1
|{{CDD|node_1|split1|branch_10luru|split2|node}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [1[3[ ]x[ ]]]=[6,31,1] {{CDD|node_c1|split1-44|branch_c3|split2|node_c2}} ↔ {{CDD|node_h0|6|node_c3|split1|nodeab_c1-2}} | (2)
|{{CDD|node_1|split1|branch|split2|node}} | {{CDD|node_1|split1|branch_11|split2|node}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [1[3[ ]x[ ]]]=[4,3[3]] {{CDD|node_c3|split1-44|branch_c1-2|split2|node_c3}} ↔ {{CDD|node_h0|4|node_c3|split1|branch_c1-2}} | (2)
| {{CDD|node|split1|branch_10luru|split2|node}} | {{CDD|node_1|split1|branch_10l|split2|node_1}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [2[3[ ]x[ ]]]=[6,3,4] {{CDD|node_c2|split1|branch_c1|split2|node_c2}} ↔ {{CDD|node_h0|6|node_c1|3|node_c2|4|node_h0}} | (3)
| {{CDD|node|split1|branch_11|split2|node}} | {{CDD|node_1|split1|branch|split2|node_1}} | {{CDD|node_1|split1|branch_11|split2|node_1}} | [2[3[ ]x[ ]]]+ =[6,3,4]+ | (1)
| {{CDD|node_h|split1|branch_hh|split2|node_h}} |
BGCOLOR="#e0f0e0" align=center
!rowspan=5| | [3[3,3]] | 0
|colspan=4|(none) | ||
BGCOLOR="#e0f0e0" align=center | [1[3[3,3]]]=[6,3[3]] {{CDD|node_c3|splitsplit1|branch4_c1-2|splitsplit2|node_c3}} ↔ {{CDD|node_h0|6|node_c3|split1|branch_c1-2}} | 0
|colspan=4|(none) | ||
BGCOLOR="#e0f0e0" align=center | [3[3[3,3]]]=[3,6,3] {{CDD|node_c2|splitsplit1|branch4_c1|splitsplit2|node_c1}} ↔ {{CDD|node_c2|3|node_c1|6|node_g|3sg|node_g}} | (2)
| {{CDD|node_1|splitsplit1|branch4|splitsplit2|node}} | {{CDD|node_1|splitsplit1|branch4_11|splitsplit2|node}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [2[3[3,3]]]=[6,3,6] {{CDD|node_c2|splitsplit1|branch4_c1|splitsplit2|node_c2}} ↔ {{CDD|node_h0|6|node_c1|3|node_c2|6|node_h0}} | (1) | {{CDD|node_1|splitsplit1|branch4|splitsplit2|node_1}}
|colspan=3| | |
BGCOLOR="#e0f0e0" align=center | [(3,3)[3[3,3]]]=[6,3,3] {{CDD|branch_c1|splitcross|branch_c1}} = {{CDD|node_c1|6|node_g|3sg|node_g|3g|node_g}} | (1)
| {{CDD|branch_11|splitcross|branch_11}} | [(3,3)[3[3,3]]]+ = [6,3,3]+ | (1)
| {{CDD|branch_hh|splitcross|branch_hh}} |
= Loop-n-tail graphs =
Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.
class=wikitable
|+ Paracompact hyperbolic enumeration !Group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
|rowspan=2| | [3,3[3]] | 4
| {{CDD|node|3|node|split1|branch_10lu}} | {{CDD|node_1|3|node|split1|branch_10lu}} | {{CDD|node|3|node_1|split1|branch_10lu}} | {{CDD|node_1|3|node_1|split1|branch_10lu}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [1[3,3[3]]]=[3,3,6] {{CDD|node_c1|3|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|3|node_c2|3|node_c3|6|node_h0}} | (7)
|{{CDD|node_1|3|node|split1|branch}} | {{CDD|node|3|node_1|split1|branch}} | {{CDD|node_1|3|node_1|split1|branch}} | {{CDD|node|3|node|split1|branch_11}} | {{CDD|node_1|3|node|split1|branch_11}} | {{CDD|node|3|node_1|split1|branch_11}} | {{CDD|node_1|3|node_1|split1|branch_11}} | [1[3,3[3]]]+ = [3,3,6]+ | (1)
|{{CDD|node_h|3|node_h|split1|branch_hh}} |
align=center
|rowspan=3| | [4,3[3]] | 4
| {{CDD|node|4|node|split1|branch_10lu}} | {{CDD|node_1|4|node|split1|branch_10lu}} | {{CDD|node|4|node_1|split1|branch_10lu}} | {{CDD|node_1|4|node_1|split1|branch_10lu}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[1[4,3[3]]]=[4,3,6] | rowspan=2|(7)
|rowspan=2|{{CDD|node_1|4|node|split1|branch}} | {{CDD|node|4|node_1|split1|branch}} | {{CDD|node_1|4|node_1|split1|branch}} | {{CDD|node|4|node|split1|branch_11}} | {{CDD|node_1|4|node|split1|branch_11}} | {{CDD|node|4|node_1|split1|branch_11}} | {{CDD|node_1|4|node_1|split1|branch_11}} |[1+,4,(3[3])+] | (2)
|{{CDD|node_h1|4|node|split1|branch}} ↔ {{CDD|node_1|split1|branch|split2|node}} | ||
BGCOLOR="#e0f0e0" align=center
|[4,3[3]]+ | (1)
|{{CDD|node_h|4|node_h|split1|branch_hh}} | |||
align=center
|rowspan=2| | [5,3[3]] | 4
| {{CDD|node|5|node|split1|branch_10lu}} | {{CDD|node_1|5|node|split1|branch_10lu}} | {{CDD|node|5|node_1|split1|branch_10lu}} | {{CDD|node_1|5|node_1|split1|branch_10lu}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center | [1[5,3[3]]]=[5,3,6] {{CDD|node_c1|5|node_c2|split1|branch_c3}} ↔ {{CDD|node_c1|5|node_c2|3|node_c3|6|node_h0}} | (7)
|{{CDD|node_1|5|node|split1|branch}} | {{CDD|node|5|node_1|split1|branch}} | {{CDD|node_1|5|node_1|split1|branch}} | {{CDD|node|5|node|split1|branch_11}} | {{CDD|node_1|5|node|split1|branch_11}} | {{CDD|node|5|node_1|split1|branch_11}} | {{CDD|node_1|5|node_1|split1|branch_11}} | [1[5,3[3]]]+ = [5,3,6]+ | (1)
|{{CDD|node_h|5|node_h|split1|branch_hh}} |
align=center
|rowspan=6| | [6,3[3]] | 2
| {{CDD|node_1|6|node|split1|branch_10lu}} | {{CDD|node_1|6|node_1|split1|branch_10lu}} |colspan=3| | ||
align=center BGCOLOR="#e0f0e0"
|[6,3[3]] = | (2)
| ({{CDD|node|6|node|split1|branch_10lu}} ↔ {{CDD|node_1|3|node|6|node|3|node}}) | ({{CDD|node|6|node_1|split1|branch_10lu}} = {{CDD|node|3|node_1|6|node|3|node}}) |colspan=3| | |||
BGCOLOR="#e0f0e0" align=center
|[(3,3)[1+,6,3[3]]]=[6,3,3] | (1)
| {{CDD|node|6|node_1|split1|branch_11}} | [(3,3)[1+,6,3[3]]]+ | (1)
| {{CDD|node|6|node_h|split1|branch_hh}} | |
BGCOLOR="#e0f0e0" align=center
|rowspan=2|[1[6,3[3]]]=[6,3,6] | rowspan=3|(6)
|rowspan=3|{{CDD|node_1|6|node|split1|branch}} | {{CDD|node|6|node_1|split1|branch}} | {{CDD|node_1|6|node_1|split1|branch}} | {{CDD|node|6|node|split1|branch_11}} | {{CDD|node_1|6|node|split1|branch_11}} | {{CDD|node_1|6|node_1|split1|branch_11}} | [3[1+,6,3[3]]]+ = [3,6,3]+ | (1)
|{{CDD|node_h1|6|node|split1|branch}} ↔ {{CDD|node_1|splitsplit1|branch4|splitsplit2|node}} (= {{CDD|node_1|3|node|6|node|3|node}} ) | |
BGCOLOR="#e0f0e0" align=center | [1[6,3[3]]]+ = [6,3,6]+ | (1)
|{{CDD|node_h|6|node_h|split1|branch_hh}} |
See also
Notes
{{reflist}}
References
- James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }})
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
- [https://arxiv.org/abs/math/0212010 Coxeter Decompositions of Hyperbolic Tetrahedra], arXiv/PDF, A. Felikson, December 2002
- C. W. L. Garner, Regular Skew Polyhedra in Hyperbolic Three-Space Can. J. Math. 19, 1179-1186, 1967. PDF [http://cms.math.ca/cjm/a145822] {{Webarchive|url=https://web.archive.org/web/20150402131943/http://cms.math.ca/cjm/a145822 |date=2015-04-02 }}
- Norman Johnson, Geometries and Transformations, (2018) Chapters 11,12,13
- N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [https://link.springer.com/article/10.1007%2FBF01238563] [https://web.archive.org/web/20140223225217/http://homeweb1.unifr.ch/kellerha/pub/TGarticle.pdf]
- N.W. Johnson, R. Kellerhals, J.G. Ratcliffe, S.T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [http://www.sciencedirect.com/science/article/pii/S0024379501004773]
- {{KlitzingPolytopes|hyperbolic.htm#3D-non-compact|Hyperbolic honeycombs|H3 paracompact}}