pyrazole
{{Use dmy dates|date=January 2024}}
{{Chembox
| Watchedfields = changed
| verifiedrevid = 464376682
| ImageFileL1 = Pyrazole 2D full aromatic.svg
| ImageClassL1 = skin-invert-image
| ImageAltL1 = Full structural formula
| ImageFileR1 = Pyrazole 2D numbered.svg
| ImageClassR1 = skin-invert-image
| ImageAltR1 = Skeletal formula with numbers
| ImageFileL2 = Pyrazole-3D-balls.png
| ImageClassL2 = bg-transparent
| ImageAltL2 = Ball-and-stick model
| ImageFileR2 = Pyrazole-3D-spacefills.png
| ImageClassR2 = bg-transparent
| ImageAltR2 = Space-filling model
| PIN = 1H-Pyrazole{{cite book |title=Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book) |publisher=The Royal Society of Chemistry |date=2014 |location=Cambridge |page=141 |doi=10.1039/9781849733069-FP001 |isbn=978-0-85404-182-4 |chapter=Front Matter}}
| SystematicName = 1,2-Diazacyclopenta-2,4-diene
| OtherNames = 1,2-Diazole
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo =288-13-1
| Beilstein = 103775
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 17241
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 15967
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 1019
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB02757
| EC_number = 206-017-1
| Gmelin = 1360
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C00481
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 3QD5KJZ7ZJ
| PubChem = 1048
| InChI = 1/C3H4N2/c1-2-4-5-3-1/h1-3H,(H,4,5)
| InChIKey = WTKZEGDFNFYCGP-UHFFFAOYAW
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C3H4N2/c1-2-4-5-3-1/h1-3H,(H,4,5)
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = WTKZEGDFNFYCGP-UHFFFAOYSA-N
| SMILES = c1cn[nH]c1
}}
|Section2={{Chembox Properties
| C=3 | H=4 | N=2
| MeltingPtC = 66 to 70
| BoilingPtC = 186 to 188
| pKb = 11.5
}}
|Section3={{Chembox Hazards
| GHSPictograms = {{GHS05}}{{GHS06}}{{GHS07}}{{GHS08}}
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|302|311|315|318|319|335|372|412}}
| PPhrases = {{P-phrases|260|261|262|264|264+265|270|271|273|280|301+317|302+352|304+340|305+351+338|305+354+338|316|317|319|321|330|332+317|337+317|361+364|362+364|403+233|405|501}}
}}
}}
Pyrazole is an organic compound with the formula {{chem2|(CH)3N2H}}. It is a heterocycle characterized as an azole with a 5-membered ring of three carbon atoms and two adjacent nitrogen atoms, which are in ortho-substitution. Pyrazoles are also a class of compounds that have the ring C3N2 with adjacent nitrogen atoms. Pyrazole itself has few applications but many substituted pyrazoles are of commercial interest. Notable drugs containing a pyrazole ring are celecoxib (celebrex) and the anabolic steroid stanozolol.
Properties
Pyrazole is a weak base, with pKb 11.5 (pKa of the conjugate acid 2.49 at 25 °C).{{Cite web|title=Dissociation constants of organic acids and bases|url=http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf|url-status=live|archive-url=https://web.archive.org/web/20170712202558/http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf|archive-date=12 July 2017}} According to X-ray crystallography, the compound is planar. The two C-N distances are similar, both near 1.33 Å{{cite journal |doi=10.3891/acta.chem.scand.27-1845 |title=The Structure of Pyrazole, C3H4N2, at 295 K and 108 K as determined by X-Ray Diffraction |date=1973 |last1=La Cour |first1=Troels |last2=Rasmussen |first2=Svend Erik |last3=Hopf |first3=Henning |last4=Waisvisz |first4=Jacques M. |last5=Van Der Hoeven |first5=Marcel G. |last6=Swahn |first6=Carl-Gunnar |journal=Acta Chemica Scandinavica |volume=27 |pages=1845–1854 }}
History
The term pyrazole was given to this class of compounds by German Chemist Ludwig Knorr in 1883.{{Cite journal |author=Knorr, L. |date=1883 |title=Action of ethyl acetoacetate on phenylhydrazine. I |journal=Chemische Berichte |volume=16 |pages=2597–2599 |author-link=Ludwig Knorr |doi=10.1002/cber.188301602194 |url=https://zenodo.org/record/1425305}} In a classical method developed by German chemist Hans von Pechmann in 1898, pyrazole was synthesized from acetylene and diazomethane.{{cite journal |title=Pyrazol aus Acetylen und Diazomethan |first=Hans | last=von Pechmann |author-link=Hans von Pechmann |journal=Berichte der deutschen chemischen Gesellschaft |volume=31 |issue=3 |pages=2950–2951 |date=1898 |doi=10.1002/cber.18980310363 |language=German |url=https://zenodo.org/record/1425922}}
Preparation
Pyrazoles are synthesized by the reaction of α,β-unsaturated aldehydes with hydrazine and subsequent dehydrogenation:{{cite journal | last1 = Schmidt | first1 = Andreas | first2 = Andrij | last2 = Dreger | journal = Curr. Org. Chem. | year = 2011 | volume = 15 | pages = 1423–1463 | doi = 10.2174/138527211795378263 | title = Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses | issue = 9}}
Substituted pyrazoles are prepared by condensation of 1,3-diketones with hydrazine (Knorr-type reactions).{{cite journal | url=https://doi.org/10.1002/jhet.3155 | doi=10.1002/jhet.3155 | title=New Pyrazole- and Benzimidazole-derived Ligand Systems | date=2018 | last1=Nozari | first1=Mohammad | last2=Addison | first2=Anthony W. | last3=Reeves | first3=Gordan T. | last4=Zeller | first4=Matthias | last5=Jasinski | first5=Jerry P. | last6=Kaur | first6=Manpreet | last7=Gilbert | first7=Jayakumar G. | last8=Hamilton | first8=Clifton R. | last9=Popovitch | first9=Jonathan M. | last10=Wolf | first10=Lawrence M. | last11=Crist | first11=Lindsay E. | last12=Bastida | first12=Natalia | journal=Journal of Heterocyclic Chemistry | volume=55 | issue=6 | pages=1291–1307 | url-access=subscription }}
{{cite book
|author1=Eicher, T. |author2=Hauptmann, S. | title = The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications
| publisher = Wiley-VCH
| year = 2003|edition=2nd
| location =
| pages =
| isbn = 3-527-30720-6}} For example, acetylacetone and hydrazine gives 3,5-dimethylpyrazole:{{cite journal|journal=Organic Syntheses|first1 = William S.|last1 = Johnson|first2 = Robert J.|last2 = Highet|title = 3,5-Dimethylpyrazole|year=1951|volume=31|page=43|doi=10.15227/orgsyn.031.0043}}
:CH3C(O)CH2C(O)CH3 + N2H4 → (CH3)2C3HN2H + 2 H2O
A wide variety of pyrazoles can be made so:
:File:Aryl camphor-fused pyrazole synth.pngFile:Aryl-alicyclic quinol-pyrazole synth.pngFile:Aryl-fused quinol-pyrazole synth.png
Occurrence and uses
File:Celecoxib structure.png, a pyrazole-derived analgesic]]
In 1959, the first natural pyrazole, 1-pyrazolyl-alanine, was isolated from seeds of watermelons.{{cite journal |last1=Fowden |last2=Noe |last3=Ridd |last4=White |journal=Proc. Chem. Soc. |year=1959 |pages=131}}{{cite journal |volume=184 |issue=4688 |pages=69–70 |last1=Noe |first1=F. F. |last2=Fowden |first2=L. |title=alpha-Amino-beta-(pyrazolyl-N) propionic acid: a new amino-acid from Citrullus vulgaris (water melon) |journal=Nature |year=1959 |doi=10.1038/184069a0 |bibcode=1959Natur.184...69B |last3=Richmond |first3=P. T. |pmid=13804343 |s2cid=37499048|doi-access=free }}
In medicine, derivatives of pyrazole are widely used,{{cite book |doi=10.1007/978-981-16-8399-2_7 |chapter=Overview on Biological Activities of Pyrazole Derivatives |title=Nanostructured Biomaterials |series=Materials Horizons: From Nature to Nanomaterials |year=2022 |last1=Kabi |first1=Arup K. |last2=Sravani |first2=Sattu |last3=Gujjarappa |first3=Raghuram |last4=Garg |first4=Aakriti |last5=Vodnala |first5=Nagaraju |last6=Tyagi |first6=Ujjawal |last7=Kaldhi |first7=Dhananjaya |last8=Singh |first8=Virender |last9=Gupta |first9=Sreya |last10=Malakar |first10=Chandi C. |pages=229–306 |isbn=978-981-16-8398-5 |display-authors=3 }} including celecoxib and similar COX-2 inhibitors, zaleplon, betazole, and CDPPB.{{Cite journal |last1=Faria |first1=Jéssica Venância |last2=Vegi |first2=Percilene Fazolin |last3=Miguita |first3=Ana Gabriella Carvalho |last4=dos Santos |first4=Maurício Silva |last5=Boechat |first5=Nubia |last6=Bernardino |first6=Alice Maria Rolim |date=1 November 2017 |title=Recently reported biological activities of pyrazole compounds |journal=Bioorganic & Medicinal Chemistry |volume=25 |issue=21 |pages=5891–5903 |doi=10.1016/j.bmc.2017.09.035 |pmid=28988624 |issn=0968-0896}}
The pyrazole ring is found within a variety of pesticides as fungicides, insecticides and herbicides, including fenpyroximate, fipronil, tebufenpyrad and tolfenpyrad.[http://www.fao.org/docrep/019/i3518e/i3518e.pdf FAO] Pyrazole moieties are listed among the highly used ring systems for small molecule drugs by the US FDATaylor, R. D.; MacCoss, M.; Lawson, A. D. G. J Med Chem 2014, 57, 5845.
:File:Pyrazole SDHI intermediate.svg
3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid is used in the manufacture of six commercial fungicides which are inhibitors of succinate dehydrogenase.{{cite book |doi=10.1002/9783527693931.ch31 |chapter=Fungicidal Succinate-Dehydrogenase-Inhibiting Carboxamides |title=Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals |year=2016 |last1=Walter |first1=Harald |editor-last1=Lamberth |editor-first1=Clemens |editor-first2=Jürgen |editor-last2= Dinges |publisher=Wiley |pages=405–425 |isbn=9783527339471 }}{{cite book |doi=10.1002/9783527825158.ch11 |chapter=Current Trends in the Design of Fluorine-Containing Agrochemicals |title=Organofluorine Chemistry |year=2021 |last1=Jeschke |first1=Peter |pages=363–395 |editor-first1=Kálmán |editor-last1=Szabó |editor-first2=Nicklas |editor-last2=Selander |publisher=Wiley |isbn=9783527347117 |s2cid=234149806 }}
Pyrazole is an inhibitor of the alcohol dehydrogenase enzyme, and, as such, is used as an adjuvant with ethanol, to induce alcohol dependency in experimental laboratory mice.{{cite journal | pmid=37427930 | date=2023 | last1=Xiao | first1=T. | last2=Chen | first2=Y. | last3=Boisvert | first3=A. | last4=Cole | first4=M. | last5=Kimbrough | first5=A. | title=Chronic Intermittent Ethanol Vapor Exposure Paired with Two-Bottle Choice to Model Alcohol Use Disorder | journal=Journal of Visualized Experiments | issue=196 | doi=10.3791/65320 | pmc=11164185 }}
=Conversion to scorpionates=
Pyrazoles react with potassium borohydride to form a class of ligands known as scorpionate. Pyrazole itself reacts with potassium borohydride at high temperatures (~200 °C) to form a tridentate ligand known as Tp ligand:
See also
- 3,5-dimethylpyrazole
- Pyrazolidine, fully saturated analogue
- imidazole, structural analogue of pyrazole with two non-adjacent nitrogen atoms.
- isoxazole, another analogue, the nitrogen atom in position 1 replaced by oxygen.
References
{{Reflist}}
Further reading
{{Cite journal |author1=A. Schmidt |author2=A. Dreger |journal=Curr. Org. Chem. |date=2011 |volume=15 |issue=16 |pages=2897–2970 |title=Recent Advances in the Chemistry of Pyrazoles. Part 2. Reactions and N-Heterocyclic Carbenes of Pyrazole |doi=10.2174/138527211796378497}}