pyrene

{{short description|Chemical compound}}

{{other uses}}

{{chembox

| Watchedfields = changed

| verifiedrevid = 464376838

| Name = Pyrene

| ImageFile = Pyrene.svg

| ImageSize = 190px

| ImageAlt = Structural formula of pyrene

| ImageFile1 = Pyrene molecule from xtal ball.png

| ImageSize1 = 200px

| ImageAlt1 = Ball-and-stick model of the pyrene molecule

| ImageFile2 = Pyrene crystal 1.jpg

| PIN = Pyrene{{cite book |author=International Union of Pure and Applied Chemistry |date=2014 |title=Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 |publisher=The Royal Society of Chemistry |pages=206 |doi=10.1039/9781849733069 |isbn=978-0-85404-182-4}}

| OtherNames = Benzo[def]phenanthrene

| Section1 = {{Chembox Identifiers

| ChEBI_Ref = {{ebicite|correct|EBI}}

| ChEBI = 39106

| SMILES = c1cc2cccc3c2c4c1cccc4cc3

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 29153

| PubChem = 31423

| KEGG_Ref = {{keggcite|correct|kegg}}

| KEGG = C14335

| InChI = 1/C16H10/c1-3-11-7-9-13-5-2-6-14-10-8-12(4-1)15(11)16(13)14/h1-10H

| InChIKey = BBEAQIROQSPTKN-UHFFFAOYAB

| ChEMBL_Ref = {{ebicite|correct|EBI}}

| ChEMBL = 279564

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/C16H10/c1-3-11-7-9-13-5-2-6-14-10-8-12(4-1)15(11)16(13)14/h1-10H

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = BBEAQIROQSPTKN-UHFFFAOYSA-N

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 129-00-0

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 9E0T7WFW93

| RTECS = UR2450000

| Beilstein = 1307225

| Gmelin = 84203

}}

| Section2 = {{Chembox Properties

| C=16 | H=10

| Appearance = colorless solid

(yellow impurities are often found at trace levels in many samples).

| Density = 1.271 g/cm3Haynes, p. 3.472

| Solubility = 0.049 mg/L (0 °C)
0.139 mg/L (25 °C)
2.31 mg/L (75 °C)Haynes, p. 5.162

| MeltingPtC = 150.62

| MeltingPt_ref =

| BoilingPtC = 394

| BoilingPt_ref =

| MagSus = −147·10−6 cm3/molHaynes, p. 3.579

| LogP = 5.08Haynes, p. 5.176

| BandGap = 2.02 eVHaynes, p. 12.96

}}

| Section3 = {{Chembox Structure

| Structure_ref={{cite journal|doi=10.1107/S0365110X65001494 |title=The crystal and molecular structure of pyrene |date=1965 |last1=Camerman |first1=A. |last2=Trotter |first2=J. |journal=Acta Crystallographica |volume=18 |issue=4 |pages=636–643 |doi-access=free }}

| CrystalStruct = Monoclinic

| SpaceGroup = P21/a

| PointGroup =

| LattConst_a = 13.64 Å

| LattConst_b = 9.25 Å

| LattConst_c = 8.47 Å

| LattConst_alpha =

| LattConst_beta = 100.28

| LattConst_gamma =

| LattConst_ref =

| LattConst_Comment =

| UnitCellVolume =

| UnitCellFormulas = 4

}}

| Section4 = {{Chembox Thermochemistry

| Thermochemistry_ref=Haynes, pp. 5.34, 6.161

| HeatCapacity = 229.7 J/(K·mol)

| Entropy = 224.9 J·mol−1·K−1

| DeltaHf = 125.5 kJ·mol−1

| DeltaHfus = 17.36 kJ·mol−1

}}

| Section7 = {{Chembox Hazards

| ExternalSDS =

| MainHazards = irritant

| GHSPictograms = {{GHS07}}{{GHS09}}

| GHSSignalWord = Warning

| HPhrases = {{HPhrases|H315 |H319 |H335 |H410 }}

| PPhrases = {{PPhrases|P261, |P264, |P271, |P273, |P280, |P302+P352, |P304+P340, |P305+P351+P338, |P312, |P321, |P332+P313, |P337+P313, |P362, |P391, |P403+P233, |P405|P501}}

| GHS_ref =GHS: [https://pubchem.ncbi.nlm.nih.gov/compound/31423 PubChem]

| NFPA-H = 2

| NFPA-F = 1

| NFPA-R = 0

| FlashPt = non-flammable

}}

| Section8 = {{Chembox Related

| OtherFunction_label = PAHs

| OtherFunction = benzopyrene

}}

}}

Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is {{chem2|C16H10}}. This yellow-green solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms during incomplete combustion of organic compounds.{{cite journal |doi=10.1021/cr100428a|title=Pyrene-Based Materials for Organic Electronics|year=2011|last1=Figueira-Duarte|first1=Teresa M.|last2=Müllen|first2=Klaus|journal=Chemical Reviews|volume=111|issue=11|pages=7260–7314|pmid=21740071}}

Occurrence and properties

Pyrene was first isolated from coal tar, where it occurs up to 2% by weight. As a peri-fused PAH, pyrene is much more resonance-stabilized than its five-member-ring containing isomer fluoranthene. Therefore, it is produced in a wide range of combustion conditions. For example, automobiles produce about 1 μg/km.Senkan, Selim and Castaldi, Marco (2003) "Combustion" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim.

=Reactions=

Oxidation with chromate affords perinaphthenone and then naphthalene-1,4,5,8-tetracarboxylic acid. Pyrene undergoes a series of hydrogenation reactions and is susceptible to halogenation, Diels-Alder additions, and nitration, all with varying degrees of selectivity. Bromination occurs at one of the 3-positions.{{cite journal | last1 = Gumprecht | first1 = W. H. | year = 1968 | title = 3-Bromopyrene | journal = Org. Synth. | volume = 48 | page = 30 | doi = 10.15227/orgsyn.048.0030 }}

Reduction with sodium affords the radical anion. From this anion, a variety of pi-arene complexes can be prepared.{{cite journal |doi=10.1107/S2053229614015290|title=Bis(pyrene)metal complexes of vanadium, niobium and titanium: Isolable homoleptic pyrene complexes of transition metals|year=2014|last1=Kucera|first1=Benjamin E.|last2=Jilek|first2=Robert E.|last3=Brennessel|first3=William W.|last4=Ellis|first4=John E.|journal=Acta Crystallographica Section C: Structural Chemistry|volume=70|issue=8|pages=749–753|pmid=25093352}}

=Photophysics=

Pyrene and its derivatives are used commercially to make dyes and dye precursors, for example pyranine and naphthalene-1,4,5,8-tetracarboxylic acid. It has strong absorbance in UV-Vis in three sharp bands at 330 nm in DCM. The emission is close to the absorption, but moving at 375 nm.{{Cite journal|last1=Tagmatarchis|first1=Nikos|last2=Ewels|first2=Christopher P.|last3=Bittencourt|first3=Carla|last4=Arenal|first4=Raul|last5=Pelaez-Fernandez|first5=Mario|last6=Sayed-Ahmad-Baraza|first6=Yuman|last7=Canton-Vitoria|first7=Ruben|date=2017-06-05|title=Functionalization of MoS 2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion|journal=npj 2D Materials and Applications|language=en|volume=1|issue=1|pages=13|doi=10.1038/s41699-017-0012-8|issn=2397-7132|doi-access=free|hdl=10261/367520|hdl-access=free}} The morphology of the signals change with the solvent. Its derivatives are also valuable molecular probes via fluorescence spectroscopy, having a high quantum yield and lifetime (0.65 and 410 nanoseconds, respectively, in ethanol at 293 K). Pyrene was the first molecule for which excimer behavior was discovered.{{cite journal |last1=Van Dyke |first1=David A. |last2=Pryor |first2=Brian A. |last3=Smith |first3=Philip G. |last4=Topp |first4=Michael R. |title=Nanosecond Time-Resolved Fluorescence Spectroscopy in the Physical Chemistry Laboratory: Formation of the Pyrene Excimer in Solution |journal=Journal of Chemical Education |date=May 1998 |volume=75 |issue=5 |pages=615 |doi=10.1021/ed075p615|bibcode=1998JChEd..75..615V }} Such excimer appears around 450 nm. Theodor Förster reported this in 1954.{{cite journal |last1=Förster |first1=Th. |last2=Kasper |first2=K. |title=Ein Konzentrationsumschlag der Fluoreszenz. |journal=Zeitschrift für Physikalische Chemie |date=June 1954 |volume=1 |issue=5_6 |pages=275–277 |doi=10.1524/zpch.1954.1.5_6.275}}

Applications

{{multiple image

| align = left

| direction = vertical

| width = 180

| image1 = Br4Py self-assembly on Au.jpg

| caption1 =

| image2 = Br4Py self-assembly on Au 2.jpg

| caption2 = STM image of self-assembled Br4Py molecules on Au(111) surface (top) and its model (bottom; pink spheres are Br atoms).{{cite journal|doi=10.1039/C4CC02753A |title=Self-assembly of pyrene derivatives on Au(111): Substituent effects on intermolecular interactions |journal=Chem. Commun. |volume=50 |issue=91 |pages=14089–92 |year=2014 |last1=Pham |first1=Tuan Anh |last2=Song |first2=Fei |last3=Nguyen |first3=Manh-Thuong |last4=Stöhr |first4=Meike |pmid=24905327 |doi-access=free }}

}}

Pyrene's fluorescence emission spectrum is very sensitive to solvent polarity, so pyrene has been used as a probe to determine solvent environments. This is due to its excited state having a different, non-planar structure than the ground state. Certain emission bands are unaffected, but others vary in intensity due to the strength of interaction with a solvent.File:Pyrene-numbering.svg.]]

Pyrenes are strong electron donor materials and can be combined with several materials in order to make electron donor-acceptor systems which can be used in energy conversion and light harvesting applications.

Safety and environmental factors

Although it is not as problematic as benzopyrene, animal studies have shown pyrene is toxic to the kidneys and liver. It is now known that pyrene affects several living functions in fish and algae.{{Cite journal|last1=Oliveira|first1=M.|last2=Ribeiro|first2=A.|last3=Hylland|first3=K.|last4=Guilhermino|first4=L.|title=Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)|journal=Ecological Indicators|volume=34|pages=641–647|doi=10.1016/j.ecolind.2013.06.019|year=2013}}{{Cite journal|last1=Oliveira|first1=M.|last2=Gravato|first2=C.|last3=Guilhermino|first3=L.|title=Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): Mortality, biomarkers and swimming performance|journal=Ecological Indicators|volume=19|pages=206–214|doi=10.1016/j.ecolind.2011.08.006|year=2012}}{{Cite journal|last1=Oliveira|first1=M.|last2=Ribeiro|first2=A.|last3=Guilhermino|first3=L.|title=Effects of exposure to microplastics and PAHs on microalgae Rhodomonas baltica and Tetraselmis chuii|journal=Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology|volume=163|pages=S19–S20|doi=10.1016/j.cbpa.2012.05.062|year=2012}}{{Cite journal|last1=Oliveira|first1=M.|last2=Ribeiro|first2=A.|last3=Guilhermino|first3=L.|title=Effects of short-term exposure to microplastics and pyrene on Pomatoschistus microps (Teleostei, Gobiidae)|journal=Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology|volume=163|pages=S20|doi=10.1016/j.cbpa.2012.05.063|year=2012}}

Its biodegradation has been heavily examined. The process commences with dihydroxylation at each of two kinds of CH=CH linkages.{{cite journal |doi=10.3390/ijerph6010278|doi-access=free|title=Bacterial Degradation of Aromatic Compounds|year=2009|last1=Seo|first1=Jong-Su|last2=Keum|first2=Young-Soo|last3=Li|first3=Qing|journal=International Journal of Environmental Research and Public Health|volume=6|issue=1|pages=278–309|pmid=19440284|pmc=2672333}} Experiments in pigs show that urinary 1-hydroxypyrene is a metabolite of pyrene, when given orally.{{cite journal|doi=10.3109/00498258309052279|pmid=6659544|title=Identification of 1-hydroxypyrene as a major metabolite of pyrene in pig urine|journal=Xenobiotica|volume=13|issue=7|pages=415–20|year=1983|last1=Keimig|first1=S. D.|last2=Kirby|first2=K. W.|last3=Morgan|first3=D. P.|last4=Keiser|first4=J. E.|last5=Hubert|first5=T. D.}}

See also

References

{{Reflist}}

Cited sources

Further reading

  • {{cite book | last = Birks | first = J. B. | title = Photophysics of Aromatic Molecules | location = London | publisher = Wiley | year = 1969 }}
  • {{cite book | last = Valeur | first = B. | title = Molecular Fluorescence: Principles and Applications | location = New York | publisher = Wiley-VCH | year = 2002 }}
  • {{cite journal |last1=Birks |first1=J. B. |title=Excimers |journal=Reports on Progress in Physics |date=1975 |volume=38 |issue=8 |pages=903–974 |doi=10.1088/0034-4885/38/8/001 |bibcode=1975RPPh...38..903B |s2cid=240065177 |language=en |issn=0034-4885}}
  • {{cite book | last = Fetzer | first = J. C. | title = The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons | location = New York | publisher = Wiley | year = 2000 }}

{{Hydrocarbons}}

{{PAHs}}

{{Molecules detected in outer space}}

{{Authority control}}

Category:Pyrenes

Category:Polycyclic aromatic hydrocarbons

Category:PBT substances