q-gamma function
{{Short description|Function in q-analog theory}}
{{DISPLAYTITLE:q-gamma function}}
In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by {{harvtxt|Jackson|1905}}. It is given by
when , and
if . Here is the infinite -Pochhammer symbol. The -gamma function satisfies the functional equation
In addition, the -gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey ({{harvtxt|Askey|1978}}).
For non-negative integers ,
where is the -factorial function. Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers.
The relation to the ordinary gamma function is made explicit in the limit
There is a simple proof of this limit by Gosper. See the appendix of ({{harvs|txt|authorlink=George Andrews (mathematician)| last=Andrews| year=1986}}).
Transformation properties
The -gamma function satisfies the q-analog of the Gauss multiplication formula ({{harvtxt|Gasper|Rahman|2004}}):
= Integral representation =
The -gamma function has the following integral representation ({{harvs|txt|authorlink=Mourad E. H. Ismail| last=Ismail| year=1981}}):
= Stirling formula =
Moak obtained the following q-analogue of the Stirling formula (see {{harvtxt|Moak|1984}}):
\frac{B_{2k}}{(2k)!}\left(\frac{\log \hat{q}}{\hat{q}^x-1}\right)^{2k-1}\hat{q}^x p_{2k-3}(\hat{q}^x), \ x\to\infty,
\left\{\begin{aligned}
q \quad \mathrm{if} \ &0 1/q \quad \mathrm{if} \ &q\geq1 \end{aligned}\right\}, where , denotes the Heaviside step function, stands for the Bernoulli number, is the dilogarithm, and is a polynomial of degree satisfying
Raabe-type formulas
Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the -gamma function when . With this restriction,
El Bachraoui considered the case
Special values
The following special values are known.{{cite arXiv |last=Mező |first=István |year=2011 |title=Several special values of Jacobi theta functions |eprint=1106.1042 |mode=cs2 |class=math.NT }}
These are the analogues of the classical formula .
Moreover, the following analogues of the familiar identity hold true:
Matrix version
Let be a complex square matrix and positive-definite matrix. Then a -gamma matrix function can be defined by -integral:{{cite journal |last1=Salem |first1=Ahmed |date=June 2012 |title=On a q-gamma and a q-beta matrix functions |journal=Linear and Multilinear Algebra |volume=60 |issue=6 |pages=683–696 |doi=10.1080/03081087.2011.627562 | s2cid=123011613 }}
where is the q-exponential function.
Other ''q''-gamma functions
For other -gamma functions, see Yamasaki 2006.{{cite journal |last1=Yamasaki |first1=Yoshinori |title=On q-Analogues of the Barnes Multiple Zeta Functions |journal=Tokyo Journal of Mathematics |date=December 2006 |volume=29 |issue=2 |pages=413–427 |arxiv=math/0412067 |doi=10.3836/tjm/1170348176 |mr=2284981 |zbl=1192.11060|s2cid=14082358 }}
Numerical computation
An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.{{cite journal |last1=Gabutti |first1=Bruno |last2=Allasia |first2=Giampietro |title=Evaluation of q-gamma function and q-analogues by iterative algorithms |journal=Numerical Algorithms |date=17 September 2008 |volume=49 |issue=1–4 |pages=159–168 |doi=10.1007/s11075-008-9196-5|bibcode=2008NuAlg..49..159G |s2cid=6314057 }}
Further reading
- {{citation |last1=Zhang |first1=Ruiming |year=2007 |title=On asymptotics of q-gamma functions |journal=Journal of Mathematical Analysis and Applications |volume=339 |issue=2 |pages=1313–1321 |arxiv=0705.2802 |doi=10.1016/j.jmaa.2007.08.006|bibcode=2008JMAA..339.1313Z |s2cid=115163047 }}
- {{cite arXiv |last1=Zhang |first1=Ruiming |year=2010 |title=On asymptotics of Γq(z) as q approaching 1 |eprint=1011.0720 |class=math.CA |mode=cs2}}
- {{cite book |last1=Ismail |first1=Mourad E. H. |last2=Muldoon |first2=Martin E. |chapter=Inequalities and monotonicity properties for gamma and q-gamma functions |editor1-last=Zahar |editor1-first=R. V. M. |year=1994 |title=Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993 |volume=119 |pages=309–323 |publisher=Birkhäuser Verlag |location=Boston |arxiv=1301.1749 |doi=10.1007/978-1-4684-7415-2_19 |isbn=978-1-4684-7415-2 |s2cid=118563435 |mode=cs2}}
References
{{reflist}}
- {{citation | last1=Jackson | first1=F. H. | title=The Basic Gamma-Function and the Elliptic Functions | jstor=92601 | publisher=The Royal Society | year=1905 | journal=Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character | issn=0950-1207 | volume=76 | issue=508 | pages=127–144 | doi=10.1098/rspa.1905.0011| bibcode=1905RSPSA..76..127J | doi-access=free }}
- {{citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
- {{citation | last1=Ismail | first1=Mourad | title=The Basic Bessel Functions and Polynomials | year=1981 | journal=SIAM Journal on Mathematical Analysis | volume=12 | issue=3 | pages=454–468 | doi=10.1137/0512038 }}
- {{citation | last1=Moak | first1=Daniel S. | title=The Q-analogue of Stirling's formula | year=1984 | journal=Rocky Mountain J. Math. | volume=14 | issue=2| pages=403–414 | doi=10.1216/RMJ-1984-14-2-403 | doi-access=free }}
- {{citation | last1=Mező | first1=István | title=A q-Raabe formula and an integral of the fourth Jacobi theta function | year=2012 | journal=Journal of Number Theory | volume=133 | issue=2 | pages=692–704 | doi = 10.1016/j.jnt.2012.08.025 | doi-access=free | hdl=2437/166217 | hdl-access=free }}
- {{citation | last1=El Bachraoui | first1=Mohamed | title=Short proofs for q-Raabe formula and integrals for Jacobi theta functions | year=2017 | journal=Journal of Number Theory | volume=173 | issue=2 | pages=614–620 | doi = 10.1016/j.jnt.2016.09.028 | doi-access=free }}
- {{citation | last1=Askey | first1=Richard | title=The q-gamma and q-beta functions. | year=1978 | journal=Applicable Analysis | volume=8 | issue=2 | pages=125–141| doi=10.1080/00036817808839221 }}
- {{citation | last1=Andrews | first1=George E. | title=q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra. | year=1986 | publisher=American Mathematical Society | series=Regional Conference Series in Mathematics |volume=66}}