q-gamma function

{{Short description|Function in q-analog theory}}

{{DISPLAYTITLE:q-gamma function}}

In q-analog theory, the q-gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by {{harvtxt|Jackson|1905}}. It is given by

\Gamma_q(x) = (1-q)^{1-x}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{n+x}}=(1-q)^{1-x}\,\frac{(q;q)_\infty}{(q^x;q)_\infty}

when |q|<1, and

\Gamma_q(x)=\frac{(q^{-1};q^{-1})_\infty}{(q^{-x};q^{-1})_\infty}(q-1)^{1-x}q^{\binom{x}{2}}

if |q|>1. Here (\cdot;\cdot)_\infty is the infinite q-Pochhammer symbol. The q-gamma function satisfies the functional equation

\Gamma_q(x+1) = \frac{1-q^{x}}{1-q}\Gamma_q(x)=[x]_q\Gamma_q(x)

In addition, the q-gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey ({{harvtxt|Askey|1978}}).

For non-negative integers n,

\Gamma_q(n)=[n-1]_q!

where [\cdot]_q is the q-factorial function. Thus the q-gamma function can be considered as an extension of the q-factorial function to the real numbers.

The relation to the ordinary gamma function is made explicit in the limit

\lim_{q \to 1\pm} \Gamma_q(x) = \Gamma(x).

There is a simple proof of this limit by Gosper. See the appendix of ({{harvs|txt|authorlink=George Andrews (mathematician)| last=Andrews| year=1986}}).

Transformation properties

The q-gamma function satisfies the q-analog of the Gauss multiplication formula ({{harvtxt|Gasper|Rahman|2004}}):

\Gamma_q(nx)\Gamma_r(1/n)\Gamma_r(2/n)\cdots\Gamma_r((n-1)/n)=\left(\frac{1-q^n}{1-q}\right)^{nx-1}\Gamma_r(x)\Gamma_r(x+1/n)\cdots\Gamma_r(x+(n-1)/n), \ r=q^n.

= Integral representation =

The q-gamma function has the following integral representation ({{harvs|txt|authorlink=Mourad E. H. Ismail| last=Ismail| year=1981}}):

\frac{1}{\Gamma_q(z)}=\frac{\sin(\pi z)}{\pi}\int_0^\infty\frac{t^{-z}\mathrm{d}t}{(-t(1-q);q)_{\infty}}.

= Stirling formula =

Moak obtained the following q-analogue of the Stirling formula (see {{harvtxt|Moak|1984}}):

\log\Gamma_q(x)\sim(x-1/2)\log[x]_q+\frac{\mathrm{Li}_2(1-q^x)}{\log q}+C_{\hat{q}}+\frac{1}{2}H(q-1)\log q+\sum_{k=1}^\infty

\frac{B_{2k}}{(2k)!}\left(\frac{\log \hat{q}}{\hat{q}^x-1}\right)^{2k-1}\hat{q}^x p_{2k-3}(\hat{q}^x), \ x\to\infty,

\hat{q}=

\left\{\begin{aligned}

q \quad \mathrm{if} \ &0

1/q \quad \mathrm{if} \ &q\geq1

\end{aligned}\right\},

C_q = \frac{1}{2} \log(2\pi)+\frac{1}{2}\log\left(\frac{q-1}{\log q}\right)-\frac{1}{24}\log q+\log\sum_{m=-\infty}^\infty \left(r^{m(6m+1)} - r^{(3m+1)(2m+1)}\right),

where r=\exp(4\pi^2/\log q), H denotes the Heaviside step function, B_k stands for the Bernoulli number, \mathrm{Li}_2(z) is the dilogarithm, and p_k is a polynomial of degree k satisfying

p_k(z)=z(1-z)p'_{k-1}(z)+(kz+1)p_{k-1}(z), p_0=p_{-1}=1, k=1,2,\cdots.

Raabe-type formulas

Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q-gamma function when |q|>1. With this restriction,

\int_0^1\log\Gamma_q(x)dx=\frac{\zeta(2)}{\log q}+\log\sqrt{\frac{q-1}{\sqrt[6]{q}}}+\log(q^{-1};q^{-1})_\infty \quad(q>1).

El Bachraoui considered the case 0 and proved that

\int_0^1\log\Gamma_q(x)dx=\frac{1}{2}\log (1-q) - \frac{\zeta(2)}{\log q}+\log(q;q)_\infty \quad(0

Special values

The following special values are known.{{cite arXiv |last=Mező |first=István |year=2011 |title=Several special values of Jacobi theta functions |eprint=1106.1042 |mode=cs2 |class=math.NT }}

\Gamma_{e^{-\pi}}\left(\frac12\right)=\frac{e^{-7 \pi /16} \sqrt{e^\pi-1}\sqrt[4]{1+\sqrt2}}{2^{15/16}\pi^{3/4}} \, \Gamma \left(\frac{1}{4}\right),

\Gamma_{e^{-2\pi}}\left(\frac12\right)=\frac{e^{-7 \pi /8} \sqrt{e^{2 \pi}-1}}{2^{9/8} \pi^{3/4}} \, \Gamma \left(\frac{1}{4}\right),

\Gamma_{e^{-4\pi}}\left(\frac12\right)=\frac{e^{-7 \pi /4} \sqrt{e^{4 \pi}-1}}{2^{7/4} \pi^{3/4}} \, \Gamma \left(\frac{1}{4}\right),

\Gamma_{e^{-8\pi}}\left(\frac12\right)=\frac{e^{-7 \pi /2} \sqrt{e^{8 \pi}-1}}{2^{9/4} \pi^{3/4} \sqrt{1+\sqrt2}} \, \Gamma \left(\frac{1}{4}\right).

These are the analogues of the classical formula \Gamma\left(\frac12\right)=\sqrt\pi.

Moreover, the following analogues of the familiar identity \Gamma\left(\frac14\right)\Gamma\left(\frac34\right)=\sqrt2\pi hold true:

\Gamma_{e^{-2\pi}}\left(\frac14\right)\Gamma_{e^{-2\pi}}\left(\frac34\right)=\frac{e^{-29 \pi /16} \left(e^{2 \pi }-1\right)\sqrt[4]{1+\sqrt2}}{2^{33/16} \pi^{3/2}} \, \Gamma \left(\frac{1}{4}\right)^2,

\Gamma_{e^{-4\pi}}\left(\frac14\right)\Gamma_{e^{-4\pi}}\left(\frac34\right)=\frac{e^{-29 \pi /8} \left(e^{4 \pi }-1\right)}{2^{23/8} \pi ^{3/2}} \, \Gamma \left(\frac{1}{4}\right)^2,

\Gamma_{e^{-8\pi}}\left(\frac14\right)\Gamma_{e^{-8\pi}}\left(\frac34\right)=\frac{e^{-29 \pi /4} \left(e^{8 \pi }-1\right)}{16 \pi ^{3/2} \sqrt{1+\sqrt2}} \, \Gamma \left(\frac{1}{4}\right)^2.

Matrix version

Let A be a complex square matrix and positive-definite matrix. Then a q-gamma matrix function can be defined by q-integral:{{cite journal |last1=Salem |first1=Ahmed |date=June 2012 |title=On a q-gamma and a q-beta matrix functions |journal=Linear and Multilinear Algebra |volume=60 |issue=6 |pages=683–696 |doi=10.1080/03081087.2011.627562 | s2cid=123011613 }}

\Gamma_q(A):=\int_0^{\frac{1}{1-q}}t^{A-I}E_q(-qt)\mathrm{d}_q t

where E_q is the q-exponential function.

Other ''q''-gamma functions

For other q-gamma functions, see Yamasaki 2006.{{cite journal |last1=Yamasaki |first1=Yoshinori |title=On q-Analogues of the Barnes Multiple Zeta Functions |journal=Tokyo Journal of Mathematics |date=December 2006 |volume=29 |issue=2 |pages=413–427 |arxiv=math/0412067 |doi=10.3836/tjm/1170348176 |mr=2284981 |zbl=1192.11060|s2cid=14082358 }}

Numerical computation

An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.{{cite journal |last1=Gabutti |first1=Bruno |last2=Allasia |first2=Giampietro |title=Evaluation of q-gamma function and q-analogues by iterative algorithms |journal=Numerical Algorithms |date=17 September 2008 |volume=49 |issue=1–4 |pages=159–168 |doi=10.1007/s11075-008-9196-5|bibcode=2008NuAlg..49..159G |s2cid=6314057 }}

Further reading

  • {{citation |last1=Zhang |first1=Ruiming |year=2007 |title=On asymptotics of q-gamma functions |journal=Journal of Mathematical Analysis and Applications |volume=339 |issue=2 |pages=1313–1321 |arxiv=0705.2802 |doi=10.1016/j.jmaa.2007.08.006|bibcode=2008JMAA..339.1313Z |s2cid=115163047 }}
  • {{cite arXiv |last1=Zhang |first1=Ruiming |year=2010 |title=On asymptotics of Γq(z) as q approaching 1 |eprint=1011.0720 |class=math.CA |mode=cs2}}
  • {{cite book |last1=Ismail |first1=Mourad E. H. |last2=Muldoon |first2=Martin E. |chapter=Inequalities and monotonicity properties for gamma and q-gamma functions |editor1-last=Zahar |editor1-first=R. V. M. |year=1994 |title=Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993 |volume=119 |pages=309–323 |publisher=Birkhäuser Verlag |location=Boston |arxiv=1301.1749 |doi=10.1007/978-1-4684-7415-2_19 |isbn=978-1-4684-7415-2 |s2cid=118563435 |mode=cs2}}

References

{{reflist}}

  • {{citation | last1=Jackson | first1=F. H. | title=The Basic Gamma-Function and the Elliptic Functions | jstor=92601 | publisher=The Royal Society | year=1905 | journal=Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character | issn=0950-1207 | volume=76 | issue=508 | pages=127–144 | doi=10.1098/rspa.1905.0011| bibcode=1905RSPSA..76..127J | doi-access=free }}
  • {{citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{citation | last1=Ismail | first1=Mourad | title=The Basic Bessel Functions and Polynomials | year=1981 | journal=SIAM Journal on Mathematical Analysis | volume=12 | issue=3 | pages=454–468 | doi=10.1137/0512038 }}
  • {{citation | last1=Moak | first1=Daniel S. | title=The Q-analogue of Stirling's formula | year=1984 | journal=Rocky Mountain J. Math. | volume=14 | issue=2| pages=403–414 | doi=10.1216/RMJ-1984-14-2-403 | doi-access=free }}
  • {{citation | last1=Mező | first1=István | title=A q-Raabe formula and an integral of the fourth Jacobi theta function | year=2012 | journal=Journal of Number Theory | volume=133 | issue=2 | pages=692–704 | doi = 10.1016/j.jnt.2012.08.025 | doi-access=free | hdl=2437/166217 | hdl-access=free }}
  • {{citation | last1=El Bachraoui | first1=Mohamed | title=Short proofs for q-Raabe formula and integrals for Jacobi theta functions | year=2017 | journal=Journal of Number Theory | volume=173 | issue=2 | pages=614–620 | doi = 10.1016/j.jnt.2016.09.028 | doi-access=free }}
  • {{citation | last1=Askey | first1=Richard | title=The q-gamma and q-beta functions. | year=1978 | journal=Applicable Analysis | volume=8 | issue=2 | pages=125–141| doi=10.1080/00036817808839221 }}
  • {{citation | last1=Andrews | first1=George E. | title=q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra. | year=1986 | publisher=American Mathematical Society | series=Regional Conference Series in Mathematics |volume=66}}

Category:Gamma and related functions

Category:Q-analogs