quarter 5-cubic honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|quarter 5-cubic honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform 5-honeycomb
bgcolor=#e7dcc3|FamilyQuarter hypercubic honeycomb
bgcolor=#e7dcc3|Schläfli symbolq{4,3,3,3,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node_h1}}
bgcolor=#e7dcc3|5-face typeh{4,33}, 60px
h4{4,33}, 60px
bgcolor=#e7dcc3|Vertex figure60px
Rectified 5-cell antiprism
or Stretched birectified 5-simplex
bgcolor=#e7dcc3|Coxeter group{\tilde{D}}_5×2 = 31,1,3,31,1
bgcolor=#e7dcc3|Dual
bgcolor=#e7dcc3|Propertiesvertex-transitive

In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb.Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318 Its facets are 5-demicubes and runcinated 5-demicubes.

Related honeycombs

{{D5 honeycombs}}

See also

Notes

{{reflist}}

References

  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [https://books.google.com/books?id=fUm5Mwfx8rAC&dq=%22quarter+cubic+honeycomb%22+q%7B4%2C3%2C4%7D&pg=PA318]
  • {{KlitzingPolytopes|flat.htm|5D|Euclidean tesselations#5D}} x3o3o x3o3o *b3*e - spaquinoh

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:6-polytopes