quarter 5-cubic honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|quarter 5-cubic honeycomb | |
bgcolor=#ffffff align=center colspan=2|(No image) | |
bgcolor=#e7dcc3|Type | Uniform 5-honeycomb |
bgcolor=#e7dcc3|Family | Quarter hypercubic honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | q{4,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node_h1}} |
bgcolor=#e7dcc3|5-face type | h{4,33}, 60px h4{4,33}, 60px |
bgcolor=#e7dcc3|Vertex figure | 60px Rectified 5-cell antiprism or Stretched birectified 5-simplex |
bgcolor=#e7dcc3|Coxeter group | ×2 = 31,1,3,31,1 |
bgcolor=#e7dcc3|Dual | |
bgcolor=#e7dcc3|Properties | vertex-transitive |
In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb.Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318 Its facets are 5-demicubes and runcinated 5-demicubes.
Related honeycombs
{{D5 honeycombs}}
See also
Regular and uniform honeycombs in 5-space:
Notes
{{reflist}}
References
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [https://books.google.com/books?id=fUm5Mwfx8rAC&dq=%22quarter+cubic+honeycomb%22+q%7B4%2C3%2C4%7D&pg=PA318]
- {{KlitzingPolytopes|flat.htm|5D|Euclidean tesselations#5D}} x3o3o x3o3o *b3*e - spaquinoh
{{Honeycombs}}