radioisotope renography

{{Infobox diagnostic |

Name = Radioisotope renography |

Image = 99mTc-MAG3 and 99mTc-DTPA renogram.jpg|

Caption = Renal imaging using 99mTc DTPA and 99mMAG3 with renographic curves|

ICD10 = |

ICD9 = {{ICD9proc|92.03}} |

MeshID = D011866 |

OPS301 = {{OPS301|3-706}} |

OtherCodes = |

}}

Radioisotope renography is a form of medical imaging of the kidneys that uses radiolabelling. A renogram, which may also be known as a MAG3 scan, allows a nuclear medicine physician or a radiologist to visualize the kidneys and learn more about how they are functioning.{{cite web|title=The Renogram|url=http://www.bnms.org.uk/patients-information-sheets/the-renogram.html|website=British Nuclear Medicine Society|access-date=27 April 2017|language=en-gb}} MAG3 is an acronym for mercapto acetyl tri glycine, a compound that is chelated with a radioactive element – technetium-99m.

The two most common radiolabelled pharmaceutical agents used are 99mTc-MAG3 (MAG3 is also called "mercaptoacetyltriglycine" or "mertiatide") and 99mTc DTPA (diethylenetriaminepentacetate). Some other radiolabelled pharmaceuticals are EC (Ethylenedicysteine) and 131-iodine labelled OIH (ortho-iodohippurate).{{cite journal|last1=Taylor|first1=A. T.|title=Radionuclides in Nephrourology, Part 1: Radiopharmaceuticals, Quality Control, and Quantitative Indices|journal=Journal of Nuclear Medicine|date=18 February 2014|volume=55|issue=4|pages=608–615|doi=10.2967/jnumed.113.133447|pmc=4061739|pmid=24549283}}

Scan procedure

After injection into the veins, the compound is excreted by the kidneys, and its progress through the renal system can be tracked with a gamma camera. A series of images are taken at regular intervals. Processing then involves drawing a region of interest (ROI) around both kidneys, and a computer program produces a graph of radioactivity inside the kidney with time, representing the quantity of tracer, from the number of counts measured inside in each image (representing a different time point).{{cite book|last1=Elgazzar|first1=Abdelhamid H.|title=A Concise Guide to Nuclear Medicine|publisher=Springer|isbn=9783642194269|page=15|url=https://books.google.com/books?id=eUGMmVoep1cC&pg=PA15|language=en|date=2011-05-10}}

If the kidney is not getting blood for example, it will not be viewed at all, even if it looks structurally normal in medical ultrasonography or magnetic resonance imaging. If the kidney is getting blood, but there is an obstruction inferior to the kidney in the bladder or ureters, the radioisotope will not pass beyond the level of the obstruction, whereas if there is a partial obstruction then there is a delayed transit time for the MAG3 to pass.{{cite journal |vauthors=González A, Jover L, Mairal LI, Martin-Comin J, Puchal R |title=Evaluation of obstructed kidneys by discriminant analysis of 99mTc-MAG3 renograms |journal=Nuklearmedizin |volume=33 |issue=6 |pages=244–7 |year=1994 |pmid=7854921 |doi=10.1055/s-0038-1629712|s2cid=24979005 }} More information can be gathered by calculating time activity curves; with normal kidney perfusion, peak activity should be observed after 3–5 minutes.{{cite book|last1=Sandler|first1=Martin P.|title=Diagnostic Nuclear Medicine|publisher=Lippincott Williams & Wilkins|isbn=9780781732529|page=868|url=https://books.google.com/books?id=PxQ7oi0iAd8C&pg=PA868|language=en|year=2003}} The relative quantitative information gives the differential function between each kidney's filtration activity.

Tracers

File:Technetium Tc 99m mertiatide.svg

MAG3 is preferred over 99mTc DTPA in neonates, patients with impaired function, and patients with suspected obstruction, due to its more efficient extraction.{{cite journal|last1=Gordon|first1=Isky|last2=Piepsz|first2=Amy|last3=Sixt|first3=Rune|title=Guidelines for standard and diuretic renogram in children|journal=European Journal of Nuclear Medicine and Molecular Imaging|date=19 April 2011|volume=38|issue=6|pages=1175–1188|doi=10.1007/s00259-011-1811-3|pmid=21503762|s2cid=11496497}}{{cite journal|last1=Shulkin|first1=B. L.|last2=Mandell|first2=G. A.|last3=Cooper|first3=J. A.|last4=Leonard|first4=J. C.|last5=Majd|first5=M.|last6=Parisi|first6=M. T.|last7=Sfakianakis|first7=G. N.|last8=Balon|first8=H. R.|last9=Donohoe|first9=K. J.|title=Procedure Guideline for Diuretic Renography in Children 3.0|journal=Journal of Nuclear Medicine Technology|date=14 August 2008|volume=36|issue=3|pages=162–168|doi=10.2967/jnmt.108.056622|pmid=18765635|doi-access=free|url=http://tech.snmjournals.org/content/36/3/162.full.pdf}} The MAG3 clearance is highly correlated with the effective renal plasma flow (ERPF), and the MAG3 clearance can be used as an independent measure of kidney function.{{cite book|last1=Biersack|first1=Hans-Jürgen|last2=Freeman|first2=Leonard M.|title=Clinical Nuclear Medicine|publisher=Springer Science & Business Media|isbn=9783540280262|page=173|url=https://books.google.com/books?id=dZIBbLhTOoQC&pg=PA172|language=en|date=2008-01-03}} After intravenous administration, about 40-50% of the MAG3 in the blood is extracted by the proximal tubules with each pass through the kidneys; the proximal tubules then secrete the MAG3 into the tubular lumen.{{cite book|last1=Alazraki|first1=Andrew Taylor, David M. Schuster, Naomi|title=A clinician's guide to nuclear medicine|date=2006|publisher=Society of Nuclear Medicine|location=Reston, VA|isbn=9780972647878|page=49|edition=2nd|chapter-url=http://interactive.snm.org/docs/cg_ch03.pdf|chapter=The Genitourinary System}}

99mTc DTPA is filtered by the glomerulus and may be used to measure the glomerular filtration rate (GFR) (in a separate test), making it theoretically the best (most accurate) choice for kidney function imaging.{{cite journal|last1=Durand|first1=E|last2=Prigent|first2=A|title=The basics of renal imaging and function studies.|journal=The Quarterly Journal of Nuclear Medicine|date=December 2002|volume=46|issue=4|pages=249–67|pmid=12411866|url=http://www.minervamedica.it/en/journals/nuclear-med-molecular-imaging/article.php?cod=R39Y2002N04A0249}} The extraction fraction of DTPA is approximately 20%, less than half that of MAG3. DTPA is the second most commonly used renal radiopharmaceutical in the United States.{{cite journal|last1=Archer|first1=K. D.|last2=Bolus|first2=N. E.|title=Survey on the Use of Nuclear Renal Imaging in the United States|journal=Journal of Nuclear Medicine Technology|date=27 October 2016|volume=44|issue=4|pages=223–226|doi=10.2967/jnmt.116.181339|pmid=27789752|doi-access=free}}

Clinical use

The technique is very useful in evaluating the functioning of kidneys. Radioisotopes can differentiate between passive dilatation and obstruction. It is widely used before kidney transplantation to assess the vascularity of the kidney to be transplanted and with a test dose of captopril to highlight possible renal artery stenosis in the donor's other kidney,{{cite journal |vauthors=Dubovsky EV, Diethelm AG, Keller F, Russell CD |title=Renal transplant hypertension caused by iliac artery stenosis |journal=J. Nucl. Med. |volume=33 |issue=6 |pages=1178–80 |year=1992 |pmid=1534577 |url=http://jnm.snmjournals.org/cgi/reprint/33/6/1178.pdf }} and later the performance of the transplant.{{cite journal |vauthors=Kramer W, Baum RP, Scheuermann E, Hör G, Jonas D |title=[Follow-up after kidney transplantation. Sequential functional scintigraphy with technetium-99m-DTPA or technetium-99m-MAG3] |language=de |journal=Urologe A |volume=32 |issue=2 |pages=115–20 |year=1993 |pmid=8475609 }}{{cite journal |vauthors=Li Y, Russell CD, Palmer-Lawrence J, Dubovsky EV |title=Quantitation of renal parenchymal retention of technetium-99m-MAG3 in renal transplants |journal=J. Nucl. Med. |volume=35 |issue=5 |pages=846–50 |year=1994 |pmid=8176469 }} Post-transplantation renography can be used for the diagnosis of vascular and urological complications.{{cite journal|vauthors= Benjamens S, Berger SP, Glaudemans AW, Sanders JS, Pol RA, Slart RH|title=Renal scintigraphy for post-transplant monitoring after kidney transplantation |journal=Transplantation Reviews |volume=32 |issue=2 |pages=102–109 |year=2018 |doi=10.1016/j.trre.2017.12.002 |pmid=29395726 |url=https://www.sciencedirect.com/science/article/pii/S0955470X17300836}} Also, early post-transplantation renography is used for the assessment of delayed graft function.{{cite journal|vauthors= Benjamens S, Pol RA, de Geus-Oei LF, de Vries AP, Glaudemans AW, Berger SP, Slart RH|title=Can transplant renal scintigraphy predict the duration of delayed graft function? A dual center retrospective study |journal=PLOS ONE |volume=13 |issue=3 |pages=e0193791 |year=2018|doi=10.1371/journal.pone.0193791 |pmid=29561854 |pmc=5862448 |bibcode=2018PLoSO..1393791B |doi-access=free }}{{cite journal|vauthors= Benjamens S, Pol RA, Berger SP, Glaudemans AW, Dibbets-Schneider P, Slart RH, de Geus-Oei LF|title=Limited clinical value of two consecutive post-transplant renal scintigraphy procedures |journal=European Radiology |volume=30 |issue=1 |pages=452–460 |year=2020|doi=10.1007/s00330-019-06334-1 |pmid=31338652 |pmc=6890596 |url=}}

The use of the test to identify reduced kidney function after test doses of captopril (an angiotensin-converting enzyme inhibitor medication) has also been used to identify the cause of hypertension in patients with kidney failure.{{cite journal |vauthors=Datseris IE, Bomanji JB, Brown EA, etal |title=Captopril renal scintigraphy in patients with hypertension and chronic renal failure |journal=J. Nucl. Med. |volume=35 |issue=2 |pages=251–4 |year=1994 |pmid=8294993 }}{{cite journal |vauthors=Kahn D, Ben-Haim S, Bushnell DL, Madsen MT, Kirchner PT |title=Captopril-enhanced 99Tcm-MAG3 renal scintigraphy in subjects with suspected renovascular hypertension |journal=Nucl Med Commun |volume=15 |issue=7 |pages=515–28 |year=1994 |pmid=7970428 |doi=10.1097/00006231-199407000-00005|s2cid=36864545 }} Initially there was uncertainty as to the usefulness,{{cite journal |vauthors=Schreij G, van Es PN, van Kroonenburgh MJ, Kemerink GJ, Heidendal GA, de Leeuw PW |title=Baseline and postcaptopril renal blood flow measurements in hypertensives suspected of renal artery stenosis |journal=J. Nucl. Med. |volume=37 |issue=10 |pages=1652–5 |year=1996 |pmid=8862302 }} or best test parameter to identify renal artery stenosis, the eventual consensus was that the distinctive finding is of alteration in the differential function.{{cite journal |vauthors=Roccatello D, Picciotto G |title=Captopril-enhanced scintigraphy using the method of the expected renogram: improved detection of patients with renin-dependent hypertension due to functionally significant renal artery stenosis |journal=Nephrol. Dial. Transplant. |volume=12 |issue=10 |pages=2081–6 |year=1997 |pmid=9351069 |doi= 10.1093/ndt/12.10.2081|url=http://ndt.oxfordjournals.org/cgi/reprint/12/10/2081.pdf |doi-access=free }}

History

In 1986, MAG3 was developed at the University of Utah by Dr. Alan R. Fritzberg, Dr. Sudhakar Kasina, and Dr. Dennis Eshima.{{cite journal |vauthors=Fritzberg AR, Kasina S, Eshima D, Johnson DL |title=Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement |journal=J. Nucl. Med. |volume=27 |issue=1 |pages=111–6 |year=1986 |pmid=2934521 }} The drug underwent clinical trials in 1987{{cite journal |vauthors=Taylor A, Eshima D, Alazraki N |title=99mTc-MAG3, a new renal imaging agent: preliminary results in patients |journal=Eur J Nucl Med |volume=12 |issue=10 |pages=510–4 |year=1987 |pmid=2952506 |doi=10.1007/BF00620476|s2cid=8632649 }} and passed Phase III testing in 1988.{{cite journal |vauthors=Al-Nahhas AA, Jafri RA, Britton KE, etal |title=Clinical experience with 99mTc-MAG3, mercaptoacetyltriglycine, and a comparison with 99mTc-DTPA |journal=Eur J Nucl Med |volume=14 |issue=9–10 |pages=453–62 |year=1988 |pmid=2975219 |doi=10.1007/BF00252388|s2cid=23594754 }}

Before the development of tracers such as 99mTc-MAG3, a range of other radiopharmaceuticals were employed. The test was first introduced in 1956, using iodine-131 diodrast.{{cite journal |last1=TAPLIN |first1=GV |last2=MEREDITH |first2=OM |last3=KADE |first3=H |last4=WINTER |first4=CC |title=The radioisotope renogram: an external test for individual kidney function and upper urinary tract patency. |journal=The Journal of Laboratory and Clinical Medicine |date=December 1956 |volume=48 |issue=6 |pages=886–901 |pmid=13376984|url=https://www.translationalres.com/article/0022-2143(56)90155-X/}}{{cite journal |last1=Saterborg |first1=N.-E. |title=The technical procedure in kidney examinations with radioactive isotopes |journal=Acta Radiologica |date=June 1960 |volume=53 |issue=6 |pages=433–441 |doi=10.3109/00016926009171695 |pmid=14441893}} Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran).{{cite web |title=123I iodohippurate |website=Guidelines database |publisher=Federatie Medisch Specialisten |url=https://richtlijnendatabase.nl/gerelateerde_documenten/f/17281/I123%20Iodohippurate.pdf |access-date=26 August 2022}}{{cite book |last1=Biassoni |first1=Lorenzo |last2=Gordon |first2=Isky |title=Pediatric urology |date=2010 |location=Philadelphia |isbn=978-1-4160-3204-5 |edition=2nd |chapter=8 - Radioisotope Imaging of the Kidney and Urinary Tract|doi=10.1016/B978-1-4160-3204-5.00008-6}}

99mTc-MAG3 has replaced 131I-OIH because of better quality imaging regardless of the level of kidney function,{{cite journal |vauthors=Taylor A, Eshima D, Christian PE, Milton W |title=Evaluation of 99mTc mercaptoacetyltriglycine in patients with impaired renal function |journal=Radiology |volume=162 |issue=2 |pages=365–70 |year=1987 |pmid=2948212 |doi= 10.1148/radiology.162.2.2948212}} and lower radiation doses.

See also

References

{{Reflist|30em}}

{{Urologic procedures}}

{{Medical imaging}}

Category:Diagnostic nephrology

Category:Scintigraphy

Category:Urologic imaging