triangular prismatic honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Triangular prismatic honeycomb

bgcolor=#ffffff align=center colspan=2|280px
bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol{3,6}×{∞} or t0,3{3,6,2,∞}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|6|node|2|node_1|infin|node}}
{{CDD|node_1|split1|branch|2|node_1|infin|node}}
{{CDD|node_h|split1|branch_hh|2|node_1|infin|node}}
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
[(3[3])+,2,∞]
bgcolor=#e7dcc3|DualHexagonal prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.

It is constructed from a triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

It consists of 1 + 6 + 1 = 8 edges meeting at a vertex, There are 6 triangular prism cells meeting at an edge and faces are shared between 2 cells.

Related honeycombs

{{-}}

= Hexagonal prismatic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Hexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{6,3}×{∞} or t0,1,3{6,3,2,∞}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|6|node|3|node|2|node_1|infin|node}}

{{CDD|node_1|3|node_1|6|node|2|node_1|infin|node}}

{{CDD|node_1|split1|branch_11|2|node_1|infin|node}}

bgcolor=#e7dcc3|Cell types4.4.6
bgcolor=#e7dcc3|Vertex figuretriangular bipyramid
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
bgcolor=#e7dcc3|DualTriangular prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The hexagonal prismatic honeycomb or hexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of hexagonal prisms.

It is constructed from a hexagonal tiling extruded into prisms.

220px

It is one of 28 convex uniform honeycombs.

This honeycomb can be alternated into the gyrated tetrahedral-octahedral honeycomb, with pairs of tetrahedra existing in the alternated gaps (instead of a triangular bipyramid).

There are 1 + 3 + 1 = 5 edges meeting at a vertex, 3 Hexagonal Prism cells meeting at an edge, and faces are shared between 2 cells.

{{-}}


= Trihexagonal prismatic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Trihexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolr{6,3}x{∞} or t1,3{6,3}x{∞}
bgcolor=#e7dcc3|Vertex figureRectangular bipyramid
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|6|node_1|3|node|2|node_1|infin|node}}
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
bgcolor=#e7dcc3|DualRhombille prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The trihexagonal prismatic honeycomb or trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:2.

220px

It is constructed from a trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


= Truncated hexagonal prismatic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated hexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt{6,3}×{∞} or t0,1,3{6,3,2,∞}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|2|node_1|infin|node}}
bgcolor=#e7dcc3|Cell types4.4.1224px
3.4.424px
bgcolor=#e7dcc3|Face types{3}, {4}, {12}
bgcolor=#e7dcc3|Edge figuresSquare,
Isosceles triangle
bgcolor=#e7dcc3|Vertex figureTriangular bipyramid
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
bgcolor=#e7dcc3|DualTriakis triangular prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The truncated hexagonal prismatic honeycomb or tomo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, and triangular prisms in a ratio of 1:2.

220px

It is constructed from a truncated hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


=Rhombitrihexagonal prismatic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rhombitrihexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Vertex figureTrapezoidal bipyramid
bgcolor=#e7dcc3|Schläfli symbolrr{6,3}×{∞} or t0,2,3{6,3,2,∞}
s2{3,6}×{∞}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node_1|2|node_1|infin|node}}
{{CDD|node_h|3|node_h|6|node_1|2|node_1|infin|node}}
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
bgcolor=#e7dcc3|DualDeltoidal trihexagonal prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The rhombitrihexagonal prismatic honeycomb or rhombitrihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms, cubes, and triangular prisms in a ratio of 1:3:2.

220px

It is constructed from a rhombitrihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


= Truncated trihexagonal prismatic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated trihexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{6,3}×{∞} or t0,1,2,3{6,3,2,∞}
bgcolor=#e7dcc3|Coxeter diagram{{CDDnode_1|6|node_1|3|node_1|2|node_1|infin|node}}
bgcolor=#e7dcc3|Space group
Coxeter notation
[6,3,2,∞]
bgcolor=#e7dcc3|Vertex figureirr. triangular bipyramid
bgcolor=#e7dcc3|DualKisrhombille prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The truncated trihexagonal prismatic honeycomb or tomo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, hexagonal prisms, and cubes in a ratio of 1:2:3.

320px

It is constructed from a truncated trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


= Snub trihexagonal prismatic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Snub trihexagonal prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{6,3}×{∞}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h|6|node_h|3|node_h|2|node_1|infin|node}}
bgcolor=#e7dcc3|Symmetry[(6,3)+,2,∞]
bgcolor=#e7dcc3|DualFloret pentagonal prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The snub trihexagonal prismatic honeycomb or simo-trihexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:8.

320px

It is constructed from a snub trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


= Snub trihexagonal antiprismatic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Snub trihexagonal antiprismatic honeycomb

bgcolor=#e7dcc3|TypeConvex honeycomb
bgcolor=#e7dcc3|Schläfli symbolht0,1,2,3{6,3,2,∞}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDDnode_h|6|node_h|3|node_h|2|node_h|infin|node}}
bgcolor=#e7dcc3|Cellshexagonal antiprism
octahedron
tetrahedron
bgcolor=#e7dcc3|Vertex figure80px
bgcolor=#e7dcc3|Symmetry[6,3,2,∞]+
bgcolor=#e7dcc3|Propertiesvertex-transitive

A snub trihexagonal antiprismatic honeycomb can be constructed by alternation of the truncated trihexagonal prismatic honeycomb, although it can not be made uniform, but it can be given Coxeter diagram: {{CDD||node_h|6|node_h|3|node_h|2|node_h|infin|node}} and has symmetry [6,3,2,∞]+. It makes hexagonal antiprisms from the dodecagonal prisms, octahedra (as triangular antiprisms) from the hexagonal prisms, tetrahedra (as tetragonal disphenoids) from the cubes, and two tetrahedra from the triangular bipyramids.

{{-}}


= Elongated triangular prismatic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Elongated triangular prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,6}:e×{∞}
s{∞}h1{∞}×{∞}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|infin|node_h|2x|node_h|infin|node_1|2|node_1|infin|node}}
{{CDD|node_h|infin|node_h|2x|node_h|infin|node_1|2|node_1|infin|node}}
bgcolor=#e7dcc3|Space group
Coxeter notation
[∞,2+,∞,2,∞]
[(∞,2)+,∞,2,∞]
bgcolor=#e7dcc3|DualPrismatic pentagonal prismatic honeycomb
bgcolor=#e7dcc3|Propertiesvertex-transitive

The elongated triangular prismatic honeycomb or elongated antiprismatic prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

220px

It is constructed from an elongated triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

{{-}}


= Gyrated triangular prismatic honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Gyrated triangular prismatic honeycomb

bgcolor=#e7dcc3|TypeConvex uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,6}:g×{∞}
{4,4}f{∞}
bgcolor=#e7dcc3|Cell types(3.4.4)
bgcolor=#e7dcc3|Face types{3}, {4}
bgcolor=#e7dcc3|Vertex figure120px
bgcolor=#e7dcc3|Space group[4,(4,2+,∞,2+)] ?
bgcolor=#e7dcc3|Dual?
bgcolor=#e7dcc3|Propertiesvertex-transitive

The gyrated triangular prismatic honeycomb or parasquare fastigial cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of triangular prisms. It is vertex-uniform with 12 triangular prisms per vertex.

250px250px

It can be seen as parallel planes of square tiling with alternating offsets caused by layers of paired triangular prisms. The prisms in each layer are rotated by a right angle to those in the next layer.

It is one of 28 convex uniform honeycombs.

Pairs of triangular prisms can be combined to create gyrobifastigium cells. The resulting honeycomb is closely related but not equivalent: it has the same vertices and edges, but different two-dimensional faces and three-dimensional cells.

{{-}}


= Gyroelongated triangular prismatic honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Gyroelongated triangular prismatic honeycomb

bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,6}:ge×{∞}
{4,4}f1{∞}
bgcolor=#e7dcc3|Vertex figure120px
bgcolor=#e7dcc3|Space group
Coxeter notation
[4,(4,2+,∞,2+)] ?
bgcolor=#e7dcc3|Dual|
bgcolor=#e7dcc3|Propertiesvertex-transitive

The gyroelongated triangular prismatic honeycomb or elongated parasquare fastigial cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

240px240px

It is created by alternating layers of cubes and triangular prisms, with the prisms alternating in orientation by 90 degrees.

It is related to the elongated triangular prismatic honeycomb which has the triangular prisms with the same orientation.

This is related to a space-filling polyhedron, elongated gyrobifastigium, where cube and two opposite triangular prisms are augmented together as a single polyhedron:

:160px

{{-}}

References

  • {{cite web |first=George |last=Olshevsky |title=Uniform Panoploid Tetracombs |date=2006 |url=https://bendwavy.org/4HONEYS.pdf}} (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • {{cite journal |author-link=Branko Grünbaum |first=Branko |last=Grünbaum |title=Uniform tilings of 3-space |journal=Geombinatorics |volume=4 |issue=2 |pages=49–56 |year=1994 |url=https://geombina.uccs.edu/?page_id=528}}
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • {{cite book |editor-first=F. Arthur |editor-last=Sherk |editor2-link=Peter McMullen |editor2-first=Peter |editor2-last=McMullen |editor3-first=Anthony C. |editor3-last=Thompson |editor4-first=Asia Ivic |editor4-last=Weiss |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |publisher=Wiley |year=1995 |isbn=978-0-471-01003-6 |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html}}
  • Paper 22: {{cite journal |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes I |journal=Mathematische Zeitschrift |volume=46 |pages=380–407 |year=1940 |doi=10.1007/BF01181449 |quote=1.9 Uniform space-fillings }}
  • {{cite journal |author-link=Alfredo Andreini |first=A. |last=Andreini |title=Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets) |journal=Mem. Società Italiana della Scienze |volume=Ser. 3 |issue=14 |year=1905 |pages=75–129}}
  • {{KlitzingPolytopes|flat.htm|3D Euclidean Honeycombs|tiph}}
  • [http://www.doskey.com/polyhedra/UniformHoneycombs.html Uniform Honeycombs in 3-Space] VRML models

Category:3-honeycombs