truncated order-6 pentagonal tiling
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U65_12}}
In geometry, the truncated order-6 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2{6,5}.
Uniform colorings
Symmetry
The dual of this tiling represents the fundamental domains of the *553 symmetry. There are no mirror removal subgroups of [(5,5,3)], but this symmetry group can be doubled to 652 symmetry by adding a bisecting mirror to the fundamental domains.
class=wikitable
|+ Small index subgroups of [(5,5,3)] |
align=center
!Type !Reflective domains !Rotational symmetry |
align=center
!1 !2 |
align=center
!Diagram |
align=center
|[(5,5,3)] = {{CDD|node_c1|split1-55|branch_c1}} |[(5,5,3)]+ = {{CDD|node_h2|split1-55|branch_h2h2}} |
Related polyhedra and tiling
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
See also
{{Commonscat|Uniform tiling 6-10-10}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery]
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}