truncated tetraheptagonal tiling
{{Short description|Hyperbolic tiling}}
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U74_012}}
In geometry, the truncated tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of tr{4,7}.
Images
Poincaré disk projection, centered on 14-gon:
Symmetry
File:Truncated_tetraheptagonal_tiling_with_mirrors.png
The dual to this tiling represents the fundamental domains of [7,4] (*742) symmetry. There are three small index subgroups constructed from [7,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
{{-}}
class="wikitable collapsible collapsed"
!colspan=12| Small index subgroups of [7,4] (*742) |
align=center
!1 !colspan=2|2 !14 |
align=center
!Diagram |
Coxeter (orbifold) ![7,4] = {{CDD|node_c1|7|node_c1|4|node_c2}} ![7,4,1+] = {{CDD|node_c1|7|node_c1|4|node_h0}} = {{CDD|node_c1|split1-77|nodeab_c1}} ![7+,4] = {{CDD|node_h2|7|node_h2|4|node_c2}} ![7*,4] = {{CDD|node_g|7|3sg|node_g|4|node_c2}} |
---|
align=center
!Index !2 !colspan=2|4 !28 |
align=center
!Diagram !colspan=2|160px |
Coxeter (orbifold) ![7,4]+ = {{CDD|node_h2|7|node_h2|4|node_h2}} !colspan=2|[7+,4]+ = {{CDD|node_h2|7|node_h2|4|node_h0}} = {{CDD|node_h2|split1-77|branch_h2h2|label2}} ![7*,4]+ = {{CDD|node_g|7|3sg|node_g|4|node_h2}} |
Related polyhedra and tiling
{{Order 7-4 tiling table}}
{{Omnitruncated4 table}}
{{Omnitruncated_symmetric_table}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
See also
{{Commonscat|Uniform tiling 4-8-14}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery]
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}
{{hyperbolic-geometry-stub}}