ultra-high temperature ceramic matrix composite
Ultra-high temperature ceramic matrix composites (UHTCMC) are a class of refractory ceramic matrix composites (CMCs) with melting points significantly higher than that of typical CMCs.{{cite journal |last1=Marumo |first1=Tomoki |last2=Koide |first2=Noriatsu |last3=Arai |first3=Yutaro |last4=Nishimura |first4=Toshiyuki |last5=Hasegawa |first5=Makoto |last6=Inoue |first6=Ryo |title=Characterization of carbon fiber-reinforced ultra-high temperature ceramic matrix composites fabricated via Zr-Ti alloy melt infiltration |journal=Journal of the European Ceramic Society |date=October 2022 |volume=42 |issue=13 |pages=5208–5219 |doi=10.1016/j.jeurceramsoc.2022.06.040 |s2cid=249838869 |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221922004915 |access-date=12 December 2023 |ref=1|url-access=subscription }} Among other applications, they are the subject of extensive research in the aerospace engineering field for their ability to withstand extreme heat for extended periods of time, a crucial property in applications such as thermal protection systems (TPS){{Cite journal |last1=Mungiguerra |first1=S. |last2=Silvestroni |first2=L. |last3=Savino |first3=R. |last4=Zoli |first4=L. |last5=Esser |first5=B. |last6=Lagos |first6=M. |last7=Sciti |first7=D. |date=2022-02-01 |title=Qualification and reusability of long and short fibre-reinforced ultra-refractory composites for aerospace thermal protection systems |url=https://www.sciencedirect.com/science/article/abs/pii/S0010938X2100723X |journal=Corrosion Science |volume=195 |pages=109955 |doi=10.1016/j.corsci.2021.109955 |bibcode=2022Corro.19509955M |issn=0010-938X|url-access=subscription }} for high heat fluxes (> 10 MW/m2) and rocket nozzles. Carbon fiber-reinforced carbon (C/C) maintains its structural integrity up to 2000 °C;{{cite journal |last1=Cheng |first1=Tianbao |last2=Zhang |first2=Rubing |last3=Pei |first3=Yongmao |last4=He |first4=Rujie |last5=Fang |first5=Daining |last6=Yang |first6=Yazheng |title=Flexural properties of carbon-carbon composites at temperatures up to 2600 °C |journal=Materials Research Express |date=12 June 2019 |volume=6 |issue=8 |doi=10.1088/2053-1591/ab23c9 |bibcode=2019MRE.....6h5629C |s2cid=181325974 |url=https://iopscience.iop.org/article/10.1088/2053-1591/ab23c9 |access-date=12 December 2023 |ref=2|url-access=subscription }}{{Cite journal |last1=Sciti |first1=D. |last2=Vinci |first2=A. |last3=Zoli |first3=L. |last4=Galizia |first4=P. |last5=Mor |first5=M. |last6=Fahrenholtz |first6=W. |last7=Mungiguerra |first7=S. |last8=Savino |first8=R. |last9=Caporale |first9=A. M. |last10=Airoldi |first10=A. |date=2024-12-19 |title=Elevated temperature performance: Arc-Jet testing of carbon fiber reinforced ZrB₂ bars up to 2200 °C for strength retention assessment |url=https://www.sciopen.com/article/10.26599/JAC.2024.9221022 |journal=Journal of Advanced Ceramics |language=en |doi=10.26599/JAC.2024.9221022 |issn=2226-4108|doi-access=free }}{{Cite journal |last1=Galizia |first1=Pietro |last2=Vinci |first2=Antonio |last3=Zoli |first3=Luca |last4=Monteverde |first4=Frederic |last5=Binner |first5=Jon |last6=Venkatachalam |first6=Vinothini |last7=Lagos |first7=Miguel.A. |last8=Reimer |first8=Thomas |last9=Jain |first9=Neraj |last10=Sciti |first10=Diletta |date=October 2021 |title=Retained strength of UHTCMCs after oxidation at 2278 K |url=https://doi.org/10.1016/j.compositesa.2021.106523 |journal=Composites Part A: Applied Science and Manufacturing |volume=149 |pages=106523 |doi=10.1016/j.compositesa.2021.106523 |issn=1359-835X}} however, C/C is mainly used as an ablative material, designed to purposefully erode under extreme temperatures in order to dissipate energy. Carbon fiber reinforced silicon carbide matrix composites (C/SiC) and Silicon carbide fiber reinforced silicon carbide matrix composites (SiC/SiC) are considered reusable materials because silicon carbide is a hard material with a low erosion and it forms a silica glass layer during oxidation which prevents further oxidation of inner material. However, above a certain temperature (which depends on the environmental conditions, such as the partial pressure of oxygen), the active oxidation of the silicon carbide matrix begins, resulting in the formation of gaseous silicon monoxide (SiO(g)).{{Cite journal |last1=Vinci |first1=Antonio |last2=Reimer |first2=Thomas |last3=Zoli |first3=Luca |last4=Sciti |first4=Diletta |date=May 2021 |title=Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200 °C |url=https://doi.org/10.1016/j.corsci.2021.109377 |journal=Corrosion Science |volume=184 |pages=109377 |doi=10.1016/j.corsci.2021.109377 |issn=0010-938X|url-access=subscription }}{{Cite journal |last1=Vinci |first1=Antonio |last2=Zoli |first2=Luca |last3=Galizia |first3=Pietro |last4=Sciti |first4=Diletta |date=December 2020 |title=Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites |url=https://doi.org/10.1016/j.jeurceramsoc.2020.06.043 |journal=Journal of the European Ceramic Society |volume=40 |issue=15 |pages=5067–5075 |doi=10.1016/j.jeurceramsoc.2020.06.043 |issn=0955-2219|url-access=subscription }} This leads to a loss of protection against further oxidation, causing the material to undergo uncontrolled and rapid erosion. For this reason C/SiC and SiC/SiC are used in the range of temperature between 1200 °C - 1400 °C. The oxidation resistance and the thermo-mechanical properties of these materials can be improved by incorporating a fraction of about 20-30% of UHTC phases, e.g., ZrB2, into the matrix.{{Cite journal |last1=Servadei |first1=Francesca |last2=Zoli |first2=Luca |last3=Vinci |first3=Antonio |last4=Galizia |first4=Pietro |last5=Sciti |first5=Diletta |date=2021-08-15 |title=Significant improvement of the self-protection capability of ultra-high temperature ceramic matrix composites |url=https://www.sciencedirect.com/science/article/abs/pii/S0010938X21003413 |journal=Corrosion Science |volume=189 |pages=109575 |doi=10.1016/j.corsci.2021.109575 |bibcode=2021Corro.18909575S |issn=0010-938X|url-access=subscription }}
On the one hand CMCs are lightweight materials with high strength-to-weight ratio even at high temperature, high thermal shock resistance and toughness but suffer of erosion during service. On the other side bulk ceramics made of ultra-high temperature ceramics (e.g. ZrB2, HfB2, or their composites) are hard materials which show low erosion even above 2000 °C but are heavy and suffer of catastrophic fracture and low thermal shock resistance compared to CMCs. Failure is easily under mechanical or thermo-mechanical loads because of cracks initiated by small defects or scratches. current research is focused on combining several reinforcing elements (e.g short carbon fibers,{{Cite journal |last1=Mor |first1=Matteo |last2=Vinci |first2=Antonio |last3=Failla |first3=Simone |last4=Galizia |first4=Pietro |last5=Zoli |first5=Luca |last6=Sciti |first6=Diletta |date=2023-01-05 |title=A novel approach for manufacturing of layered, ultra-refractory composites using pliable, short fibre-reinforced ceramic sheets |url=https://www.sciopen.com/article/10.26599/JAC.2023.9220674 |journal=Journal of Advanced Ceramics |language=en |volume=12 |issue=1 |pages=155–168 |doi=10.26599/JAC.2023.9220674 |issn=2226-4108|doi-access=free }} PAN or pitch based continuous carbon fibers,{{Cite journal |last1=Sciti |first1=D. |last2=Zoli |first2=L. |last3=Vinci |first3=A. |last4=Silvestroni |first4=L. |last5=Mungiguerra |first5=S. |last6=Galizia |first6=P. |date=May 2021 |title=Effect of PAN-based and pitch-based carbon fibres on microstructure and properties of continuous Cf/ZrB2-SiC UHTCMCs |url=https://doi.org/10.1016/j.jeurceramsoc.2020.05.032 |journal=Journal of the European Ceramic Society |volume=41 |issue=5 |pages=3045–3050 |doi=10.1016/j.jeurceramsoc.2020.05.032 |issn=0955-2219}} ceramic fibers,{{Cite journal |last1=Zoli |first1=L. |last2=Medri |first2=V. |last3=Melandri |first3=C. |last4=Sciti |first4=D. |date=2015-12-01 |title=Continuous SiC fibers-ZrB2 composites |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221915300911 |journal=Journal of the European Ceramic Society |volume=35 |issue=16 |pages=4371–4376 |doi=10.1016/j.jeurceramsoc.2015.08.008 |issn=0955-2219}} graphite sheets,{{Cite journal |last1=Zoli |first1=Luca |last2=Servadei |first2=Francesca |last3=Failla |first3=Simone |last4=Mor |first4=Matteo |last5=Vinci |first5=Antonio |last6=Galizia |first6=Pietro |last7=Sciti |first7=Diletta |date=2024-02-01 |title=ZrB2–SiC ceramics toughened with oriented paper-derived graphite for a sustainable approach |url=https://www.sciopen.com/article/10.26599/JAC.2024.9220842 |journal=Journal of Advanced Ceramics |language=en |volume=13 |issue=2 |pages=207–219 |doi=10.26599/JAC.2024.9220842 |issn=2226-4108|doi-access=free }} etc) with UHTC phases to reduce the brittleness of these materials.
The European Commission funded a research project, C3HARME,{{cite web|title=c³harme|url=http://www.c3harme.eu|website=www.c3harme.eu}}{{Cite journal|last1=Sciti|first1=Diletta|last2=Silvestroni|first2=Laura|last3=Monteverde|first3=Frédéric|last4=Vinci|first4=Antonio|last5=Zoli|first5=Luca|date=2018-10-17|title=Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space|journal=Advances in Applied Ceramics|volume=117|issue=sup1|pages=s70–s75|doi=10.1080/17436753.2018.1509822|bibcode=2018AdApC.117S..70S |issn=1743-6753|doi-access=free}} under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with carbon fibers suitable for applications in severe aerospace environments as possible near-zero ablation thermal protection system (TPS) materials (e.g. heat shield){{Cite journal |last1=Mungiguerra |first1=Stefano |last2=Di Martino |first2=Giuseppe D. |last3=Cecere |first3=Anselmo |last4=Savino |first4=Raffaele |last5=Zoli |first5=Luca |last6=Silvestroni |first6=Laura |last7=Sciti |first7=Diletta |date=August 2020 |title=Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment |url=https://doi.org/10.1016/j.ijheatmasstransfer.2020.119910 |journal=International Journal of Heat and Mass Transfer |volume=156 |pages=119910 |doi=10.1016/j.ijheatmasstransfer.2020.119910 |bibcode=2020IJHMT.15619910M |issn=0017-9310}}{{Cite journal |last1=Baker |first1=B. |last2=Venkatachalam |first2=V. |last3=Zoli |first3=L. |last4=Vinci |first4=A. |last5=Failla |first5=S. |last6=Sciti |first6=D. |last7=Binner |first7=J. |date=December 2021 |title=Ablation behaviour of carbon fibre ultra-high temperature composites at oblique angles of attack |url=https://doi.org/10.1016/j.matdes.2021.110199 |journal=Materials & Design |volume=212 |pages=110199 |doi=10.1016/j.matdes.2021.110199 |issn=0264-1275|doi-access=free }} and for propulsion (e.g. rocket nozzle).{{Cite journal|last1=Sciti|first1=D.|last2=Zoli|first2=L.|last3=Silvestroni|first3=L.|last4=Cecere|first4=A.|last5=Martino|first5=G.D. Di|last6=Savino|first6=R.|title=Design, fabrication and high velocity oxy-fuel torch tests of a C f -ZrB 2 - fiber nozzle to evaluate its potential in rocket motors|journal=Materials & Design|volume=109|pages=709–717|doi=10.1016/j.matdes.2016.07.090|year=2016}}{{Cite journal |last1=Mungiguerra |first1=Stefano |last2=Di Martino |first2=Giuseppe D. |last3=Savino |first3=Raffaele |last4=Zoli |first4=Luca |last5=Silvestroni |first5=Laura |last6=Sciti |first6=Diletta |date=December 2020 |title=Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments |url=https://doi.org/10.1016/j.ijheatmasstransfer.2020.120492 |journal=International Journal of Heat and Mass Transfer |volume=163 |pages=120492 |doi=10.1016/j.ijheatmasstransfer.2020.120492 |bibcode=2020IJHMT.16320492M |issn=0017-9310|url-access=subscription }}{{Cite journal |last1=Sciti |first1=Diletta |last2=Vinci |first2=Antonio |last3=Zoli |first3=Luca |last4=Galizia |first4=Pietro |last5=Failla |first5=Simone |last6=Mungiguerra |first6=Stefano |last7=Martino |first7=Giuseppe D. Di |last8=Cecere |first8=Anselmo |last9=Savino |first9=Raffaele |date=2023-07-05 |title=Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles |url=https://www.sciopen.com/article/10.26599/JAC.2023.9220759 |journal=Journal of Advanced Ceramics |language=en |volume=12 |issue=7 |pages=1345–1360 |doi=10.26599/JAC.2023.9220759 |issn=2226-4108|doi-access=free }}{{Cite book|last1=Mungiguerra|first1=Stefano|last2=Di Martino|first2=Giuseppe D.|last3=Savino|first3=Raffaele|last4=Zoli|first4=Luca|last5=Sciti|first5=Diletta|last6=Lagos|first6=Miguel A.|chapter=Ultra-High-Temperature Ceramic Matrix Composites in Hybrid Rocket Propulsion Environment |date=2018-07-08|title=2018 International Energy Conversion Engineering Conference|location=Reston, Virginia|publisher=American Institute of Aeronautics and Astronautics|doi=10.2514/6.2018-4694|isbn=9781624105715|chapter-url=https://zenodo.org/record/2551031}} The demand for reusable advanced materials with temperature capability over 2000 °C has been growing.{{Cite journal|last1=Sziroczak|first1=D.|last2=Smith|first2=H.|title=A review of design issues specific to hypersonic flight vehicles|journal=Progress in Aerospace Sciences|volume=84|pages=1–28|doi=10.1016/j.paerosci.2016.04.001|year=2016|bibcode=2016PrAeS..84....1S|hdl=1826/10119|hdl-access=free}}{{Cite journal|last1=Vinci|first1=Antonio|last2=Zoli|first2=Luca|last3=Sciti|first3=Diletta|last4=Watts|first4=Jeremy|last5=Hilmas|first5=Greg E.|last6=Fahrenholtz|first6=William G.|date=April 2019|title=Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C|journal=Journal of the European Ceramic Society|volume=39|issue=4|pages=780–787|doi=10.1016/j.jeurceramsoc.2018.11.017|s2cid=139993345 |issn=0955-2219}}{{Cite journal|last1=Mungiguerra|first1=S.|last2=Di Martino|first2=G.D.|last3=Cecere|first3=A.|last4=Savino|first4=R.|last5=Silvestroni|first5=L.|last6=Vinci|first6=A.|last7=Zoli|first7=L.|last8=Sciti|first8=D.|date=April 2019|title=Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites|journal=Corrosion Science|volume=149|pages=18–28|doi=10.1016/j.corsci.2018.12.039|bibcode=2019Corro.149...18M |s2cid=139421458 |issn=0010-938X|url=https://zenodo.org/record/3465346}}{{Cite journal |last1=Vinci |first1=Antonio |last2=Zoli |first2=Luca |last3=Sciti |first3=Diletta |last4=Watts |first4=Jeremy |last5=Hilmas |first5=Greg E. |last6=Fahrenholtz |first6=William G. |date=October 2019 |title=Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100 °C |url=https://doi.org/10.1016/j.jeurceramsoc.2019.04.049 |journal=Journal of the European Ceramic Society |volume=39 |issue=13 |pages=3594–3603 |doi=10.1016/j.jeurceramsoc.2019.04.049 |issn=0955-2219|url-access=subscription }} Recently carbon fiber reinforced zirconium boride-based composites obtained by powder slurry impregnation (SI) and sintering has been investigated.{{Cite journal|last1=Zoli|first1=L.|last2=Sciti|first2=D.|title=Efficacy of a ZrB2 –SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials|journal=Materials & Design|volume=113|pages=207–213|doi=10.1016/j.matdes.2016.09.104|year=2017|url=https://zenodo.org/record/1292518}}{{Cite journal|last1=Zoli|first1=L.|last2=Vinci|first2=A.|last3=Silvestroni|first3=L.|last4=Sciti|first4=D.|last5=Reece|first5=M.|last6=Grasso|first6=S.|title=Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres|journal=Materials & Design|volume=130|pages=1–7|doi=10.1016/j.matdes.2017.05.029|year=2017|url=https://zenodo.org/record/1292487}}{{Cite journal|last1=Galizia|first1=Pietro|last2=Failla|first2=Simone|last3=Zoli|first3=Luca|last4=Sciti|first4=Diletta|title=Tough salami-inspired Cf/ZrB2 UHTCMCs produced by electrophoretic deposition|journal=Journal of the European Ceramic Society|volume=38|issue=2|pages=403–409|doi=10.1016/j.jeurceramsoc.2017.09.047|year=2018|url=https://zenodo.org/record/1292469}}{{Cite journal|last1=Vinci|first1=Antonio|last2=Zoli|first2=Luca|last3=Sciti|first3=Diletta|last4=Melandri|first4=Cesare|last5=Guicciardi|first5=Stefano|title=Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis|journal=Materials & Design|volume=145|pages=97–107|doi=10.1016/j.matdes.2018.02.061|year=2018|url=https://zenodo.org/record/1292479}}{{Cite journal |last1=Zoli |first1=L. |last2=Medri |first2=V. |last3=Melandri |first3=C. |last4=Sciti |first4=D. |year=2015 |title=Continuous SiC fibers-ZrB2 composites |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221915300911 |journal=Journal of the European Ceramic Society |volume=35 |issue=16 |pages=4371–4376 |doi=10.1016/j.jeurceramsoc.2015.08.008}}{{Cite journal|last1=Sciti|first1=D.|last2=Murri|first2=A. Natali|last3=Medri|first3=V.|last4=Zoli|first4=L.|title=Continuous C fibre composites with a porous ZrB2 Matrix|journal=Materials & Design|volume=85|pages=127–134|doi=10.1016/j.matdes.2015.06.136|year=2015}}{{Cite journal|last1=Sciti|first1=D.|last2=Pienti|first2=L.|last3=Murri|first3=A. Natali|last4=Landi|first4=E.|last5=Medri|first5=V.|last6=Zoli|first6=L.|title=From random chopped to oriented continuous SiC fibers–ZrB2 composites|journal=Materials & Design|volume=63|pages=464–470|doi=10.1016/j.matdes.2014.06.037|year=2014}}{{Cite journal|last1=Vinci|first1=Antonio|last2=Zoli|first2=Luca|last3=Sciti|first3=Diletta|date=September 2018|title=Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2 /SiC composites at 1500 and 1650 °C in air|journal=Journal of the European Ceramic Society|volume=38|issue=11|pages=3767–3776|doi=10.1016/j.jeurceramsoc.2018.04.064|s2cid=139815518 |issn=0955-2219|url=https://zenodo.org/record/1292475}}{{Cite journal|last1=Failla|first1=S.|last2=Galizia|first2=P.|last3=Zoli|first3=L.|last4=Vinci|first4=A.|last5=Sciti|first5=D.|date=March 2019|title=Toughening effect of non-periodic fiber distribution on crack propagation energy of UHTC composites|journal=Journal of Alloys and Compounds|volume=777|pages=612–618|doi=10.1016/j.jallcom.2018.11.043|s2cid=139247345 |issn=0925-8388}}{{Cite journal|last1=Galizia|first1=P.|last2=Zoli|first2=L.|last3=Sciti|first3=D.|date=December 2018|title=Impact of residual stress on thermal damage accumulation, and Young's modulus of fiber-reinforced ultra-high temperature ceramics|journal=Materials & Design|volume=160|pages=803–809|doi=10.1016/j.matdes.2018.10.019|issn=0264-1275|doi-access=free}}{{Cite journal|last1=Zoli|first1=Luca|last2=Vinci|first2=Antonio|last3=Galizia|first3=Pietro|last4=Melandri|first4=Cesare|last5=Sciti|first5=Diletta|date=2018-06-14|title=On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments|journal=Scientific Reports|volume=8|issue=1|page=9148|doi=10.1038/s41598-018-27328-x|pmid=29904145|pmc=6002483|bibcode=2018NatSR...8.9148Z|issn=2045-2322|url=https://zenodo.org/record/1292504|doi-access=free}}{{Cite journal |last1=Sciti |first1=D. |last2=Galizia |first2=P. |last3=Reimer |first3=T. |last4=Schoberth |first4=A. |last5=Gutiérrez-Gonzalez |first5=C.F. |last6=Silvestroni |first6=L. |last7=Vinci |first7=A. |last8=Zoli |first8=L. |date=July 2021 |title=Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering |url=https://doi.org/10.1016/j.compositesb.2021.108839 |journal=Composites Part B: Engineering |volume=216 |pages=108839 |doi=10.1016/j.compositesb.2021.108839 |issn=1359-8368|url-access=subscription }} With these promising properties, these materials can be also considered for other applications including as friction materials for braking systems.{{Cite journal |last1=Sciti |first1=Diletta |last2=Guicciardi |first2=Stefano |last3=Zoli |first3=Luca |last4=Failla |first4=Simone |last5=Melandri |first5=Cesare |date=2022-11-01 |title=Dry sliding wear behaviour of ZrB2-based ceramics: Self-mated and cross coupling with alumina |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221922005738 |journal=Journal of the European Ceramic Society |volume=42 |issue=14 |pages=6335–6346 |doi=10.1016/j.jeurceramsoc.2022.07.022 |issn=0955-2219|url-access=subscription }}{{Cite journal |last1=Mor |first1=Matteo |last2=Meiser |first2=Matthias |last3=Langhof |first3=Nico |last4=Vinci |first4=Antonio |last5=Zoli |first5=Luca |last6=Alber-Laukant |first6=Bettina |last7=Tremmel |first7=Stephan |last8=Schafföner |first8=Stefan |last9=Sciti |first9=Diletta |date=2024-11-01 |title=Dry tribological behavior of 0/90° continuous carbon fiber reinforced ZrB2 based UHTC-material |url=https://www.sciencedirect.com/science/article/abs/pii/S095522192400520X |journal=Journal of the European Ceramic Society |volume=44 |issue=14 |pages=116664 |doi=10.1016/j.jeurceramsoc.2024.06.005 |issn=0955-2219|url-access=subscription }}
Breakthroughs in research
The European Commission funded a research project, C3HARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments.{{Cite web|url=https://c3harme.eu/|title=C3HARME}}
Challenges in manufacturing and machining
The manufacturing and machining of UHTCMCs present new challenges due to the unique properties of these advanced materials. Traditional manufacturing techniques such as casting and molding may not be suitable for UHTCMCs, requiring the development of specific methods like chemical vapor infiltration (CVI),{{Cite journal |last1=Paul |first1=A. |last2=Venugopal |first2=S. |last3=Binner |first3=J. G. P. |last4=Vaidhyanathan |first4=B. |last5=Heaton |first5=A. C. J. |last6=Brown |first6=P. M. |date=2013-02-01 |title=UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221912004669 |journal=Journal of the European Ceramic Society |volume=33 |issue=2 |pages=423–432 |doi=10.1016/j.jeurceramsoc.2012.08.018 |issn=0955-2219}} polymer infiltration and pyrolysis (PIP),{{Cite journal |last1=Servadei |first1=Francesca |last2=Zoli |first2=Luca |last3=Galizia |first3=Pietro |last4=Piancastelli |first4=Andreana |last5=Sciti |first5=Diletta |date=2023-01-01 |title=Processing and characterization of ultra-high temperature ceramic matrix composites via water based slurry impregnation and polymer infiltration and pyrolysis |url=https://www.sciencedirect.com/science/article/abs/pii/S027288422203276X |journal=Ceramics International |volume=49 |issue=1 |pages=1220–1229 |doi=10.1016/j.ceramint.2022.09.100 |issn=0272-8842}} reactive melt infiltration (RMI),{{Cite journal |last1=Vinci |first1=Antonio |last2=Zoli |first2=Luca |last3=Galizia |first3=Pietro |last4=Kütemeyer |first4=Marius |last5=Koch |first5=Dietmar |last6=Frieß |first6=Martin |last7=Sciti |first7=Diletta |date=2020-10-01 |title=Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu |url=https://www.sciencedirect.com/science/article/abs/pii/S1359835X20302128 |journal=Composites Part A: Applied Science and Manufacturing |volume=137 |pages=105973 |doi=10.1016/j.compositesa.2020.105973 |issn=1359-835X|url-access=subscription }}{{Cite journal |last1=Silvestroni |first1=Laura |last2=Vinci |first2=Antonio |last3=Gilli |first3=Nicola |last4=Zoli |first4=Luca |last5=Sciti |first5=Diletta |last6=Koch |first6=Dietmar |last7=Kütemeyer |first7=Marius |date=2023-06-25 |title=Melt/solid interaction and melt super-saturation effect on the microstructure asset of ultra-refractory composites prepared by reactive melting infiltration |url=https://www.sciencedirect.com/science/article/abs/pii/S0925838823008241 |journal=Journal of Alloys and Compounds |volume=947 |pages=169521 |doi=10.1016/j.jallcom.2023.169521 |issn=0925-8388|url-access=subscription }} slurry impregnation and sintering (SIS){{Cite journal |last1=Sciti |first1=D. |last2=Zoli |first2=L. |last3=Reimer |first3=T. |last4=Vinci |first4=A. |last5=Galizia |first5=P. |date=2022-04-01 |title=A systematic approach for horizontal and vertical scale up of sintered Ultra-High Temperature Ceramic Matrix Composites for aerospace – Advances and perspectives |url=https://www.sciencedirect.com/science/article/abs/pii/S1359836822000956 |journal=Composites Part B: Engineering |volume=234 |pages=109709 |doi=10.1016/j.compositesb.2022.109709 |issn=1359-8368}} or by combining multiple processes in sequence.{{Cite journal |last1=Servadei |first1=Francesca |last2=Zoli |first2=Luca |last3=Galizia |first3=Pietro |last4=Melandri |first4=Cesare |last5=Sciti |first5=Diletta |date=2022-05-01 |title=Preparation of UHTCMCs by hybrid processes coupling Polymer Infiltration and Pyrolysis with Hot Pressing and vice versa |url=https://www.sciencedirect.com/science/article/abs/pii/S095522192100933X |journal=Journal of the European Ceramic Society |volume=42 |issue=5 |pages=2118–2126 |doi=10.1016/j.jeurceramsoc.2021.12.039 |issn=0955-2219|url-access=subscription }} CVI involves the infiltration of a porous preform, typically made of fibers, with a gas-phase precursor that decomposes at high temperatures to form a ceramic matrix. The process begins by placing the fiber preform in a reaction chamber, where it is exposed to a gaseous precursor, such as silicon-containing compounds (e.g., CH4, SiCl4 or SiH4) in the presence of heat. At elevated temperatures, the precursor gases react and deposit a solid ceramic material onto the fibers, forming a dense matrix.
The process also ensures and adequate bonding between the matrix and the reinforcing fibers, enhancing the mechanical properties and thermal stability of the composite. However, CVI is relatively slow due to the need for long infiltration times. The method is also sensitive to process conditions, requiring careful control of temperature, pressure, and precursor concentration to avoid defects like porosity or incomplete infiltration.
PIP involves multiple cycles polymer infiltration followed by pyrolysis, leading to high material performance but is time-consuming and costly due to the need for several infiltration and pyrolysis steps.{{Cite journal |last1=Servadei |first1=Francesca |last2=Zoli |first2=Luca |last3=Galizia |first3=Pietro |last4=Melandri |first4=Cesare |last5=Failla |first5=Simone |last6=Sciti |first6=Diletta |date=2023-03-15 |title=Effect of annealing treatments on the mechanical behaviour of UHTCMCs prepared by mild polymer infiltration and pyrolysis |url=https://www.sciencedirect.com/science/article/abs/pii/S0272884222042079 |journal=Ceramics International |volume=49 |issue=6 |pages=10032–10040 |doi=10.1016/j.ceramint.2022.11.183 |issn=0272-8842|url-access=subscription }} RMI is faster, as molten metal or ceramic infiltrates the preform, forming a strong composite. However, it requires precise control of the high-temperature process and can be expensive depending on the materials used. SIS is the fastest process ensuring also the largest fraction of UHTC phases in the matrix, but it may face issues with uniformity, bonding between fibers and the matrix.{{Cite journal |last1=Vinci |first1=Antonio |last2=Zoli |first2=Luca |last3=Silvestroni |first3=Laura |last4=Gilli |first4=Nicola |last5=Sciti |first5=Diletta |date=2023-03-01 |title=Synthesis, microstructure and mechanical properties of lamellar YB2C2 – based ultra-high temperature ceramic composites |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221922008500 |journal=Journal of the European Ceramic Society |volume=43 |issue=3 |pages=831–841 |doi=10.1016/j.jeurceramsoc.2022.10.072 |issn=0955-2219}} Moreover, sintering occurs via hot pressing (HP) or spark plasma sintering (SPS){{Cite journal |last1=Zoli |first1=Luca |last2=Vinci |first2=Antonio |last3=Galizia |first3=Pietro |last4=Gutièrrez-Gonzalez |first4=Carlos F. |last5=Rivera |first5=Sergio |last6=Sciti |first6=Diletta |date=July 2020 |title=Is spark plasma sintering suitable for the densification of continuous carbon fibre - UHTCMCs? |url=https://doi.org/10.1016/j.jeurceramsoc.2019.12.004 |journal=Journal of the European Ceramic Society |volume=40 |issue=7 |pages=2597–2603 |doi=10.1016/j.jeurceramsoc.2019.12.004 |issn=0955-2219}} furnaces wich required mechanical prussere to produce a low porosity material,{{Cite journal |last1=Vinci |first1=Antonio |last2=Silvestroni |first2=Laura |last3=Gilli |first3=Nicola |last4=Zoli |first4=Luca |last5=Sciti |first5=Diletta |date=2022-05-01 |title=Advancements in carbon fibre reinforced ultra-refractory ceramic composites: Effect of rare earth oxides addition |url=https://www.sciencedirect.com/science/article/abs/pii/S1359835X22000525 |journal=Composites Part A: Applied Science and Manufacturing |volume=156 |pages=106858 |doi=10.1016/j.compositesa.2022.106858 |issn=1359-835X|url-access=subscription }} so the process allow to produce simple shape and scalability could be an issue.In addition, the consolidation of these materials is done combining a strong mechanical pressing during the sintering process at very high temperature. These furnaces allow simple shapes to be produced, and currently the largest furnaces to date on the market allow side plate sizes around half a meter. Scalability of the process is therefore limited by the ability of these special furnaces with mechanical pressing to exert and control high forces over large areas uniformly at very high temperature (usually graphite pistons and molds).
The choice of process depends on the desired material properties, cost constraints, and production scale. A comparison of mechanical properties and ablation resistance of similar UHTCMC materials obtained by different technologies is reported in ref {{Cite journal |last1=Galizia |first1=Pietro |last2=Sciti |first2=Diletta |last3=Binner |first3=Jon |last4=Venkatachalam |first4=Vinothini |last5=Lagos |first5=Miguel. A. |last6=Servadei |first6=Francesca |last7=Vinci |first7=Antonio |last8=Zoli |first8=Luca |last9=Reimer |first9=Thomas |date=2023-09-01 |title=Elevated temperature tensile and bending strength of ultra-high temperature ceramic matrix composites obtained by different processes |url=https://www.sciencedirect.com/science/article/pii/S0955221923002509 |journal=Journal of the European Ceramic Society |volume=43 |issue=11 |pages=4588–4601 |doi=10.1016/j.jeurceramsoc.2023.03.055 |issn=0955-2219|doi-access=free }}{{Cite journal |last1=Reimer |first1=T. |last2=Di Martino |first2=G. D. |last3=Sciti |first3=D. |last4=Zoli |first4=L. |last5=Galizia |first5=P. |last6=Vinci |first6=A. |last7=Lagos |first7=M. A. |last8=Azurmendi |first8=N. |date=2023-03-01 |title=Experimental characterization of fatigue life of ZrB2-SiC based ultra high-temperature ceramic matrix composites |url=https://www.sciencedirect.com/science/article/abs/pii/S0142112322006399 |journal=International Journal of Fatigue |volume=168 |pages=107389 |doi=10.1016/j.ijfatigue.2022.107389 |issn=0142-1123|url-access=subscription }}
Machining these materials is particularly challenging due to their high hardness and low fracture toughness (comparared to metals), which demand advanced tools and techniques to avoid cracking or delamination. Additionally, the anisotropic nature of fiber reinforced materials, arising from the directional arrangement of fibers, adds complexity to achieving precise shapes and finishes.{{Cite journal |last1=Rösiger |first1=Achim |last2=Kleiner |first2=Stefan |last3=Unseld |first3=Simon |last4=Goller |first4=Ralf |last5=Zoli |first5=Luca |last6=Sciti |first6=Diletta |date=2024-12-01 |title=Influence of diamond grinding process on material removal mechanisms and surface roughness of 0/90° continuous carbon fiber reinforced ZrB2 |url=https://www.sciencedirect.com/science/article/pii/S2666539524001330 |journal=Open Ceramics |volume=20 |pages=100669 |doi=10.1016/j.oceram.2024.100669 |issn=2666-5395|doi-access=free }} Furthermore, maintaining the integrity of the fiber-matrix interface during processing is critical to preserving the material's mechanical properties. As a result, ongoing research is focused on optimizing manufacturing processes, improving tool materials, and developing novel machining strategies to meet the increasing demand for CMCs and UHTCMCs in industries such as aerospace, automotive, radioisotope formation{{Cite journal |last1=Sciti |first1=Diletta |last2=Corradetti |first2=Stefano |last3=Manzolaro |first3=Mattia |last4=Ballan |first4=Michele |last5=Cesarotto |first5=Dario |last6=Meneghetti |first6=Giovanni |last7=Silvestroni |first7=Laura |last8=Servadei |first8=Francesca |last9=Zoli |first9=Luca |date=2024-09-01 |title=Highly porous carbon-SiC composites with continuous carbon fibers for the production of radioisotopes in ISOL facilities |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221924003984 |journal=Journal of the European Ceramic Society |volume=44 |issue=12 |pages=6854–6863 |doi=10.1016/j.jeurceramsoc.2024.04.072 |issn=0955-2219|url-access=subscription }}{{Cite journal |last1=Silvestroni |first1=Laura |last2=Corradetti |first2=Stefano |last3=Manzolaro |first3=Mattia |last4=Ballan |first4=Michele |last5=Cesarotto |first5=Dario |last6=Sciti |first6=Diletta |last7=Zoli |first7=Luca |date=2022-11-01 |title=Novel SiC/C composite targets for the production of radioisotopes for nuclear applications |url=https://www.sciencedirect.com/science/article/abs/pii/S0955221922005684 |journal=Journal of the European Ceramic Society |volume=42 |issue=14 |pages=6750–6756 |doi=10.1016/j.jeurceramsoc.2022.07.017 |issn=0955-2219|url-access=subscription }} and rinnovable energies.{{Cite journal |last1=Zoli |first1=Luca |last2=Failla |first2=Simone |last3=Sani |first3=Elisa |last4=Sciti |first4=Diletta |date=2022-08-01 |title=Novel ceramic fibre - Zirconium diboride composites for solar receivers in concentrating solar power systems |url=https://www.sciencedirect.com/science/article/abs/pii/S1359836822004577 |journal=Composites Part B: Engineering |volume=242 |pages=110081 |doi=10.1016/j.compositesb.2022.110081 |issn=1359-8368}} Their compatibility with cells was studied for possible application in biomedical fields.{{Cite journal |last1=Zoli |first1=Luca |last2=Servadei |first2=Francesca |last3=Bassi |first3=Giada |last4=Rossi |first4=Arianna |last5=Montesi |first5=Monica |last6=Vinci |first6=Antonio |last7=Sciti |first7=Diletta |last8=Panseri |first8=Silvia |date=2024-02-01 |title=From outer space to inside the body: Ultra-high temperature ceramic matrix composites for biomedical applications |url=https://www.sciencedirect.com/science/article/pii/S0955221923008051 |journal=Journal of the European Ceramic Society |volume=44 |issue=2 |pages=729–737 |doi=10.1016/j.jeurceramsoc.2023.10.007 |issn=0955-2219|doi-access=free }}