uniform honeycombs in hyperbolic space
{{short description|Tiling of hyperbolic 3-space by uniform polyhedra}}
{{unsolved|mathematics|Find the complete set of hyperbolic uniform honeycombs.}}
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
{{Clear}}
class="wikitable" align=right
|+ Four compact regular hyperbolic honeycombs |
bgcolor="#d0e0ff" align=center
|200px |200px |
bgcolor="#d0e0ff" align=center
|200px |200px |
colspan=2|Poincaré ball model projections |
---|
Hyperbolic uniform honeycomb families
Honeycombs are divided between compact and paracompact forms defined by Coxeter groups, the first category only including finite cells and vertex figures (finite subgroups), and the second includes affine subgroups.
= Compact uniform honeycomb families =
The nine compact Coxeter groups are listed here with their Coxeter diagrams,Humphreys, 1990, page 141, 6.9 List of hyperbolic Coxeter groups, figure 2 [https://books.google.com/books?id=ODfjmOeNLMUC&pg=PA141]
in order of the relative volumes of their fundamental simplex domains.Felikson, 2002
These 9 families generate a total of 76 unique uniform honeycombs. The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. Two known examples are cited with the {3,5,3} family below. Only two families are related as a mirror-removal halving: [5,31,1] ↔ [5,3,4,1+].
class=wikitable
!Indexed !Witt !Honeycombs |
H1
|0.0358850633 | || [5,3,4] || [(5,3)+,4,1+] |
---|
H2
|0.0390502856 | || [3,5,3]|| [3,5,3]+|| {{CDD|node|3|node|5|node|3|node}} || 9 forms, 1 regular |
H3
|0.0717701267 | || [5,31,1]|| [5,31,1]+|| {{CDD|node|5|node|split1|nodes}} || 11 forms (7 overlap with [5,3,4] family, 4 are unique) |
H4
|0.0857701820 | || [(4,3,3,3)]|| [(4,3,3,3)]+|| {{CDD|label4|branch|3ab|branch}} || 9 forms |
H5
|0.0933255395 | || [5,3,5]|| [5,3,5]+|| {{CDD|node|5|node|3|node|5|node}} || 9 forms, 1 regular |
H6
|0.2052887885 | || [(5,3,3,3)]|| [(5,3,3,3)]+|| {{CDD|label5|branch|3ab|branch}} || 9 forms |
H7
|0.2222287320 | || [(4,3)[2]]|| [(4,3+,4,3+)]|| {{CDD|label4|branch|3ab|branch|label4}} || 6 forms |
H8
|0.3586534401 | || [(3,4,3,5)]|| [(3,4,3,5)]+|| {{CDD|label5|branch|3ab|branch|label4}} || 9 forms |
H9
|0.5021308905 | || [(5,3)[2]]|| [(5,3)[2]]+|| {{CDD|label5|branch|3ab|branch|label5}} || 6 forms |
There are just two radical subgroups with non-simplicial domains that can be generated by removing a set of two or more mirrors separated by all other mirrors by even-order branches. One is [(4,3,4,3*)], represented by Coxeter diagrams {{CDD|branch_c1-2|4a4b|branch|labels}} an index 6 subgroup with a trigonal trapezohedron fundamental domain ↔ {{CDD|node_c1|splitplit1u|branch3u_c2|3a3buc-cross|branch3u_c1|splitplit2u|node_c2}}, which can be extended by restoring one mirror as {{CDD|branchu_c1-2|3ab|branch_c2-1|split2-44|node}}. The other is [4,(3,5)*], index 120 with a dodecahedral fundamental domain.
= Paracompact hyperbolic uniform honeycombs =
{{further|paracompact uniform honeycombs}}
There are also 23 paracompact Coxeter groups of rank 4 that produce paracompact uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity.
class=wikitable
|+ Hyperbolic paracompact group summary !Type !Coxeter groups |
align=center
!Linear graphs |{{CDD|node|6|node|3|node|3|node}} | {{CDD|node|4|node|4|node|3|node}} | {{CDD|node|6|node|3|node|4|node}} | {{CDD|node|6|node|3|node|5|node}} | {{CDD|node|4|node|4|node|4|node}} | {{CDD|node|3|node|6|node|3|node}} | {{CDD|node|6|node|3|node|6|node}} |
align=center
!Tridental graphs | {{CDD|node|3|node|split1-44|nodes}} | {{CDD|node|6|node|split1|nodes}} | {{CDD|node|4|node|split1-44|nodes}} |
align=center
!Cyclic graphs | {{CDD|label6|branch|3ab|branch|2}} | {{CDD|label6|branch|3ab|branch|label4}} | {{CDD|label4|branch|4-4|branch}} | {{CDD|label6|branch|3ab|branch|label5}} | {{CDD|label6|branch|3ab|branch|label6}} | {{CDD|label4|branch|4-4|branch|label4}} | {{CDD|node|split1-44|nodes|split2|node}} | {{CDD|node|split1|branch|split2|node}} | {{CDD|branch|splitcross|branch}} |
align=center
!Loop-n-tail graphs |{{CDD|node|3|node|split1|branch}} | {{CDD|node|4|node|split1|branch}} | {{CDD|node|5|node|split1|branch}} | {{CDD|node|6|node|split1|branch}} |
Other paracompact Coxeter groups exists as Vinberg polytope fundamental domains, including these triangular bipyramid fundamental domains (double tetrahedra) as rank 5 graphs including parallel mirrors. Uniform honeycombs exist as all permutations of rings in these graphs, with the constraint that at least one node must be ringed across infinite order branches.
class=wikitable
!Dimension !Rank !Graphs |
H3
!5 | : {{CDD|node|split1|nodes|2a2b-cross|nodes}}, {{CDD|node|split1-43|nodes|2a2b-cross|nodes}}, {{CDD|node|split1-44|nodes|2a2b-cross|nodes}}, {{CDD|node|split1-53|nodes|2a2b-cross|nodes}}, {{CDD|node|split1-63|nodes|2a2b-cross|nodes}} : {{CDD|branchu|split2|node|3|node|ultra|node}}, {{CDD|branchu|split2|node|4|node|ultra|node}}, {{CDD|branchu|split2-43|node|3|node|ultra|node}}, {{CDD|branchu|split2-43|node|4|node|ultra|node}}, {{CDD|branchu|split2-44|node|3|node|ultra|node}}, {{CDD|branchu|split2-44|node|4|node|ultra|node}} : {{CDD|branchu|split2-53|node|3|node|ultra|node}}, {{CDD|branchu|split2-54|node|3|node|ultra|node}}, {{CDD|branchu|split2-55|node|3|node|ultra|node}}, {{CDD|branchu|split2-63|node|3|node|ultra|node}}, {{CDD|branchu|split2-64|node|3|node|ultra|node}}, {{CDD|branchu|split2-65|node|3|node|ultra|node}}, {{CDD|branchu|split2-66|node|3|node|ultra|node}} : {{CDD|branchu|split2|node|split1|branchu}}, {{CDD|branchu|split2-43|node|split1|branchu}}, {{CDD|branchu|split2-53|node|split1|branchu}}, {{CDD|branchu|split2-44|node|split1|branchu}}, {{CDD|branchu|split2-43|node|split1-43|branchu}}, {{CDD|branchu|split2-44|node|split1-43|branchu}}, {{CDD|branchu|split2-44|node|split1-44|branchu}}, {{CDD|branchu|split2-54|node|split1|branchu}}, {{CDD|branchu|split2-55|node|split1|branchu}}, {{CDD|branchu|split2-63|node|split1|branchu}}, {{CDD|branchu|split2-64|node|split1|branchu}}, {{CDD|branchu|split2-65|node|split1|branchu}}, {{CDD|branchu|split2-66|node|split1|branchu}} |
---|
= [3,5,3] family =
There are 9 forms, generated by ring permutations of the Coxeter group: [3,5,3] or {{CDD|node|3|node|5|node|3|node}}
One related non-wythoffian form is constructed from the {3,5,3} vertex figure with 4 (tetrahedrally arranged) vertices removed, creating pentagonal antiprisms and dodecahedra filling in the gaps, called a tetrahedrally diminished dodecahedron.Wendy Y. Krieger, Walls and bridges: The view from six dimensions, Symmetry: Culture and Science Volume 16, Number 2, pages 171–192 (2005) [http://symmetry.hu/oldsite/content/aus_journal_content_abs_2005_16_2.html] Another is constructed with 2 antipodal vertices removed.
The bitruncated and runcinated forms (5 and 6) contain the faces of two regular skew polyhedrons: {4,10|3} and {10,4|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
align=center
!0 !1 !2 !3 |
align=center BGCOLOR="#f0e0e0"
!1 |icosahedral (ikhon) | | | |(12) |
align=center BGCOLOR="#f0e0e0"
!2 |rectified icosahedral (rih) | | |
align=center BGCOLOR="#f0e0e0"
!3 |truncated icosahedral (tih) | | |
align=center BGCOLOR="#f0e0e0"
!4 |cantellated icosahedral (srih) | |
align=center BGCOLOR="#e0f0e0"
!5 |runcinated icosahedral (spiddih) |(1) |(1) |
align=center BGCOLOR="#e0f0e0"
!6 |bitruncated icosahedral (dih) | | |
align=center BGCOLOR="#f0e0e0"
!7 |cantitruncated icosahedral (grih) | |
align=center BGCOLOR="#f0e0e0"
!8 |runcitruncated icosahedral (prih) |
align=center BGCOLOR="#e0f0e0"
!9 |omnitruncated icosahedral (gipiddih) |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cell counts/vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
align=center
!0 !1 !2 !3 !Alt |
align=center BGCOLOR="#e0f0f0"
|[77] |partially diminished icosahedral (pidih) | | | |
align=center BGCOLOR="#e0f0f0"
|[78] |semi-partially diminished icosahedral | | | |(6) | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub icosahedral (snih) |(1) |(1) | |
= [5,3,4] family =
There are 15 forms, generated by ring permutations of the Coxeter group: [5,3,4] or {{CDD|node|5|node|3|node|4|node}}.
This family is related to the group [5,31,1] by a half symmetry [5,3,4,1+], or {{CDD|node_c1|5|node_c2|split1|nodeab_c3}} ↔ {{CDD|node_c1|5|node_c2|3|node_c3|4|node_h0}}, when the last mirror after the order-4 branch is inactive, or as an alternation if the third mirror is inactive {{CDD|node_c1|5|node_c2|split1|nodes_10lu}} ↔ {{CDD|node_c1|5|node_c2|3|node|4|node_h1}}.
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=4|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node_n2|3|node_n3|4|node_n4}} !1 !2 !3 |
---|
BGCOLOR="#f0e0e0" align=center
!10 |order-4 dodecahedral (doehon) | - | - | - |
BGCOLOR="#f0e0e0" align=center
!11 |rectified order-4 dodecahedral (riddoh) |(2) | - | - |
BGCOLOR="#e0e0f0" align=center
!12 |rectified order-5 cubic (ripech) |(5) | - | - |(2) | 120px |
BGCOLOR="#e0e0f0" align=center
!13 |order-5 cubic (pechon) |(20) | - | - | - |
BGCOLOR="#f0e0e0" align=center
!14 |truncated order-4 dodecahedral (tiddoh) |(1) | - | - |
BGCOLOR="#e0f0e0" align=center
!15 |bitruncated order-5 cubic (ciddoh) |(2) | - | - |
BGCOLOR="#e0e0f0" align=center
!16 |truncated order-5 cubic (tipech) |(5) | - | - |(1) |
BGCOLOR="#f0e0e0" align=center
!17 |cantellated order-4 dodecahedral (sriddoh) |(1) |(2) | - |
BGCOLOR="#e0e0f0" align=center
!18 |cantellated order-5 cubic (sripech) |(2) | - |(2) |
BGCOLOR="#e0f0e0" align=center
!19 |runcinated order-5 cubic (sidpicdoh) |(1) |(3) |(3) |
BGCOLOR="#f0e0e0" align=center
!20 |cantitruncated order-4 dodecahedral (griddoh) |(1) |(1) | - |
BGCOLOR="#e0e0f0" align=center
!21 |cantitruncated order-5 cubic (gripech) |(2) | - |(1) |
BGCOLOR="#f0e0e0" align=center
!22 |runcitruncated order-4 dodecahedral (pripech) |(1) |(1) |(2) |
BGCOLOR="#e0e0f0" align=center
!23 |runcitruncated order-5 cubic (priddoh) |(1) |(2) |(1) |
BGCOLOR="#e0f0e0" align=center
!24 |omnitruncated order-5 cubic (gidpicdoh) |(1) |(1) |(1) |
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=5|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node_n2|3|node_n3|4|node_n4}} !1 !2 !3 !Alt |
---|
BGCOLOR="#d0f0f0" align=center
|[34] |alternated order-5 cubic (apech) |(20) | | |(12) | |
BGCOLOR="#d0f0f0" align=center
|[35] |cantic order-5 cubic (tapech) | - | | |
BGCOLOR="#d0f0f0" align=center
|[36] |runcic order-5 cubic (birapech) | - | | |
BGCOLOR="#d0f0f0" align=center
|[37] |runcicantic order-5 cubic (bitapech) | - | | |
BGCOLOR="#d0f0f0" align=center
|Nonuniform |snub rectified order-4 dodecahedral |(1) |(1) | - |(2) |100px | |
BGCOLOR="#d0f0f0" align=center
|Nonuniform |runcic snub rectified order-4 dodecahedral |{{CDD|node_h|3|node_h|4|node_1}} |{{CDD|node_h|2x|node_h|4|node_1}} | - |{{CDD|node_h|5|node_h|3|node_h}} | | |
BGCOLOR="#d0f0f0" align=center
|Nonuniform |omnisnub order-5 cubic |(1) |(1) |(1) |(1) | |
= [5,3,5] family =
There are 9 forms, generated by ring permutations of the Coxeter group: [5,3,5] or {{CDD|node|5|node|3|node|5|node}}
The bitruncated and runcinated forms (29 and 30) contain the faces of two regular skew polyhedrons: {4,6|5} and {6,4|5}.
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=4|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node|3|node|5|node}} !1 !2 !3 |
---|
align=center BGCOLOR="#f0e0e0"
!25 |(Regular) Order-5 dodecahedral (pedhon) | | | |
align=center BGCOLOR="#f0e0e0"
!26 |rectified order-5 dodecahedral (ripped) |(2) | | |
align=center BGCOLOR="#f0e0e0"
!27 |truncated order-5 dodecahedral (tipped) |(1) | | |
align=center BGCOLOR="#f0e0e0"
!28 |cantellated order-5 dodecahedral (sripped) | |
align=center BGCOLOR="#e0f0e0"
!29 |Runcinated order-5 dodecahedral (spidded) |
align=center BGCOLOR="#e0f0e0"
!30 |bitruncated order-5 dodecahedral (diddoh) | | |
align=center BGCOLOR="#f0e0e0"
!31 |cantitruncated order-5 dodecahedral (gripped) | |
align=center BGCOLOR="#f0e0e0"
!32 |runcitruncated order-5 dodecahedral (pripped) |
align=center BGCOLOR="#e0f0e0"
!33 |omnitruncated order-5 dodecahedral (gipidded) |
class=wikitable
!rowspan=2|# !rowspan=2|Name of honeycomb !colspan=5|Cells by location and count per vertex !rowspan=2|Vertex figure !rowspan=2|Picture |
0 {{CDD|node|3|node|5|node}} !1 !2 !3 !Alt |
---|
BGCOLOR="#d0f0f0" align=center
|Nonuniform |omnisnub order-5 dodecahedral |(1) |(1) |(1) |(1) | |
= [5,3<sup>1,1</sup>] family =
There are 11 forms (and only 4 not shared with [5,3,4] family), generated by ring permutations of the Coxeter group: [5,31,1] or {{CDD|nodes|split2|node|5|node}}. If the branch ring states match, an extended symmetry can double into the [5,3,4] family, {{CDD|nodeab_c1|split2|node_c2|5|node_c3}} ↔ {{CDD|node_h0|4|node_c1|3|node_c2|5|node_c3}}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|nodea|5a|nodea}} !1 !0' !3 |
---|
align=center
!34 |alternated order-5 cubic (apech) | - | - |(12) |
align=center
!35 |cantic order-5 cubic (tapech) | - |
align=center
!36 |runcic order-5 cubic (birapech) | - |
align=center
!37 |runcicantic order-5 cubic (bitapech) | - |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture | |
0 {{CDD|nodea|3a|nodea|5a|nodea}} !1 !3 !Alt | |
---|---|
align=center
| [10] |Order-4 dodecahedral (doehon) | - | - | | |
align=center
| [11] |rectified order-4 dodecahedral (riddoh) | - | | |
align=center
| [12] |rectified order-5 cubic (ripech) | (1) | - | | |
align=center
| [15] |bitruncated order-5 cubic (ciddoh) | - | | |
align=center
| [14] |truncated order-4 dodecahedral (tiddoh) | - | | |
align=center
| [17] |cantellated order-4 dodecahedral (sriddoh) | | |
align=center
| [20] |cantitruncated order-4 dodecahedral (griddoh) | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |snub rectified order-4 dodecahedral |(2) |(2) | 100px Irr. tridiminished icosahedron |
= [(4,3,3,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD|label4|branch|3ab|branch}}
The bitruncated and runcinated forms (41 and 42) contain the faces of two regular skew polyhedrons: {8,6|3} and {6,8|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture | |
0 {{CDD|nodea|3a|branch}} !1 !2 !3 !Alt | |
---|---|
align=center
!38 |tetrahedral-cubic (gadtatdic) | - | | |
align=center
!39 |tetrahedral-octahedral (gacocaddit) | - | | |
align=center
!40 |cyclotruncated tetrahedral-cubic (cytitch) | (1) 40px (3.3.3) | |
align=center
!41 |cyclotruncated cube-tetrahedron (cyticth) | | |
align=center
!42 |cyclotruncated octahedral-tetrahedral (cytoth) | | |
align=center
!43 |rectified tetrahedral-cubic (ritch) | | |
align=center
!44 |truncated tetrahedral-cubic (titch) | | |
align=center
!45 |truncated tetrahedral-octahedral (titdoh) | | |
align=center
!46 |omnitruncated tetrahedral-cubic (otitch) | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub tetrahedral-cubic |(1) |(1) |(1) |(1) |
= [(5,3,3,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD|label5|branch|3ab|branch}}
The bitruncated and runcinated forms (50 and 51) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|branch}} !1 !2 !3 |
---|
align=center
!47 |tetrahedral-dodecahedral | - |
align=center
!48 |tetrahedral-icosahedral | - | (12) |
align=center
!49 |cyclotruncated tetrahedral-dodecahedral |
align=center
!52 |rectified tetrahedral-dodecahedral |
align=center
!53 |truncated tetrahedral-dodecahedral |
align=center
!54 |truncated tetrahedral-icosahedral |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=3|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture | |
0,1 {{CDD|nodea|3a|branch}} !2,3 !Alt | |
---|---|
align=center
!50 |cyclotruncated dodecahedral-tetrahedral | | |
align=center
!51 |cyclotruncated tetrahedral-icosahedral | (2) | | |
align=center
!55 |omnitruncated tetrahedral-dodecahedral | | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub tetrahedral-dodecahedral |(2) |(2) | 100px |
= [(4,3,4,3)] family =
There are 6 forms, generated by ring permutations of the Coxeter group: {{CDD|label4|branch|3ab|branch|label4}}. There are 4 extended symmetries possible based on the symmetry of the rings: {{CDD|label4|branch_c1-2|3ab|branch_c1-2|label4}}, {{CDD|label4|branch_c1|3ab|branch_c2|label4}}, {{CDD|label4|branch_c1-2|3ab|branch_c2-1|label4}}, and {{CDD|label4|branch_c1|3ab|branch_c1|label4}}.
This symmetry family is also related to a radical subgroup, index 6, {{CDD|branch_c1-2|4a4b|branch|labels}} ↔ {{CDD|node_c1|splitplit1u|branch3u_c2|3a3buc-cross|branch3u_c1|splitplit2u|node_c2}}, constructed by [(4,3,4,3*)], and represents a trigonal trapezohedron fundamental domain.
The truncated forms (57 and 58) contain the faces of two regular skew polyhedrons: {6,6|4} and {8,8|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Pictures |
0 {{CDD|nodea|3a|branch|label4}} !1 !2 !3 |
---|
align=center
!56 |cubic-octahedral (cohon) | - |
align=center
!60 |truncated cubic-octahedral (tucoh) |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=3|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0,3 {{CDD|nodea|3a|branch|label4}} !1,2 !Alt |
---|
align=center
!57 |cyclotruncated octahedral-cubic (cytoch) | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |cyclosnub octahedral-cubic |(4) | |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=2|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0,1 {{CDD|nodea|3a|branch|label4}} !2,3 |
---|
align=center
!58 |cyclotruncated cubic-octahedral (cytacoh) |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=2|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0,2 {{CDD|nodea|3a|branch|label4}} !1,3 |
---|
align=center
!59 |rectified cubic-octahedral (racoh) |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=2|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0,1,2,3 {{CDD|nodea|3a|branch|label4}} !Alt |
---|
align=center
!61 |omnitruncated cubic-octahedral (otacoh) | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub cubic-octahedral |(4) | |
= [(4,3,5,3)] family =
There are 9 forms, generated by ring permutations of the Coxeter group: {{CDD||label5|branch|3ab|branch|label4}}
The truncated forms (65 and 66) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=4|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|branch|label4}} !1 !2 !3 |
---|
align=center
!62 |octahedral-dodecahedral | - |
align=center
!63 |cubic-icosahedral | - | (12) |
align=center
!64 |cyclotruncated octahedral-dodecahedral |
align=center
!67 |rectified octahedral-dodecahedral |
align=center
!68 |truncated octahedral-dodecahedral |
align=center
!69 |truncated cubic-dodecahedral |
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=3|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0,1 {{CDD|nodea|3a|branch|label4}} !2,3 !Alt |
---|
align=center
!65 |cyclotruncated dodecahedral-octahedral | |
align=center
!66 |cyclotruncated cubic-icosahedral | (2) | |
align=center
!70 |omnitruncated octahedral-dodecahedral | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub octahedral-dodecahedral |(2) |(2) |
= [(5,3,5,3)] family =
There are 6 forms, generated by ring permutations of the Coxeter group: {{CDD||label5|branch|3ab|branch|label5}}. There are 4 extended symmetries possible based on the symmetry of the rings: {{CDD|label5|branch_c1-2|3ab|branch_c1-2|label5}}, {{CDD|label5|branch_c1|3ab|branch_c2|label5}}, {{CDD|label5|branch_c1-2|3ab|branch_c2-1|label5}}, and {{CDD|label5|branch_c1|3ab|branch_c1|label5}}.
The truncated forms (72 and 73) contain the faces of two regular skew polyhedrons: {6,6|5} and {10,10|3}.
class="wikitable"
!rowspan=2|# !rowspan=2|Honeycomb name !colspan=5|Cells by location !rowspan=2|vertex figure !rowspan=2|Picture |
0 {{CDD|nodea|3a|branch|label5}} !1 !2 !3 !Alt |
---|
align=center
!71 |dodecahedral-icosahedral | (12) | - | |
align=center
!72 |cyclotruncated icosahedral-dodecahedral | |
align=center
!73 |cyclotruncated dodecahedral-icosahedral | (1) | (1) | |
align=center
!74 |rectified dodecahedral-icosahedral | |
align=center
!75 |truncated dodecahedral-icosahedral | |
align=center
!76 |omnitruncated dodecahedral-icosahedral | |
align=center BGCOLOR="#e0f0f0"
|Nonuniform |omnisnub dodecahedral-icosahedral | (1) | (1) | (1) | (1) | 100px |
= Other non-Wythoffians =
There are infinitely many known non-Wythoffian uniform compact hyperbolic honeycombs, and there may be more undiscovered ones. Two have been listed above as diminishings of the icosahedral honeycomb {3,5,3}.{{Cite web | url=https://www.bendwavy.org/klitzing/dimensions/hyperbolic.htm | title=Hyperbolic Tesselations}}
In 1997 Wendy Krieger discovered an infinite series of uniform hyperbolic honeycombs with pseudoicosahedral vertex figures, made from 8 cubes and 12 p-gonal prisms at a vertex for any integer p. In the case p = 4, all cells are cubes and the result is the order-5 cubic honeycomb. The case p = 2 degenerates to the Euclidean cubic honeycomb.
Another four known ones are related to noncompact families. The tessellation {{CDD|node_1|4|node_1|3|node|8|node}} consists of truncated cubes {{CDD|node_1|4|node_1|3|node}} and infinite order-8 triangular tilings {{CDD|node_1|3|node|8|node}}. However the latter intersect the sphere at infinity orthogonally, having exactly the same curvature as the hyperbolic space, and can be replaced by mirror images of the remainder of the tessellation, resulting in a compact uniform honeycomb consisting only of the truncated cubes. (So they are analogous to the hemi-faces of spherical hemipolyhedra.){{Cite web | url=https://www.bendwavy.org/klitzing/incmats/x4x3o8o.htm | title=x4x3o8o}} Something similar can be done with the tessellation {{CDD|nodes_11|split2-43|node|8|node}} consisting of small rhombicuboctahedra {{CDD|node_1|4|node|3|node_1}}, infinite order-8 triangular tilings {{CDD|node_1|3|node|8|node}}, and infinite order-8 square tilings {{CDD|node_1|4|node|8|node}}. The order-8 square tilings already intersect the sphere at infinity orthogonally, and if the order-8 triangular tilings are augmented with a set of triangular prisms, the surface passing through their centre points also intersects the sphere at infinity orthogonally. After replacing with mirror images, the result is a compact honeycomb containing the small rhombicuboctahedra and the triangular prisms.{{Cite web | url=https://www.bendwavy.org/klitzing/incmats/lt-o8o4xb3x.htm | title=lt-o8o4xb3x}} Two more such constructions were discovered in 2023. The first one arises from the fact that {{CDD|node_1|3|node_1|4|node|6|node}} and {{CDD|node|3|node_1|4|node|6|node}} have the same circumradius; the former has truncated octahedra {{CDD|node_1|3|node_1|4|node}} and order-6 square tilings {{CDD|node_1|4|node|6|node}}, while the latter has cuboctahedra {{CDD|node|3|node_1|4|node}} and order-6 square tilings {{CDD|node_1|4|node|6|node}}. A compact uniform honeycomb is taken by discarding the order-6 square tilings they have in common, using only the truncated octahedra and cuboctahedra. The second one arises from a similar construction involving {{CDD|nodes_11|split2-53|node|4|node}} (which has small rhombicosidodecahedra {{CDD|node_1|5|node|3|node_1}}, octahedra {{CDD|node_1|3|node|4|node}}, and order-4 pentagonal tilings {{CDD|node_1|5|node|4|node}}) and {{CDD|node_1|2|node_1|5|node|4|node}} (which is the prism of the order-4 pentagonal tiling, having pentagonal prisms {{CDD|node_1|2|node_1|5|node}} and order-4 pentagonal tilings {{CDD|node_1|5|node|4|node}}). These two likewise have the same circumradius, and a compact uniform honeycomb is taken by using only the finite cells of both, discarding the order-4 pentagonal tilings they have in common.{{Cite web | url=https://www.bendwavy.org/klitzing/dimensions/coxeter.htm#trip | title=Hyperbolic Tessellations – Triangular Prismatic Domains}}
Another non-Wythoffian was discovered in 2021. It has as vertex figure a snub cube with 8 vertices removed and contains two octahedra and eight snub cubes at each vertex. Subsequently Krieger found a non-Wythoffian with a snub cube as the vertex figure, containing 32 tetrahedra and 6 octahedra at each vertex, and that the truncated and rectified versions of this honeycomb are still uniform. In 2022, Richard Klitzing generalised this construction to use any snub {{CDD|node_h|3|node_h|p|node_h}} as vertex figure: the result is compact for p=4 or 5 (with a snub cube or snub dodecahedral vertex figure respectively), paracompact for p=6 (with a snub trihexagonal tiling as the vertex figure), and hypercompact for p>6. Again, the truncated and rectified versions of these honeycombs are still uniform.
There are also other forms based on parallelepiped domains. Two known forms generalise the cubic-octahedral honeycomb, having distorted small rhombicuboctahedral vertex figures. One form has small rhombicuboctahedra, cuboctahedra, and cubes; another has small rhombicosidodecahedra, icosidodecahedra, and cubes. (The version with tetrahedral-symmetry polyhedra is the cubic-octahedral honeycomb, using cuboctahedra, octahedra, and cubes).
= Summary enumeration of compact uniform honeycombs =
This is the complete enumeration of the 76 Wythoffian uniform honeycombs. The alternations are listed for completeness, but most are non-uniform.
class=wikitable
!Index !Coxeter group !colspan=2|Honeycombs !Chiral !colspan=2|Alternation honeycombs | ||||
align=center
!rowspan=2|H1 |rowspan=2| | rowspan=2|[4,3,5] {{CDD|node_c1|4|node_c2|3|node_c3|5|node_c4}} | rowspan=2| 15
|rowspan=2|{{CDD|node_1|5|node|3|node|4|node}} | {{CDD|node|5|node_1|3|node|4|node}} | {{CDD|node|5|node|3|node_1|4|node}} | {{CDD|node|5|node|3|node|4|node_1}} | {{CDD|node_1|5|node_1|3|node|4|node}} |[1+,4,(3,5)+] | (2) | {{CDD|node|5|node|3|node|4|node_h1}} (= {{CDD|node|5|node|split1|nodes_10lu}}) {{CDD|node_h|5|node_h|3|node_h|4|node}} |
align=center
|[4,3,5]+ | (1) | {{CDD|node_h|5|node_h|3|node_h|4|node_h}} | ||
align=center
!rowspan=2|H2 |rowspan=2| | [3,5,3] {{CDD|node_c1|3|node_c2|5|node_c3|3|node_c4}} | 6
| {{CDD|node_1|3|node|5|node|3|node}} | {{CDD|node|3|node_1|5|node|3|node}} | {{CDD|node_1|3|node_1|5|node|3|node}} | {{CDD|node_1|3|node|5|node_1|3|node}} | {{CDD|node_1|3|node_1|5|node_1|3|node}} | {{CDD|node_1|3|node_1|5|node|3|node_1}} |colspan=3| | ||
align=center | [2+[3,5,3]] {{CDD|node_c1|3|node_c2|5|node_c2|3|node_c1}} | 5
| {{CDD|node_1|3|node|5|node|3|node_1}} | {{CDD|node|3|node_1|5|node_1|3|node}} | {{CDD|node_1|3|node_1|5|node_1|3|node_1}} | [2+[3,5,3]]+ | (1)
| {{CDD|node_h|3|node_h|5|node_h|3|node_h}} |
align=center
!rowspan=2|H3 |rowspan=2| | [5,31,1] {{CDD|node_c3|5|node_c4|split1|nodeab_c1-2}} | 4
|{{CDD|node|5|node|split1|nodes_10lu}} | {{CDD|node_1|5|node|split1|nodes_10lu}} | {{CDD|node|5|node_1|split1|nodes_10lu}} | {{CDD|node_1|5|node_1|split1|nodes_10lu}} |colspan=3| | ||
BGCOLOR="#e0f0e0" align=center
| [1[5,31,1]]=[5,3,4] | (7)
|{{CDD|node_1|5|node|split1|nodes}} | {{CDD|node|5|node_1|split1|nodes}} | {{CDD|node_1|5|node_1|split1|nodes}} | {{CDD|node|5|node|split1|nodes_11}} | {{CDD|node_1|5|node|split1|nodes_11}} | {{CDD|node|5|node_1|split1|nodes_11}} | {{CDD|node_1|5|node_1|split1|nodes_11}} |[1[5,31,1]]+ | (1)
|{{CDD|node_h|5|node_h|split1|nodes_hh}} | ||
align=center
!rowspan=2|H4 |rowspan=2| | [(4,3,3,3)] | 6
|{{CDD|label4|branch_10r|3ab|branch}} | {{CDD|label4|branch|3ab|branch_10l}} | {{CDD|label4|branch_01r|3ab|branch_10l}} | {{CDD|label4|branch_10r|3ab|branch_10l}} | {{CDD|label4|branch_11|3ab|branch_10l}} | {{CDD|label4|branch_10r|3ab|branch_11}} |colspan=3| | ||
align=center | [2+[(4,3,3,3)]] {{CDD|label4|branch_c1|3ab|branch_c2}} | 3
| {{CDD|label4|branch_11|3ab|branch}} | {{CDD|label4|branch|3ab|branch_11}} | {{CDD|label4|branch_11|3ab|branch_11}} | [2+[(4,3,3,3)]]+ | (1)
| {{CDD|label4|branch_hh|3ab|branch_hh}} |
align=center
!rowspan=2|H5 |rowspan=2| | [5,3,5] {{CDD|node_c1|5|node_c2|3|node_c3|5|node_c4}} | 6
| {{CDD|node_1|5|node|3|node|5|node}} | {{CDD|node|5|node_1|3|node|5|node}} | {{CDD|node_1|5|node_1|3|node|5|node}} | {{CDD|node_1|5|node|3|node_1|5|node}} | {{CDD|node_1|5|node_1|3|node_1|5|node}} | {{CDD|node_1|5|node_1|3|node|5|node_1}} |colspan=3| | ||
align=center | [2+[5,3,5]] {{CDD|branch_c1|5a5b|nodeab_c2}} | 3
| {{CDD|node_1|5|node|3|node|5|node_1}} | {{CDD|node|5|node_1|3|node_1|5|node}} | {{CDD|node_1|5|node_1|3|node_1|5|node_1}} | [2+[5,3,5]]+ | (1)
| {{CDD|node_h|5|node_h|3|node_h|5|node_h}} |
align=center
!rowspan=2|H6 |rowspan=2| | [(5,3,3,3)] | 6
|{{CDD|label5|branch_10r|3ab|branch}} | {{CDD|label5|branch|3ab|branch_10l}} | {{CDD|label5|branch_01r|3ab|branch_10l}} | {{CDD|label5|branch_10r|3ab|branch_10l}} | {{CDD|label5|branch_11|3ab|branch_10l}} | {{CDD|label5|branch_10r|3ab|branch_11}} |colspan=3| | ||
align=center | [2+[(5,3,3,3)]] {{CDD|label5|branch_c1|3ab|branch_c2}} | 3
| {{CDD|label5|branch_11|3ab|branch}} | {{CDD|label5|branch|3ab|branch_11}} | {{CDD|label5|branch_11|3ab|branch_11}} | [2+[(5,3,3,3)]]+ | (1)
| {{CDD|label5|branch_hh|3ab|branch_hh}} |
align=center
!rowspan=5|H7 |rowspan=5| | [(3,4)[2]] | 2 | {{CDD|label4|branch_10r|3ab|branch|label4}} | {{CDD|label4|branch_11|3ab|branch_10l|label4}}
|colspan=3| | |
align=center | [2+[(3,4)[2]]] {{CDD|label4|branch_c1-2|3ab|branch_c2-1|label4}} | 1
| {{CDD|label4|branch_01r|3ab|branch_10l|label4}} |colspan=3| | ||
align=center | [2+[(3,4)[2]]] {{CDD|label4|branch_c1|3ab|branch_c2|label4}} | 1
|{{CDD|label4|branch_11|3ab|branch|label4}} |colspan=3| | ||
align=center | [2+[(3,4)[2]]] {{CDD|label4|branch_c1-2|3ab|branch_c1-2|label4}} | 1
|{{CDD|label4|branch_10r|3ab|branch_10l|label4}} | [2+[(3+,4)[2]]] | (1)
|{{CDD|label4|branch_h0r|3ab|branch_h0l|label4}} |
align=center | [(2,2)+[(3,4)[2]]] {{CDD|label4|branch_c1|3ab|branch_c1|label4}} | 1
| {{CDD|label4|branch_11|3ab|branch_11|label4}} | [(2,2)+[(3,4)[2]]]+ | (1)
| {{CDD|label4|branch_hh|3ab|branch_hh|label4}} |
align=center
!rowspan=2|H8 |rowspan=2| | [(5,3,4,3)] | 6
|{{CDD|label5|branch_10r|3ab|branch|label4}} | {{CDD|label5|branch|3ab|branch_10l|label4}} | {{CDD|label5|branch_01r|3ab|branch_10l|label4}} | {{CDD|label5|branch_10r|3ab|branch_10l|label4}} | {{CDD|label5|branch_11|3ab|branch_10l|label4}} | {{CDD|label5|branch_10r|3ab|branch_11|label4}} |colspan=3| | ||
align=center | [2+[(5,3,4,3)]] {{CDD|label4|branch_c1|3ab|branch_c2|label5}} | 3
| {{CDD|label5|branch_11|3ab|branch|label4}} | {{CDD|label5|branch|3ab|branch_11|label4}} | {{CDD|label5|branch_11|3ab|branch_11|label4}} | [2+[(5,3,4,3)]]+ | (1)
| {{CDD|label5|branch_hh|3ab|branch_hh|label4}} |
align=center
!rowspan=5|H9 |rowspan=5| | [(3,5)[2]] | 2
|{{CDD|label5|branch_10r|3ab|branch|label5}} | {{CDD|label5|branch_11|3ab|branch_10l|label5}} |colspan=3| | ||
align=center | [2+[(3,5)[2]]] {{CDD|label5|branch_c1-2|3ab|branch_c2-1|label5}} | 1
|{{CDD|label5|branch_01r|3ab|branch_10l|label5}} |colspan=3| | ||
align=center | [2+[(3,5)[2]]] {{CDD|label5|branch_c1|3ab|branch_c2|label5}} | 1
|{{CDD|label5|branch_11|3ab|branch|label5}} |colspan=3| | ||
align=center | [2+[(3,5)[2]]] {{CDD|label5|branch_c1-2|3ab|branch_c1-2|label5}} | 1
|{{CDD|label5|branch_10r|3ab|branch_10l|label5}} |colspan=3| | ||
align=center | [(2,2)+[(3,5)[2]]] {{CDD|label5|branch_c1|3ab|branch_c1|label5}} | 1
| {{CDD|label5|branch_11|3ab|branch_11|label5}} | [(2,2)+[(3,5)[2]]]+ | (1)
| {{CDD|label5|branch_hh|3ab|branch_hh|label5}} |
See also
{{Commons category|Uniform tilings of hyperbolic 3-space}}
Notes
{{reflist}}
References
- J. Humphreys (1990), Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29
- H.S.M. Coxeter (1954), [https://web.archive.org/web/20190225204136/http://pdfs.semanticscholar.org/67fa/5c924fc515d05640308fe68f1d0974a3705c.pdf "Regular Honeycombs in Hyperbolic Space"] Proceedings of the International Congress of Mathematicians, vol. 3, North-Holland, pp. 155–169. Reprinted as Ch. 10 in Coxeter (1999), The Beauty of Geometry: Twelve Essays, Dover, {{isbn|0-486-40919-8}}
- H.S.M. Coxeter (1973), Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- J. Weeks The Shape of Space, 2nd ed. {{isbn|0-8247-0709-5}}, Chapters 16–17: Geometries on Three-manifolds I, II
- A. Felikson (2002), [https://arxiv.org/abs/math/0212010 "Coxeter Decompositions of Hyperbolic Tetrahedra"] (preprint) {{arxiv|math/0212010}}
- C. W. L. Garner, Regular Skew Polyhedra in Hyperbolic Three-Space Can. J. Math. 19, 1179–1186, 1967. PDF [http://cms.math.ca/cjm/a145822] {{Webarchive|url=https://web.archive.org/web/20150402131943/http://cms.math.ca/cjm/a145822 |date=2015-04-02 }}
- N. W. Johnson (2018), Geometries and Transformations, Chapters 11–13
- N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz (1999), The size of a hyperbolic Coxeter simplex, Transformation Groups, Volume 4, Issue 4, pp 329–353 [https://link.springer.com/article/10.1007%2FBF01238563]
- N. W. Johnson, R. Kellerhals, J.G. Ratcliffe, S.T. Tschantz, Commensurability classes of hyperbolic Coxeter groups H3: p130. [http://www.sciencedirect.com/science/article/pii/S0024379501004773]
- {{KlitzingPolytopes|hyperbolic.htm#3D-compact|Hyperbolic honeycombs|H3 compact}}