:Cattle
{{Short description|Large, domesticated, cloven-hooved herbivores}}
{{Redirect2|Cow|Cows|other uses|Cattle (disambiguation)|and|Cow (disambiguation)}}
{{Redirect|Taurus cattle|the breeding project|Taurus Project}}
{{Good article}}
{{Pp-semi-indef|small=yes}}
{{Use British English|date=May 2023}}
{{Use dmy dates|date=September 2022}}
{{CS1 config|mode=cs1}}
{{Speciesbox
|image=Cow (Fleckvieh breed) Oeschinensee Slaunger 2009-07-07.jpg
|image_upright=1.1
|image_caption=A brown Swiss Fleckvieh cow wearing a cowbell
|status=DOM
|genus=Bos
|species=taurus
|synonyms=* Bos primigenius taurus
- Bos longifrons
|range_map=GLW 2 global distributions of a) cattle.tif
|range_map_caption=Bovine distribution
}}
Cattle (Bos taurus) are large, domesticated, bovid ungulates widely kept as livestock. They are prominent modern members of the subfamily Bovinae and the most widespread species of the genus Bos. Mature female cattle are called cows and mature male cattle are bulls. Young female cattle are called heifers, young male cattle are oxen or bullocks, and castrated male cattle are known as steers.
Cattle are commonly raised for meat, for dairy products, and for leather. As draft animals, they pull carts and farm implements. Cattle are considered sacred animals within Hinduism, and it is illegal to kill them in some Indian states. Small breeds such as the miniature Zebu are kept as pets.
Taurine cattle are widely distributed across Europe and temperate areas of Asia, the Americas, and Australia. Zebus are found mainly in India and tropical areas of Asia, America, and Australia. Sanga cattle are found primarily in sub-Saharan Africa. These types, sometimes classified as separate species or subspecies, are further divided into over 1,000 recognized breeds.
Around 10,500 years ago, taurine cattle were domesticated from wild aurochs progenitors in central Anatolia, the Levant and Western Iran. A separate domestication event occurred in the Indian subcontinent, which gave rise to zebu. There were over 940 million cattle in the world by 2022. Cattle are responsible for around 7% of global greenhouse gas emissions. They were one of the first domesticated animals to have a fully-mapped genome.
Etymology
{{see|List of cattle terminology}}
The term cattle was borrowed from Anglo-Norman {{lang|xno|catel}} (replacing native Old English terms like {{wikt-lang|en|kine}}, now considered archaic, poetic, or dialectal),{{cite web |url=https://www.merriam-webster.com/dictionary/kine |title=kine |website=Merriam-Webster |access-date=13 October 2024}} itself from Medieval Latin {{lang|la|capitale}} 'principal sum of money, capital', itself derived in turn from Latin {{lang|la|caput}} 'head'. Cattle originally meant movable personal property, especially livestock of any kind, as opposed to real property (the land, which also included wild or small free-roaming animals such as chickens—they were sold as part of the land).{{Cite OED|cattle, n.|date=13 October 2024}} The word is a variant of chattel (a unit of personal property) and closely related to capital in the economic sense.{{OEtymD|chattel|accessdate=13 October 2024}} The word cow came via Anglo-Saxon {{lang|ang|cū}} (plural {{lang|ang|cȳ}}), from Common Indo-European {{PIE|gʷōus}} (genitive {{PIE|gʷowés}}) 'a bovine animal', cf. {{langx|fa-Latn|gâv}}, {{langx|sa-Latn|go-}}.{{Cite OED|cow, n.1.|date=13 October 2024}} In older English sources such as the King James Version of the Bible, cattle often means livestock, as opposed to deer, which are wild.
Characteristics
= Description =
{{multiple image
|align=right
|total_width=500
|direction=horizontal
|image1=Скелет домашней коровы.jpg
|caption1=Skeleton
|image2=Modelo didático bovino (fundo branco) (cropped).jpg
|caption2=Anatomical model, showing the large 4-chambered stomach
}}
Cattle are large artiodactyls, mammals with cloven hooves, meaning that they walk on two toes, the third and fourth digits. Like all bovid species, they can have horns, which are unbranched and are not shed annually.{{cite web |title=Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives: Introduction |url=http://assets.press.princeton.edu/chapters/i10713.pdf |publisher=Princeton University Press |access-date=26 March 2024 |archive-url=https://web.archive.org/web/20240117012951/http://assets.press.princeton.edu/chapters/i10713.pdf |archive-date=17 January 2024 |pages=1–23 |url-status=live}} Coloration varies with breed; common colors are black, white, and red/brown, and some breeds are spotted or have mixed colors.{{cite web |last1=Rolf |first1=Megan |title=Color Patterns in Crossbred Beef Cattle |url=https://extension.okstate.edu/fact-sheets/color-patterns-in-crossbred-beef-cattle.html |publisher=University of Oklahoma Extension |access-date=26 March 2024 |archive-url=https://web.archive.org/web/20231204134435/https://extension.okstate.edu/fact-sheets/color-patterns-in-crossbred-beef-cattle.html |archive-date=4 December 2023 |page=AFS-3173 |date=February 2017 |url-status=live}} Bulls are larger than cows of the same breed by up to a few hundred kilograms. British Hereford cows, for example, weigh {{cvt|600|-|800|kg}}, while the bulls weigh {{cvt|1000|-|1200|kg}}.{{cite web |url=http://www.cattlenetwork.net/breeds/hereford.htm |title=Hereford cattle weight |url-status=live |archive-url=https://web.archive.org/web/20150124050154/http://www.cattlenetwork.net/breeds/hereford.htm |archive-date=24 January 2015}} Before 1790, beef cattle averaged only {{convert|350|lb|order=flip|abbr=on}} net. Thereafter, weights climbed steadily.{{cite book |last1=Gallman |first1=Robert E. |last2=Wallis |first2=John Joseph |title=American Economic Growth and Standards of Living before the Civil War |year=2007 |publisher=University of Chicago Press |isbn=978-1-2812-2349-4 |page=248}}{{cite web |url=http://beefmagazine.com/genetics/0201-increased-beef-cows |title=Cattle increasing in size |last=McMurry |first=Bryan |access-date=5 May 2015 |website=Beef Magazine |url-status=live |archive-url=https://web.archive.org/web/20150503101557/http://beefmagazine.com/genetics/0201-increased-beef-cows |archive-date=3 May 2015 |date=February 1, 2009}}
Cattle breeds vary widely in size; the tallest and heaviest is the Chianina, where a mature bull may be up to {{cvt|1.8|m}} at the shoulder, and may reach {{cvt|1280|kg}} in weight.{{cite web |title=Chianina |url=https://www.thecattlesite.com/breeds/beef/44/chianina |website=The Cattle Site |access-date=26 March 2024 |date=29 September 2022}}
The natural life of domestic cattle is some 25–30 years. Beef cattle go to slaughter at around 18 months, and dairy cows at about five years.{{cite web |title=Cattle factsheet |url=https://education.rspca.org.uk/documents/1494931/0/FS+Cattle+Factsheet.pdf/7e17fe59-ca4d-fbec-ef60-fd1f2a9eff3f?t=1555165974046 |publisher=RSPCA |access-date=13 February 2024}}
= Digestive system =
{{Further|Digestive system of ruminants}}
File:Kibegwa 2023 rumen microbiome.png
Cattle are ruminants, meaning their digestive system is highly specialized for processing plant material such as grass rich in cellulose, a tough carbohydrate polymer which many animals cannot digest. They do this in symbiosis with micro-organisms – bacteria, fungi, and protozoa – that possess cellulases, enzymes that split cellulose into its constituent sugars. Among the many bacteria that contribute are Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. Cellulolytic fungi include several species of Neocallimastix, while the protozoa include the ciliates Eudiplodinium maggie and Ostracodinium album.{{cite journal |last1=Hua |first1=Dengke |last2=Hendriks |first2=Wouter H. |last3=Xiong |first3=Benhai |last4=Pellikaan |first4=Wilbert F. |title=Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms |journal=Animals |volume=12 |issue=21 |date=3 November 2022 |pmid=36359144 |pmc=9653558 |doi=10.3390/ani12213020 |doi-access=free |page=3020}} If the animal's feed changes over time, the composition of this microbiome changes in response.
Cattle have one large stomach with four compartments; the rumen, reticulum, omasum, and abomasum. The rumen is the largest compartment and it harbours the most important parts of the microbiome.{{cite journal |last1=Kibegwa |first1=Felix M. |last2=Bett |first2=Rawlynce C. |last3=Gachuiri |first3=Charles K. |last4=Machuka |first4=Eunice |last5=Stomeo |first5=Francesca |last6=Mujibi |first6=Fidalis D. |date=13 January 2023 |title=Diversity and functional analysis of rumen and fecal microbial communities associated with dietary changes in crossbreed dairy cattle |journal=PLOS ONE |volume=18 |issue=1 |pages=e0274371 |doi=10.1371/journal.pone.0274371 |doi-access=free |pmid=36638091 |bibcode=2023PLoSO..1874371K |pmc=9838872}} The reticulum, the smallest compartment, is known as the "honeycomb". The omasum's main function is to absorb water and nutrients from the digestible feed. The abomasum has a similar function to the human stomach.{{cite web |last1=Orr |first1=Adam I. |title=How Cows Eat Grass: Exploring Cow Digestion |url=https://www.fda.gov/animal-veterinary/animal-health-literacy/how-cows-eat-grass |publisher=Food and Drug Administration |access-date=13 February 2024 |date=28 June 2023}}
Cattle regurgitate and re-chew their food in the process of chewing the cud, like most ruminants. While feeding, cows swallow their food without chewing; it goes into the rumen for storage. Later, the food is regurgitated to the mouth, a mouthful at a time, where the cud is chewed by the molars, grinding down the coarse vegetation to small particles. The cud is then swallowed again and further digested by the micro-organisms in the cow's stomach.
= Reproduction =
File:Cow giving birth, in Laos (step by step).jpg
The gestation period for a cow is about nine months long. The ratio of male to female offspring at birth is approximately 52:48.{{cite journal |last1=Roche |first1=J.R. |last2=Lee |first2=J.M. |last3=Berry |first3=D.P. |year=2006 |title=Pre-Conception Energy Balance and Secondary Sex Ratio—Partial Support for the Trivers-Willard Hypothesis in Dairy Cows |journal=Journal of Dairy Science |publisher=American Dairy Science Association |volume=89 |issue=6 |pages=2119–2125 |doi=10.3168/jds.s0022-0302(06)72282-2 |pmid=16702278 |doi-access=free}} A cow's udder has two pairs of mammary glands or teats.{{cite book |last1=Frandson |first1=Rowen D. |last2=Wilke |first2=W. Lee |last3=Fails |first3=Anna Dee |title=Anatomy and Physiology of Farm Animals |date= 2013 |publisher=John Wiley & Sons |isbn=978-1-118-68601-0 |pages=449–451}} Farms often use artificial insemination, the artificial deposition of semen in the female's genital tract; this allows farmers to choose from a wide range of bulls to breed their cattle. Estrus too may be artificially induced to facilitate the process.{{cite book |last=Hopper |first=Richard M. |chapter=32. Artificial Insemination; 33. Pharmacological Intervention of Estrous Cycles |title=Bovine Reproduction |url=https://books.google.com/books?id=gxZTBAAAQBAJ |year=2014 |publisher=Wiley |isbn=978-1-118-47085-5}} Copulation lasts several seconds and consists of a single pelvic thrust.{{Cite book |last1=Youngquist |first1=Robert S. |url=https://books.google.com/books?id=7qogKGcOENAC&dq=copulation&pg=PA940 |title=Current Therapy in Large Animal Theriogenology |last2=Threlfall |first2=Walter R. |date=2006-10-10 |publisher=Elsevier Health Sciences |isbn=978-1-4377-1340-4 |page=940 }}
Cows seek secluded areas for calving.{{cite journal |last1=Edwards |first1=S.A. |last2=Broom |first2=D.M. |year=1982 |title=Behavioural interactions of dairy cows with their newborn calves and the effects of parity |journal=Animal Behaviour |volume=30 |issue=2 |pages=525–535 |doi=10.1016/s0003-3472(82)80065-1 |s2cid=53145854 }} Semi-wild Highland cattle heifers first give birth at 2 or 3 years of age, and the timing of birth is synchronized with increases in natural food quality. Average calving interval is 391 days, and calving mortality within the first year of life is 5%.{{cite journal |last1=Reinhardt |first1=C. |last2=Reinhardt |first2=A. |last3=Reinhardt |first3=V. |year=1986 |title=Social behaviour and reproductive performance in semi-wild Scottish Highland cattle |journal=Applied Animal Behaviour Science |volume=15 |issue=2 |pages=125–136 |doi=10.1016/0168-1591(86)90058-4}} Beef calves suckle an average of 5 times per day, spending some 46 minutes suckling. There is a diurnal rhythm in suckling, peaking at roughly 6am, 11:30am, and 7pm.{{cite journal |last1=Odde |first1=K. G. |last2=Kiracofe |first2=G.H. |last3=Schalles |first3=R.R. |year=1985 |title=Suckling behavior in range beef calves |journal=Journal of Animal Science |volume=61 |issue=2 |pages=307–309 |doi=10.2527/jas1985.612307x |pmid=4044428 }} Under natural conditions, calves stay with their mother until weaning at 8 to 11 months. Heifer and bull calves are equally attached to their mothers in the first few months of life.{{cite journal |last1=Johnsen |first1=J.F. |last2=Ellingsen |first2=K. |last3=Grøndahl |first3=A.M. |last4=Bøe |first4=K.E. |last5=Lidfors |first5=L. |last6=Mejdell |first6=C.M. |year=2015 |title=The effect of physical contact between dairy cows and calves during separation on their post-separation behavioural |journal=Applied Animal Behaviour Science |url=https://www.researchgate.net/publication/274013035 |doi=10.1016/j.applanim.2015.03.002 |volume=166 |pages=11–19 |url-status=live |archive-url=https://web.archive.org/web/20170707160417/https://www.researchgate.net/profile/Julie_Johnsen/publication/274013035_The_effect_of_physical_contact_between_dairy_cows_and_calves_during_separation_on_their_post-separation_behavioural_response/links/551541630cf2d70ee26fee97.pdf |archive-date=7 July 2017 }}
= Cognition =
File:Lecorps 2018 calf sociability.jpg
Cattle have a variety of cognitive abilities. They can memorize the locations of multiple food sources,{{cite journal |journal=Applied Animal Behaviour Science |volume=23 |issue=4 |year=1989 |pages=331–340 |title=Characteristics of spatial memory in cattle |last1=Bailey |first1=D.W. |last2=Rittenhouse |first2=L.R. |last3=Hart |first3=R.H. |last4=Richards |first4=R.W |doi=10.1016/0168-1591(89)90101-9 |url=https://zenodo.org/record/1258397 }} and can retain memories for at least 48 days.{{cite journal |last1=Ksiksi |first1=T. |last2=Laca |first2=E.A. |year=2002 |title=Cattle do remember locations of preferred food over extended periods |journal= Asian-Australasian Journal of Animal Sciences |volume=15 |issue=6 |pages=900–904 |doi=10.5713/ajas.2002.900|doi-access=free }} Young cattle learn more quickly than adults,{{cite journal |last1=Kovalčik |first1=K. |last2=Kovalčik |first2=M. |year=1986 |title=Learning ability and memory testing in cattle of different ages |journal=Applied Animal Behaviour Science |volume=15 |issue=1 |pages=27–29 |doi=10.1016/0168-1591(86)90019-5}} and calves are capable of discrimination learning,{{cite journal |last1=Schaeffer |first1=R.G. |last2=Sikes |first2=J.D. |title=Discrimination learning in dairy calves |journal=Journal of Dairy Science |year=1971 |volume=54 |issue=6 |pages=893–896 |doi=10.3168/jds.s0022-0302(71)85937-4 |pmid=5141440 |doi-access=free }} distinguishing familiar and unfamiliar animals, and between humans, using faces and other cues.{{cite journal |last1=de Passille |first1=A.M. |last2=Rushen |first2=J. |last3=Ladewig |first3=J. |last4=Petherick |first4=C. |title=Dairy calves' discrimination of people based on previous handling |year=1996 |volume=74 |issue=5 |pages=969–974 |journal=Journal of Animal Science|doi=10.2527/1996.745969x |pmid=8726728 }} Calves prefer their own mother's vocalizations to those of an unfamiliar cow.{{cite journal |last1=Barfield |first1=C.H. |last2=Tang-Martinez |first2=Z. |last3=Trainer |first3=J.M. |year=1994 |title=Domestic calves (Bos taurus) recognize their own mothers by auditory cues |journal=Ethology |volume=97 |issue=4 |pages=257–264 |doi=10.1111/j.1439-0310.1994.tb01045.x |bibcode=1994Ethol..97..257B }} Vocalizations provide information on the age, sex, dominance status and reproductive status of the caller, and may indicate estrus in cows and competitive display in bulls.{{cite journal |last1=Watts |first1=J.M. |last2=Stookey |first2=J.M. |year=2000 |title=Vocal behaviour in cattle: the animal's commentary on its biological processes and welfare |journal=Applied Animal Behaviour Science |volume=67 |issue=1 |pages=15–33 |doi=10.1016/S0168-1591(99)00108-2 |pmid=10719186}} Cows can categorize images as familiar and unfamiliar individuals.{{cite journal |last1=Coulon |first1=M. |last2=Baudoin |first2=C. |last3=Heyman |first3=Y. |last4=Deputte |first4=B.L. |year=2011 |title=Cattle discriminate between familiar and unfamiliar conspecifics by using only head visual cues |journal=Animal Cognition |volume=14 |issue=2 |pages=279–290 |doi=10.1007/s10071-010-0361-6 |pmid=21132446 |s2cid=39755371 }} Cloned calves from the same donor form subgroups, suggesting that kin discrimination may be a basis of grouping behaviour.{{cite journal |last1=Coulon |first1=M. |last2=Baudoin |first2=C. |last3=Abdi |first3=H. |last4=Heyman |first4=Y. |last5=Deputte |first5=B.L. |year=2010 |title=Social behavior and kin discrimination in a mixed group of cloned and non cloned heifers (Bos taurus) |journal=Theriogenology |volume=74 |issue=9 |pages=1596–1603 |doi=10.1016/j.theriogenology.2010.06.031|pmid=20708240 }} Cattle use visual/brain lateralisation when scanning novel and familiar stimuli.{{cite journal |last1=Phillips |first1=C.J.C. |last2=Oevermans |first2=H. |last3=Syrett |first3=K.L. |last4=Jespersen |first4=A.Y. |last5=Pearce |first5=G.P. |year=2015 |title=Lateralization of behavior in dairy cows in response to conspecifics and novel persons |journal=Journal of Dairy Science |volume=98 |issue=4 |pages=2389–2400 |doi=10.3168/jds.2014-8648|pmid=25648820 |url=https://www.repository.cam.ac.uk/handle/1810/247470 |doi-access=free }} They prefer to view novel stimuli with the left eye (using the right brain hemisphere), but the right eye for familiar stimuli.{{cite journal |last1=Robins |first1=A. |last2=Phillips |first2=C. |year=2010 |title=Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli |journal=Laterality |volume=15 |issue=5 |pages=514–534 |doi=10.1080/13576500903049324 |pmid=19629847 |s2cid=13283847 }} Individual cattle have also been observed to display different personality traits, such as fearfulness and sociability.{{cite journal |last1=Lecorps |first1=Benjamin |last2=Weary |first2=Daniel M. |last3=von Keyserlingk |first3=Marina A. G. |date=23 January 2018 |title=Pessimism and fearfulness in dairy calves |journal=Scientific Reports |volume=8 |issue=1 |page=1421 |doi=10.1038/s41598-017-17214-3 |pmid=29362460 |pmc=5780456 |bibcode=2018NatSR...8.1421L }}
= Senses =
Vision is the dominant sense; cattle obtain almost half of their information visually.{{cite journal |author1=Adamczyk, K. |author2=Górecka-Bruzda, A. |author3=Nowicki, J. |author4=Gumułka, M. |author5=Molik, E. |author6=Schwarz, T. |author7=Klocek, C. |year=2015 |title=Perception of environment in farm animals – A review |journal=Annals of Animal Science |volume=15 |issue=3 |pages=565–589 |doi=10.1515/aoas-2015-0031 |doi-access=free}} Being prey animals, cattle evolved to look out for predators almost all around, with eyes that are on the sides of their head rather than the front. This gives them a field of view of 330°, but limits binocular vision (and therefore stereopsis) to some 30° to 50°, compared to 140° in humans. They are dichromatic, like most mammals.{{cite journal |last1=Jacobs |first1=G.H. |last2=Deegan |first2=J.F. |last3=Neitz |first3=J. |year=1998 |title=Photopigment basis for dichromatic color vision in cows, goats and sheep |journal=Vis. Neurosci. |volume=15 |issue=3 |pages=581–584 |doi=10.1017/s0952523898153154 |doi-broken-date=1 November 2024 |pmid=9685209 |s2cid=3719972}} Cattle avoid bitter-tasting foods, selecting sweet foods for energy. Their sensitivity to sour-tasting foods helps them to maintain optimal ruminal pH. They seek out salty foods by taste and smell to maintain their electrolyte balance.{{cite journal |last1=Bell |first1=F.R. |last2=Sly |first2=J. |year=1983 |title=The olfactory detection of sodium and lithium salts by sodium deficient cattle. |journal=Physiology & Behavior |volume=31 |issue=3 |pages=307–312 |doi=10.1016/0031-9384(83)90193-2 |pmid=6634998 |s2cid=34619742}} Their hearing is better than that of horses,{{cite journal |last1=Heffner |first1=R.S. |last2=Heffner |first2=H.E. |year=1983 |title=Hearing in large mammals: Horses (Equus caballus) and cattle (Bos taurus) |journal=Behavioral Neuroscience |volume=97 |issue=2 |pages=299–309 |doi=10.1037/0735-7044.97.2.299}} but worse at localising sounds than goats, and much worse than dogs or humans.{{cite journal |last1=Heffner |first1=R.S. |last2=Heffner |first2=H.E. |year=1992 |title=Hearing in large mammals: sound-localization acuity in cattle (Bos taurus) and goats (Capra hircus) |journal=Journal of Comparative Psychology |volume=106 |issue=2 |pages=107–113 |doi=10.1037/0735-7036.106.2.107 |pmid=1600717}} They can distinguish between live and recorded human speech.{{Cite journal |last1=Lange |first1=Annika |last2=Bauer |first2=Lisa |last3=Futschik |first3=Andreas |last4=Waiblinger |first4=Susanne |last5=Lürzel |first5=Stephanie |date=15 October 2020 |title=Talking to Cows: Reactions to Different Auditory Stimuli During Gentle Human-Animal Interactions |journal=Frontiers in Psychology |volume=11 |doi=10.3389/fpsyg.2020.579346 |doi-access=free |pmid=33178082 |pmc=7593841 }} Olfaction probably plays a large role in their social life, indicating social and reproductive status.{{cite book |last1=Bouissou |first1=M.F. |title=Social Behavior in Farm Animals |last2=Boissy |first2=A. |last3=Le Niendre |first3=P. |last4=Vessier |first4=I. |publisher=CABI Publishing |year=2001 |editor-last1=Keeling |editor-first1=L. |pages=113–133 |chapter=The Social Behaviour of Cattle 5. |editor-last2=Gonyou |editor-first2=H.}} Cattle can tell when other animals are stressed by smelling the alarm chemicals in their urine.{{cite journal |last1=Boissy |first1=A. |last2=Terlouw |first2=C. |last3=Le Neindre |first3=P. |year=1998 |title=Presence of cues from stressed conspecifics increases reactivity to aversive events in cattle: evidence for the existence of alarm substances in urine |journal=Physiology and Behavior |volume=63 |issue=4 |pages=489–495 |doi=10.1016/s0031-9384(97)00466-6 |pmid=9523888 |s2cid=36904002}} Cattle can be trained to recognise conspecific individuals using olfaction only.
Behavior
= Dominance hierarchy =
File:Oman_bullfighting_(2).jpg watch a fight between bulls.]]
Cattle live in a dominance hierarchy. This is maintained in several ways. Cattle often engage in mock fights where they test each other's strength in a non-aggressive way. Licking is primarily performed by subordinates and received by dominant animals. Mounting is a playful behavior shown by calves of both sexes and by bulls and sometimes by cows in estrus,{{cite web |url=http://extension.psu.edu/animals/dairy/health/reproduction/insemination/ec402/signs-of-heat |title=Signs of Heat (Heat Detection and Timing of Insemination for Cattle) |website=Heat Detection and Timing of Insemination for Cattle (Penn State Extension) |url-status=live |archive-url=https://web.archive.org/web/20161105161839/http://extension.psu.edu/animals/dairy/health/reproduction/insemination/ec402/signs-of-heat |archive-date=5 November 2016 }} however, this is not a dominance related behavior as has been found in other species. Dominance-associated aggressiveness does not correlate with rank position, but is closely related to rank distance between individuals. The horns of cattle are Signalling theory#honest signals used in mate selection. Horned cattle attempt to keep greater distances between themselves and have fewer physical interactions than hornless cattle, resulting in more stable social relationships.{{cite journal |last1=Knierim |first1=U. |last2=Irrgang |first2=N. |last3=Roth |first3=B.A. |year=2015 |title=To be or not to be horned–consequences in cattle |journal=Livestock Science |doi=10.1016/j.livsci.2015.05.014 |volume=179 |pages=29–37}} In calves, agonistic behavior becomes less frequent as space allowance increases, but not as group size changes, whereas in adults, the number of agonistic encounters increases with group size.{{cite journal |last1=Kondo |first1=S. |last2=Sekine |first2=J. |last3=Okubo |first3=M. |last4=Asahida |first4=Y. |year=1989 |title=The effect of group size and space allowance on the agonistic and spacing behavior of cattle. |journal=Applied Animal Behaviour Science |volume=24 |issue=2 |pages=127–135 |doi=10.1016/0168-1591(89)90040-3}}
Dominance relationships in semi-wild highland cattle are very firm, with few overt aggressive conflicts: most disputes are settled by agonistic (non-aggressive, competitive) behaviors with no physical contact between opponents, reducing the risk of injury. Dominance status depends on age and sex, with older animals usually dominant to young ones and males dominant to females. Young bulls gain superior dominance status over adult cows when they reach about 2 years of age.
= Grazing behavior =
File:Stier_Charolais_Linnenbach.JPG bull grazing]]
Cattle eat mixed diets, but prefer to eat approximately 70% clover and 30% grass. This preference has a diurnal pattern, with a stronger preference for clover in the morning, and the proportion of grass increasing towards the evening.{{cite journal |last=Rutter |first=S.M. |year=2006 |title=Diet preference for grass and legumes in free-ranging domestic sheep and cattle: current theory and future application. |journal=Applied Animal Behaviour Science |volume=97 |issue=1 |pages=17–35 |doi=10.1016/j.applanim.2005.11.016}} When grazing, cattle vary several aspects of their bite, i.e. tongue and jaw movements, depending on characteristics of the plant they are eating. Bite area decreases with the density of the plants but increases with their height. Bite area is determined by the sweep of the tongue; in one study observing {{convert|750|kg|adj=on}} steers, bite area reached a maximum of approximately {{convert|170|cm2|sigfig=1|abbr=on}}. Bite depth increases with the height of the plants. By adjusting their behavior, cattle obtain heavier bites in swards that are tall and sparse compared with short, dense swards of equal mass/area.{{cite journal |last1=Laca |first1=E.A. |last2=Ungar |first2=E.D. |last3=Seligman |first3=N. |last4=Demment |first4=M.W. |year=1992 |title=Effects of sward height and bulk density on bite dimensions of cattle grazing homogeneous swards |journal=Grass and Forage Science |volume=47 |issue=1 |pages=91–102 |doi=10.1111/j.1365-2494.1992.tb02251.x |bibcode=1992GForS..47...91L }} Cattle adjust other aspects of their grazing behavior in relation to the available food; foraging velocity decreases and intake rate increases in areas of abundant palatable forage.{{cite journal |last1=Bailey |first1=D.W. |last2=Gross |first2=J.E. |last3=Laca |first3=E.A. |last4=Rittenhouse |first4=L.R. |last5=Coughenour |first5=M.B. |last6=Swift |first6=D.M. |last7=Sims |first7=P.L. |year=1996 |title=Mechanisms that result in large herbivore grazing distribution patterns |journal=Journal of Range Management |volume=49 |issue=5 |pages=386–400 |doi=10.2307/4002919|jstor=4002919 |hdl=10150/644282 |hdl-access=free }} Cattle avoid grazing areas contaminated by the faeces of other cattle more strongly than they avoid areas contaminated by sheep,{{cite journal |last1=Forbes |first1=T.D.A. |last2=Hodgson |first2=J. |year=1985 |title=The reaction of grazing sheep and cattle to the presence of dung from the same or the other species |journal=Grass and Forage Science |volume=40 |issue=2 |pages=177–182 |doi=10.1111/j.1365-2494.1985.tb01735.x |bibcode=1985GForS..40..177F }} but they do not avoid pasture contaminated by rabbits.{{cite journal |last1=Daniels |first1=M.J. |last2=Ball |first2=N. |last3=Hutchings |first3=M.R. |last4=Greig |first4=A. |year=2001 |title=The grazing response of cattle to pasture contaminated with rabbit faeces and the implications for the transmission of paratuberculosis |journal=The Veterinary Journal |volume=161 |issue=3 |pages=306–313 |doi=10.1053/tvjl.2000.0550 |pmid=11352488 }}
= Temperament and emotions =
In cattle, temperament or behavioral disposition can affect productivity, overall health, and reproduction.{{cite journal |last1=Brand |first1=B. |author2=Hadlich, F. |author3=Brandt, B. |author4=Schauer, N. |author5=Graunke, K.L. |author6=Langbein, J. |author7=Schwerin, M. |year=2015 |title=Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle. |journal=PLOS ONE |volume=10 |issue=4 |pages=e0125044 |bibcode=2015PLoSO..1025044B |doi=10.1371/journal.pone.0125044 |pmc=4416037 |pmid=25927228 |doi-access=free}} Five underlying categories of temperament traits have been proposed: shyness–boldness, exploration–avoidance, activity, aggressiveness, and sociability.{{cite journal |last1=Réale |first1=D. |last2=Reader |first2=S.M. |last3=Sol |first3=D. |last4=McDougall |first4=P.T. |last5=Dingemanse |first5=N.J. |year=2007 |title=Integrating animal temperament within ecology and evolution |journal=Biological Reviews |volume=82 |issue=2 |pages=291–318 |doi=10.1111/j.1469-185x.2007.00010.x |pmid=17437562 |s2cid=44753594 |hdl-access=free |hdl=1874/25732}} There are many indicators of emotion in cattle. Holstein–Friesian heifers that had made clear improvements in a learning experiment had higher heart rates, indicating an emotional reaction to their own learning.{{cite journal |last1=Hagen |first1=K. |last2=Broom |first2=D. |year=2004 |title=Emotional reactions to learning in cattle |url=http://www.appliedanimalbehaviour.com/article/S0168-1591%2803%2900294-6/abstract |journal=Applied Animal Behaviour Science |volume=85 |issue=3–4 |pages=203–213 |doi=10.1016/j.applanim.2003.11.007}} After separation from their mothers, Holstein calves react, indicating low mood.{{cite journal |last1=Daros |first1=R.R. |last2=Costa |first2=J.H. |last3=von Keyserlingk |first3=M.A. |last4=Hötzel |first4=M.J. |last5=Weary |first5=D.M. |year=2014 |title=Separation from the dam causes negative judgement bias in dairy calves |journal=PLOS One |volume=9 |issue=5 |pages=e98429 |bibcode=2014PLoSO...998429D |doi=10.1371/journal.pone.0098429 |pmc=4029834 |pmid=24848635 |doi-access=free}} Similarly, after hot-iron dehorning, calves react to the post-operative pain.{{cite journal |last1=Neave |first1=H.W. |last2=Daros |first2=R.R. |last3=Costa |first3=J.H.C. |last4=von Keyserlingk |first4=M.A.G. |last5=Weary |first5=D.M. |year=2013 |title=Pain and pessimism: Dairy calves exhibit negative judgement bias following hot-iron disbudding |journal=PLOS One |volume=8 |issue=12 |pages=e80556 |bibcode=2013PLoSO...880556N |doi=10.1371/journal.pone.0080556 |pmc=3851165 |pmid=24324609 |doi-access=free}} The position of the ears has been used as an indicator of emotional state. Cattle can tell when other cattle are stressed by the chemicals in their urine. Cattle are gregarious, and even short-term isolation causes psychological stress. When heifers are isolated, vocalizations, heart rate and plasma cortisol all increase. When visual contact is re-instated, vocalizations rapidly decline; heart rate decreases more rapidly if the returning cattle are familiar to the previously isolated individual.{{cite journal |last1=Boissy |first1=A. |last2=Le Neindre |first2=P. |year=1997 |title=Behavioral, cardiac and cortisol responses to brief peer separation and reunion in cattle |journal=Physiology & Behavior |volume=61 |issue=5 |pages=693–699 |doi=10.1016/s0031-9384(96)00521-5 |pmid=9145939 |s2cid=8507049}} Mirrors have been used to reduce stress in isolated cattle.{{cite journal |last1=Piller |first1=Carol A.K. |last2=Stookey |first2=Joseph M |last3=Watts |first3=Jon M. |title=Effects of mirror-image exposure on heart rate and movement of isolated heifers |journal=Applied Animal Behaviour Science |volume=63 |issue=2 |date=1999 |doi=10.1016/S0168-1591(99)00010-6 |pages=93–102}}
= Sleep =
{{further|Sleep in non-human animals}}
The average sleep time of a domestic cow is about 4 hours a day."40 Winks?" Jennifer S. Holland, National Geographic Vol. 220, No. 1. July 2011. Cattle do have a stay apparatus,{{cite book |last1=Asprea |first1=Lori |url=https://books.google.com/books?id=74Hd_YLuHsUC&pg=PT109 |title=Anatomy and physiology for veterinary technicians and nurses a clinical approach. |last2=Sturtz |first2=Robin |date=2012 |publisher=Iowa State University Pre |isbn=978-1-118-40584-0 |location=Chichester |page=109}} but do not sleep standing up;{{cite web |title=Animal MythBusters |publisher=Manitoba Veterinary Medical Association |url=http://www.mvma.ca/resources/animal-owners/animal-mythbusters#cow+tipping |url-status=live |archive-url=https://web.archive.org/web/20160415135131/http://www.mvma.ca/resources/animal-owners/animal-mythbusters#cow+tipping |archive-date=15 April 2016 |website=www.mvma.ca}} they lie down to sleep deeply.{{cite news |last=Collins |first=Nick |date=6 September 2013 |title=Cow tipping myth dispelled |website=The Daily Telegraph |url=https://www.telegraph.co.uk/news/science/science-news/10289862/Cow-tipping-myth-dispelled.html |url-status=live |access-date=18 May 2016 |archive-url=https://web.archive.org/web/20160426021919/http://www.telegraph.co.uk/news/science/science-news/10289862/Cow-tipping-myth-dispelled.html |archive-date=26 April 2016}}
Genetics
{{see|Bovine genome}}
File:Talenti 2022 cattle genetics.png
In 2009, the National Institutes of Health and the US Department of Agriculture reported having mapped the bovine genome.{{cite news |url=https://www.washingtonpost.com/wp-dyn/content/article/2009/04/23/AR2009042303453.html |title=Scientists Unravel Genome of the Cow |newspaper=The Washington Post |date=23 April 2009 |access-date=23 April 2009 |first=David |last=Brown |url-status=live |archive-url=https://web.archive.org/web/20110628203746/http://www.washingtonpost.com/wp-dyn/content/article/2009/04/23/AR2009042303453.html |archive-date=28 June 2011 }} Cattle have some 22,000 genes, of which 80% are shared with humans; they have about 1000 genes that they share with dogs and rodents, but not with humans. Using this bovine "HapMap", researchers can track the differences between breeds that affect meat and milk yields.{{cite news |last=Gill |first=Victoria |url=http://news.bbc.co.uk/2/hi/science/nature/8014598.stm |title=BBC: Cow genome 'to transform farming' |work=BBC News |date=23 April 2009 |access-date=15 October 2013 |url-status=live |archive-url=https://web.archive.org/web/20131017195942/http://news.bbc.co.uk/2/hi/science/nature/8014598.stm |archive-date=17 October 2013 }} Early research focused on Hereford genetic sequences; a wider study mapped a further 4.2% of the cattle genome.{{cite journal |last1=Talenti |first1=A. |last2=Powell |first2=J. |last3=Hemmink |first3=J. D. |last4=Cook |first4=E. A. J. |last5=Wragg |first5=D. |last6=Jayaraman |first6=S. |last7=Paxton |first7=E. |last8=Ezeasor |first8=C. |last9=Obishakin |first9=E. T. |last10=Agusi |first10=E. R. |last11=Tijjani |first11=A. |last12=Amanyire |first12=W. |last13=Muhanguzi |first13=D. |last14=Marshall |first14=K. |last15=Fisch |first15=A. |last16=Ferreira |first16=B. R. |last17=Qasim |first17=A. |last18=Chaudhry |first18=U. |last19=Wiener |first19=P. |last20=Toye |first20=P. |last21=Morrison |first21=L. J. |last22=Connelley |first22=T. |last23=Prendergast |first23=J. G. D. |display-authors=6 |date=17 February 2022 |title=A cattle graph genome incorporating global breed diversity |journal=Nature Communications |volume=13 |issue=1 |page=910 |doi=10.1038/s41467-022-28605-0 |pmid=35177600 |pmc=8854726 |bibcode=2022NatCo..13..910T }}
Behavioral traits of cattle can be as heritable as some production traits, and often, the two can be related.{{cite journal |last1=Canario |first1=L. |last2=Mignon-Grasteau |first2=S. |last3=Dupont-Nivet |first3=M. |last4=Phocas |first4=F. |year=2013 |title=Genetics of behavioural adaptation of livestock to farming conditions |journal=Animal |volume=7 |issue=3 |pages=357–377 |doi=10.1017/S1751731112001978 |pmid=23127553 |url=https://hal.archives-ouvertes.fr/hal-01019444/file/2013_Canario_Animal_1.pdf |doi-access=free |bibcode=2013Anim....7..357C }} The heritability of temperament (response to isolation during handling) has been calculated as 0.36 and 0.46 for habituation to handling.{{cite journal |last1=Schmutz |first1=S. M. |last2=Stookey |first2=J. M. |last3=Winkelman-Sim |first3=D. C. |last4=Waltz |first4=C. S. |last5=Plante |first5=Y. |last6=Buchanan |first6=F. C. |year=2001 |title=A QTL study of cattle behavioral traits in embryo transfer families |journal=Journal of Heredity |volume=92 |issue=3 |pages=290–292 |doi=10.1093/jhered/92.3.290 |pmid=11447250 |doi-access=free }} Rangeland assessments show that the heritability of aggressiveness in cattle is around 0.36.{{cite journal |year=2013 |volume=7 |issue=3 |pages=357–377 |doi=10.1017/S1751731112001978 |pmid=23127553 |journal=Animal |title=Genetics of behavioural adaptation of livestock to farming conditions |last1=Canario |first1=L. |last2=Mignon-Grasteau |first2=S. |last3=Dupont-Nivet |first3=M. |last4=Phocas |first4=F. |url=https://hal.archives-ouvertes.fr/hal-01019444/file/2013_Canario_Animal_1.pdf |doi-access=free |bibcode=2013Anim....7..357C }}
Quantitative trait loci have been found for a range of production and behavioral characteristics for both dairy and beef cattle.{{cite journal |last1=Friedrich |first1=J. |last2=Brand |first2=B. |last3=Schwerin |first3=M. |year=2015 |title=Genetics of cattle temperament and its impact on livestock production and breeding – a review |journal=Archives Animal Breeding |volume=58 |pages=13–21 |url=https://www.researchgate.net/publication/275837207 |doi=10.5194/aab-58-13-2015 |url-status=live |archive-url=https://web.archive.org/web/20150924121237/http://www.researchgate.net/profile/Bodo_Brand/publication/275837207_Genetics_of_cattle_temperament_and_its_impact_on_livestock_production_and_breeding__a_review/links/55485d420cf2e2031b386dd8.pdf |archive-date=24 September 2015 |doi-access=free }}
Evolution
= Phylogeny =
Cattle have played a key role in human history, having been domesticated since at least the early Neolithic age. Archaeozoological and genetic data indicate that cattle were first domesticated from wild aurochs (Bos primigenius) approximately 10,500 years ago. There were two major areas of domestication: one in central Anatolia, the Levant and Western Iran, giving rise to the taurine line, and a second in the area that is now Pakistan, resulting in the indicine line.{{cite journal |last1=McTavish |first1=E.J. |last2=Decker |first2=J.E. |last3=Schnabel |first3=R.D. |last4=Taylor |first4=J.F. |last5=Hillis |first5=D.M. |year=2013 |title=New World cattle show ancestry from multiple independent domestication events |journal=PNAS |volume=110 |issue=15 |pages=E1398–1406 |doi=10.1073/pnas.1303367110 |pmid=23530234 |pmc=3625352 |bibcode=2013PNAS..110E1398M |doi-access=free }} Modern mitochondrial DNA variation indicates the taurine line may have arisen from as few as 80 aurochs tamed in the upper reaches of Mesopotamia near the villages of Çayönü Tepesi in what is now southeastern Turkey, and Dja'de el-Mughara in what is now northern Syria.{{cite journal |last1=Bollongino |first1=R. |last2=Burger |first2=J. |last3=Powell |first3=A. |last4=Mashkour |first4=M. |last5=Vigne |first5=J.-D. |last6=Thomas |first6=M. G. |year=2012 |title=Modern taurine cattle descended from small number of Near-Eastern founders |journal=Molecular Biology and Evolution |volume=29 |issue=9 |pages=2101–2104 |doi=10.1093/molbev/mss092 |pmid=22422765 |doi-access=free }} Op. cit. in {{cite news |last1=Wilkins |first1=Alasdair |work=io9 |url=http://io9.com/5897169/dna-reveals-that-cows-were-almost-impossible-to-domesticate?tag=archaeology |title=DNA reveals that cows were almost impossible to domesticate |date=28 March 2012 |access-date=2 April 2012 |url-status=live |archive-url=https://web.archive.org/web/20120512072737/http://io9.com/5897169/dna-reveals-that-cows-were-almost-impossible-to-domesticate?tag=archaeology |archive-date=12 May 2012 }}
Although European cattle are largely descended from the taurine lineage, gene flow from African cattle (partially of indicine origin) contributed substantial genomic components to both southern European cattle breeds and their New World descendants. A study on 134 breeds showed that modern taurine cattle originated from Africa, Asia, North and South America, Australia, and Europe.{{cite journal |last1=Decker |first1=J.E. |last2=McKay |first2=S.D. |last3=Rolf |first3=M.M. |last4=Kim |first4=J. |last5=Molina Alcalá |first5=A. |last6=Sonstegard |first6=T.S. |year=2014 |title=Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. |journal=PLOS Genet. |volume=10 |issue=3 |pages=e1004254 |doi=10.1371/journal.pgen.1004254 |display-authors=etal |pmid=24675901 |pmc=3967955 |doi-access=free }} Some researchers have suggested that African taurine cattle are derived from a third independent domestication from the North African aurochs. Whether there have been two or three domestications, European, African, and Asian cattle share much of their genomes both through their species ancestry and through repeated migrations of livestock and genetic material between species, as shown in the diagram.{{cite journal |last1=Pitt |first1=Daniel |last2=Sevane |first2=Natalia |last3=Nicolazzi |first3=Ezequiel L. |last4=MacHugh |first4=David E. |last5=Park |first5=Stephen D. E. |last6=Colli |first6=Licia |last7=Martinez |first7=Rodrigo |last8=Bruford |first8=Michael W. |last9=Orozco-terWengel |first9=Pablo |title=Domestication of cattle: Two or three events? |journal=Evolutionary Applications |volume=12 |issue=1 |date=2019 |pmid=30622640 |pmc=6304694 |doi=10.1111/eva.12674 |pages=123–136 |bibcode=2019EvApp..12..123P }}
= Taxonomy =
{{See also|Bos|Bovinae}}
File:Cattle phylogeny and migrations.svg
File:Zubron2.jpg, a European bison–cattle hybrid]]
Cattle were originally identified as three separate species: Bos taurus, the European or "taurine" cattle (including similar types from Africa and Asia); Bos indicus, the Indicine or "zebu"; and the extinct Bos primigenius, the aurochs. The aurochs is ancestral to both zebu and taurine cattle.{{cite journal |url=https://www.researchgate.net/publication/222110938 |title=On the origin of cattle: How aurochs became domestic and colonized the world |journal=Evolutionary Anthropology |volume=19 |pages=148–157 |access-date=3 December 2017 |url-status=live |archive-url=https://web.archive.org/web/20171204171106/https://www.researchgate.net/publication/222110938_On_the_origin_of_cattle_how_aurochs_became_domestic_and_colonized_the_world |archive-date=4 December 2017 |date=January 2010 |last1=Ajmone-Marsan |first1=Paolo |last2=Garcia |first2=J.F. |last3=Lenstra |first3=Johannes |doi=10.1002/evan.20267 |s2cid=86035650 }} They were later reclassified as one species, Bos taurus, with the aurochs (B. t. primigenius), zebu (B. t. indicus), and taurine (B. t. taurus) cattle as subspecies. However, this taxonomy is contentious, and authorities such as the American Society of Mammalogists treat these taxa as separate species.{{Cite web |title=Explore the Database|url=https://www.mammaldiversity.org/explore.html#species-id=1006267 |access-date=21 August 2021 |website=www.mammaldiversity.org}}{{Cite journal |date=1 May 2004 |title=The naming of wild animal species and their domestic derivatives|url=https://www.sciencedirect.com/science/article/abs/pii/S0305440303001638 |journal=Journal of Archaeological Science |volume=31 |issue=5 |pages=645–651 |doi=10.1016/j.jas.2003.10.006 |last1=Gentry |first1=Anthea |last2=Clutton-Brock |first2=Juliet |last3=Groves |first3=Colin P. |bibcode=2004JArSc..31..645G }}
Complicating the matter is the ability of cattle to interbreed with other closely related species. Hybrid individuals and even breeds exist, not only between taurine cattle and zebu (such as the sanga cattle (Bos taurus africanus x Bos indicus), but also between one or both of these and some other members of the genus Bos – yaks (the dzo or yattle{{Cite news |last=Mummolo |first=Jonathan |date=2007-08-11 |title=Yattle What? |newspaper=The Washington Post |url=http://www.washingtonpost.com/wp-dyn/content/article/2007/08/10/AR2007081002119.html |archive-url=https://web.archive.org/web/20170701203752/http://www.washingtonpost.com/wp-dyn/content/article/2007/08/10/AR2007081002119.html |archive-date=1 July 2017 |access-date=2023-03-10}}), banteng, and gaur. Hybrids such as the beefalo breed can even occur between taurine cattle and either species of bison, leading some authors to consider them part of the genus Bos, as well.{{cite journal |last=Groves |first=C. P. |year=1981 |title=Systematic relationships in the Bovini (Artiodactyla, Bovidae) |journal=Zeitschrift für Zoologische Systematik und Evolutionsforschung |volume=4 |pages=264–278}}, quoted in {{MSW3 Artiodactyla|id=14200668|heading= Genus Bison}} The hybrid origin of some types may not be obvious – for example, genetic testing of the Dwarf Lulu breed, the only taurine-type cattle in Nepal, found them to be a mix of taurine cattle, zebu, and yak.{{cite journal |last=Takeda |first=Kumiko |title=Mitochondrial DNA analysis of Nepalese domestic dwarf cattle Lulu |journal=Animal Science Journal |volume=75 |issue=2 |pages=103–110 |date=April 2004 |doi=10.1111/j.1740-0929.2004.00163.x |display-authors=etal }}
File:Livestock market in Mali.jpg ]]
The aurochs originally ranged throughout Europe, North Africa, and much of Asia. In historical times, its range became restricted to Europe, and the last known individual died in Mazovia, Poland, around 1627.Van Vuure, C.T. 2003. De Oeros – Het spoor terug (in Dutch), Cis van Vuure, Wageningen University and Research Centrum: quoted by [http://www.petermaas.nl/extinct/speciesinfo/aurochs.htm The Extinction Website: Bos primigenius primigenius.] {{webarchive |url=https://web.archive.org/web/20090420140454/http://www.petermaas.nl/extinct/speciesinfo/aurochs.htm |date=20 April 2009 }} Breeders have attempted to recreate a similar appearance to the aurochs by crossing traditional types of domesticated cattle, producing the Heck breed.{{Cite journal |last=Heck |first=H. |title=The Breeding-Back of the Aurochs |doi=10.1017/S0030605300035286 |journal=Oryx |volume=1 |issue=3 |pages=117–122 |year=1951|doi-access=free }}
A group of taurine-type cattle exist in Africa; they either represent an independent domestication event or were the result of crossing taurines domesticated elsewhere with local aurochs, but they are genetically distinct;{{cite journal |last1=Pitt |first1=Daniel |last2=Sevane |first2=Natalia |last3=Nicolazzi |first3=Ezequiel L. |last4=MacHugh |first4=David E. |last5=Park |first5=Stephen D. E. |last6=Colli |first6=Licia |last7=Martinez |first7=Rodrigo |last8=Bruford |first8=Michael W. |last9=Orozco-terWengel |first9=Pablo |title=Domestication of cattle: Two or three events? |journal=Evolutionary Applications |date=January 2019 |volume=12 |issue=1 |pages=123–136 |doi=10.1111/eva.12674 |pmid=30622640 |pmc=6304694 |bibcode=2019EvApp..12..123P }} some authors name them as a separate subspecies, Bos taurus africanus.{{cite journal |last1=Strydom |first1=P.E. |last2=Naude |first2=R.T. |last3=Smith |first3=M.F. |last4=Kotze |first4=A. |last5=Scholtz |first5=M.M. |last6=Van Wyk |first6=J.B. |title=Relationships between production and product traits in subpopulations of Bonsmara and Nguni cattle |journal=South African Journal of Animal Science |date=1 March 2001 |volume=31 |issue=3 |pages=181–194 |doi=10.4314/sajas.v31i3.3801 |doi-access=free }} The only pure African taurine breeds remaining are the N'Dama, Kuri and some varieties of the West African Shorthorn.{{cite web |url=http://www.fao.org/3/t1300t/t1300t0j.htm |title=Genetic characterization and West African cattle |first1=C. |last1=Meghen |first2=D.E. |last2=MacHugh |first3=D.G. |last3=Bradley |website=fao.org |access-date=20 September 2021 |url-status=live |archive-url=https://web.archive.org/web/20190226101512/http://www.fao.org:80/3/t1300t/t1300T0j.htm |archive-date=26 February 2019 }}
Feral cattle are those that have been allowed to go wild.{{Cite web |title=Definition of Feral cattle |url=http://www.merriam-webster.com/dictionary/feral |url-status=live |archive-url=https://web.archive.org/web/20150921162050/http://www.merriam-webster.com/dictionary/feral |archive-date=21 September 2015 |access-date=4 May 2015}} Populations exist in many parts of the world,{{cite web |last1=Sahagun |first1=Louis |date=2 March 2018 |title=Feral cattle terrorize hikers and devour native plants in a California national monument |url=https://www.latimes.com/local/california/la-me-feral-bulls-20180302-story.html |website=Los Angeles Times}}{{cite web |title=NGRC Bos taurus |url=http://www.nodai-genome.org/bos_taurus.html?lang=en |url-status=live |archive-url=https://web.archive.org/web/20160223064915/http://www.nodai-genome.org/bos_taurus.html?lang=en |archive-date=23 February 2016 |website=www.nodai-genome.org}} sometimes on small islands.{{cite web |title=口之島牛(Bos Taurus)の成長曲線の作成とその特徴 |url=http://www.tech.nagoya-u.ac.jp/event/h26/Vol10/hon_secur/O9-SEI-1-s.pdf |url-status=dead |archive-url=https://web.archive.org/web/20160425012219/http://www.tech.nagoya-u.ac.jp/event/h26/Vol10/hon_secur/O9-SEI-1-s.pdf |archive-date=25 April 2016 |access-date=12 April 2016}} Some, such as Amsterdam Island cattle,{{MSW3 Artiodactyla|id=14200687|heading=Bos taurus}} Chillingham cattle,{{cite web |date=16 June 2015 |title=Science – Chillingham Wild Cattle |url=http://chillinghamwildcattle.com/science/ |url-status=live |archive-url=https://web.archive.org/web/20160509052751/http://chillinghamwildcattle.com/science/ |archive-date=9 May 2016 |website=chillinghamwildcattle.com}} and Aleutian wild cattle have become sufficiently distinct to be described as breeds.{{cite news |date=23 October 2005 |title=Alaska Isle a Corral For Feral Cattle Herd; U.S. Wants to Trade Cows for Birds |newspaper=The Washington Post |url=http://www.highbeam.com/doc/1P2-80866.html |url-status=dead |access-date=26 April 2016 |archive-url=https://web.archive.org/web/20121020122750/http://www.highbeam.com/doc/1P2-80866.html |archive-date=20 October 2012}}
Husbandry
= Practices =
{{further|Animal husbandry}}
File:Concentrated Animal Feeding Operations diagram.svgs, the cattle are not allowed to wander and graze, as food is brought to them in a feedlot.]]
Cattle are often raised by allowing herds to graze on the grasses of large tracts of rangeland. Raising cattle extensively in this manner allows the use of land that might be unsuitable for growing crops. The most common interactions with cattle involve daily feeding, cleaning and milking. Many routine husbandry practices involve ear tagging, dehorning, loading, medical operations, artificial insemination, vaccinations and hoof care, as well as training for agricultural shows and preparations. Around the world, Fulani husbandry rests on behavioural techniques, whereas in Europe, cattle are controlled primarily by physical means, such as fences.{{cite journal |last=Lott |first=Dale F. |author2=Hart, Benjamin L. |title=Applied ethology in a nomadic cattle culture |journal=Applied Animal Ethology |volume=5 |issue=4 |pages=309–319 |date=October 1979 |doi=10.1016/0304-3762(79)90102-0}} Breeders use cattle husbandry to reduce tuberculosis susceptibility by selective breeding and maintaining herd health to avoid concurrent disease.{{cite report |last1=Krebs |first1=J.R. |last2=Anderson |first2=T. |last3=Clutton-Brock |first3=W.T. |title=Bovine tuberculosis in cattle and badgers: an independent scientific review |publisher=Ministry of Agriculture, Fisheries and Food |year=1997 |url=http://www.defra.gov.uk/animalh/tb/publications/hpanel.pdf |access-date=4 September 2006 |archive-url=https://web.archive.org/web/20040722232232/http://www.defra.gov.uk/animalh/tb/publications/hpanel.pdf |archive-date=22 July 2004|display-authors=etal}}
In the United States, many cattle are raised intensively, kept in concentrated animal feeding operations, meaning there are at least 700 mature dairy cows or at least 1000 other cattle stabled or confined in a feedlot for "45 days or more in a 12-month period".{{cite report |date=February 2012 |title=NPDES Permit Writers' Manual for Concentrated Animal Feeding Operations |url=https://www.epa.gov/sites/production/files/2015-10/documents/cafo_permitmanual_entire.pdf|publisher=United States Environmental Protection Agency |location=Washington, D.C. |id=EPA 833-F-12-001 |chapter=2. AFOs and CAFOs}}{{-}}
File:Cattle inspected for ticks.jpg|A Hereford being inspected for ticks. Cattle are often restrained in cattle crushes when given medical attention.
File:Anneau anti tetee P1190486.jpg|A calf with a nose ring to prevent it from suckling, usually to assist in weaning
File:Beef cattle in a feedlot in New Mexico.jpg|Cattle feedlot in New Mexico, United States
= Population =
File:Cattle-livestock-count-heads.png
Historically, the cattle population of Britain rose from 9.8 million in 1878 to 11.7 million in 1908, but beef consumption rose much faster. Britain became the "stud farm of the world" exporting livestock to countries where there were no indigenous cattle. In 1929 80% of the meat trade of the world was products of what were originally English breeds. There were nearly 70 million cattle in the US by the early 1930s.{{cite book |last1=Otter |first1=Chris |title=Diet for a large planet |date=2020 |publisher=University of Chicago Press |isbn=978-0-226-69710-9 |location=USA |page=26}}
Cattle have the largest biomass of any animal species on Earth, at roughly 400 million tonnes, followed closely by Antarctic krill at 379 million tonnes and humans at 373 million tonnes.{{Cite journal |last1=Bar-On |first1=Yinon M. |last2=Phillips |first2=Rob |last3=Milo |first3=Ron |date=21 May 2018 |title=The biomass distribution on Earth |journal=Proceedings of the National Academy of Sciences |volume=115 |issue=25 |pages=6506–6511 |bibcode=2018PNAS..115.6506B |doi=10.1073/pnas.1711842115 |pmc=6016768 |pmid=29784790 |doi-access=free}} In 2023, the countries with the most cattle were India with 307.5 million (32.6% of the total), Brazil with 194.4 million, and China with 101.5 million, out of a total of 942.6 million in the world.{{cite web |last1=Cook |first1=Rob |title=Ranking Of Countries With The Most Cattle |url=https://www.nationalbeefwire.com/ranking-of-countries-with-the-most-cattle |website=National Beef Wire |access-date=14 February 2024 |date=9 January 2024}}
Economy
Cattle are kept on farms to produce meat, milk, and leather, and sometimes to pull carts or farm implements.{{cite web |title=Cattle |url=https://www.fao.org/livestock-systems/global-distributions/cattle/en/ |publisher=Food and Agriculture Organization |access-date=14 February 2024}}
= Meat =
{{Further|Beef cattle|Beef}}
The meat of adult cattle is known as beef, and that of calves as veal. Other body parts are used as food products, including blood, liver, kidney, heart and oxtail. Approximately 300 million cattle, including dairy animals, are slaughtered each year for food.{{Cite web |url=http://www.fao.org/faostat/en/#data/QL |title=FAOSTAT |website=www.fao.org|access-date=25 October 2019}} About a quarter of the world's meat comes from cattle.{{cite web |url=https://ask.usda.gov/s/article/What-is-the-most-consumed-meat-in-the-world#:~:text=According%20to%20the%20United%20Nations,goats%2Fsheep%20(5%25) |title=AskUSDA: What is the most consumed meat in the world? |publisher=U.S. Department of Agriculture |date=17 July 2019 |access-date=5 December 2022}} World cattle meat production in 2021 was 72.3 million tons.{{cite web |title=Mapped: Global Livestock Distribution and Density |url=https://www.visualcapitalist.com/cp/mapped-global-livestock-distribution-and-density/ |website=Visual Capitalist |date=23 July 2023 |access-date=14 February 2024}}
File:Hereford bull in a field by the B4452 (cropped).jpg|The Hereford is a widespread beef breed, introduced in the 18th century
File:Cattle Selwyn Road Boulia Shire Central Western Queensland P1080822 (cropped).jpg|Australian Droughtmaster cattle on an extensive farm in Queensland, Australia
File:Aberdeen Angus im Gadental 2.JPG|Aberdeen Angus, a popular small breed, here in Austria with a traditional cattle bell
File:World Production Of Meat, Main Items.svg|Beef is the third most commonly consumed meat worldwide.
File:Beef_production_1961_2021.png|Beef (and buffalo meat) production has grown substantially over the recent 60 years.
File:Production Of Cattle Meat (2021).svg|Production of beef worldwide, by country in 2021.
= Dairy =
{{main|Dairy cattle|Dairy product}}
Certain breeds of cattle, such as the Holstein-Friesian, are used to produce milk,{{Cite web |url=http://ukcows.com/holsteinUK/publicweb/Education/HUK_Edu_DairyCows.aspx?cmh=66 |title=UK Dairy Cows |access-date=7 May 2015 |url-status=live |archive-url=https://web.archive.org/web/20150518064015/http://ukcows.com/holsteinUK/publicweb/Education/HUK_Edu_DairyCows.aspx?cmh=66 |archive-date=18 May 2015 }} much of which is processed into dairy products such as butter, cheese, and yogurt. Dairy cattle are usually kept on specialized dairy farms designed for milk production. Most cows are milked twice per day, with milk processed at a dairy, which may be onsite at the farm or the milk may be shipped to a dairy plant for eventual sale of a dairy product.{{Cite journal |url=http://www.journalofdairyscience.org/article/S0022-0302%2879%2983526-2/abstract |title=Milking 3 Times per day |journal=Journal of Dairy Science |volume=62 |issue=12 |pages=1941–1950 |doi=10.3168/jds.S0022-0302(79)83526-2 |pmid=541464 |year=1979 |last1=Pearson |first1=R.E. |last2=Fulton |first2=L.A. |last3=Thompson |first3=P.D. |last4=Smith |first4=J.W. |doi-access=free}} Lactation is induced in heifers and spayed cows by a combination of physical and psychological stimulation, by drugs, or by a combination of those methods.{{cite journal |last1=Larry Smith |first1=K. |last2=Schanbacher |first2=F. L. |date=1973-06-01 |title=Hormone Induced Lactation in the Bovine. I. Lactational Performance Following Injections of 17β-Estradiol and Progesterone1 |journal=Journal of Dairy Science |volume=56 |issue=6 |pages=738–743 |doi=10.3168/jds.S0022-0302(73)85243-9 |doi-access=free |pmid=4708130 }} For mother cows to continue producing milk, they give birth to one calf per year. If the calf is male, it is generally slaughtered at a young age to produce veal.{{cite web |url=http://www.ciwf.org.uk/farm-animals/cows/veal-calves/ |title=About calves reared for veal |access-date=9 May 2015 |website=Compassion in World Farming |url-status=live |archive-url=https://web.archive.org/web/20150518074915/http://www.ciwf.org.uk/farm-animals/cows/veal-calves/ |archive-date=18 May 2015 }} Cows produce milk until three weeks before birth.{{cite web |url=http://www.ciwf.org.uk/farm-animals/cows/dairy-cows/ |title=Compassion in World Farming: Dairy Cattle |access-date=7 May 2015 |url-status=live |archive-url=https://web.archive.org/web/20150518074913/http://www.ciwf.org.uk/farm-animals/cows/dairy-cows/ |archive-date=18 May 2015 }} Over the last fifty years, dairy farming has become more intensive to increase the yield of milk produced by each cow. The Holstein-Friesian is the breed of dairy cow most common in the UK, Europe and the United States. It has been bred selectively to produce the highest yields of milk of any cow. The average in the UK is around 22 litres per day.
Dairy is a large industry worldwide. In 2023, the 27 European Union countries produced 143 million tons of cow's milk; the United States 104.1 million tons; and India 99.5 million tons.{{cite web |title=Major producers of cow milk worldwide in 2023, by country |url=https://www.statista.com/statistics/268191/cow-milk-production-worldwide-top-producers/ |website=Statista |access-date=14 February 2024}} India further produces 94.4 million tons of buffalo milk,{{cite web |title=Buffalo Milk |url=https://www.tridge.com/intelligences/buffalo-milk/production |website=Tridge |access-date=14 February 2024 |quote=FAO Code: 0951 - Raw milk of buffalo}} making it (in 2023) the world's largest milk producer; its dairy industry employs some 80 million people.{{cite web |title=India Largest Producer of Milk in the World |url=https://pib.gov.in/PressReleseDetail.aspx?PRID=1929183 |publisher=Press Information Bureau, Government of India |access-date=14 February 2024 |date=1 June 2023}}
File:Cow female black white.jpg|Holstein cattle are the primary dairy breed, bred for high milk production.
File:Hand milking a cow at Cobbes Farm Museum.jpg|The milking of cattle was once largely by hand. Demonstration at Cogges Manor Farm, Oxfordshire
File:2014-07-25 Melkkarussel - Hemme Milch (5).jpg|A modern rotary milking parlour, Germany
File:World Production Of Bovine Milk.svg|World production of bovine milk (cow + buffalo)
= Draft animals =
{{Further|Ox}}
File:Traditional ploughing - Karnataka.jpg ]]
Oxen are cattle trained as draft animals. Oxen can pull heavier loads and for a longer period of time than horses.{{cite news |last=Taylor |first=Tess|title=On Small Farms, Hoof Power Return s|url=https://www.nytimes.com/2011/05/04/dining/04oxen.html |access-date=19 June 2011 |newspaper=The New York Times |date=May 3, 2011 |url-status=live |archive-url=https://web.archive.org/web/20130522213735/http://www.nytimes.com/2011/05/04/dining/04oxen.html |archive-date=22 May 2013}} Oxen are used worldwide, especially in developing countries. There are some 11 million draft oxen in sub-Saharan Africa,{{cite book |last1=Muruvimi |first1=F. |last2=Ellis-Jones |first2=J. |chapter=A farming systems approach to improving draft animal power in Sub-Saharan Africa |editor1=Starkey, P. |editor2=Kaumbutho, P. |year=1999 |title=Meeting the challenges of animal traction |publisher=Intermediate Technology Publications |location=London |pages=10–19}} while in 1998 India had over 65 million oxen.{{cite journal |last1=Phaniraja |first1=K. L. |last2=Panchasara |first2=H. H. |year=2009 |title=Indian draught animals power |journal=Veterinary World |issue=2 |pages=404–407}} At the start of the 21st century, about half the world's crop production depended on land preparation by draft animals.{{cite journal |last1=Nicholson |first1=Charles F. |last2=Blake |first2=Robert W. |last3=Reid |first3=Robin S. |last4=Schelhas |first4=John |title=Environmental Impacts of Livestock in the Developing World |journal=Environment: Science and Policy for Sustainable Development |volume=43 |issue=2 |date=2001 |doi=10.1080/00139150109605120 |pages=7–17 |bibcode=2001ESPSD..43b...7N |s2cid=133316829 }}
= Hides =
Cattle are not often kept solely for hides, and they are usually a by-product of beef production. Hides are used mainly for leather products such as shoes. In 2012, India was the world's largest producer of cattle hides.{{cite web |url=http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Hides_Skins/Documents/COMPENDIUM2013.pdf |title=World Statistical Compendium for raw hides and skins, leather and leather footwear 1993-2012 |website=FAO |access-date=16 May 2015|url-status=live |archive-url=https://web.archive.org/web/20150128005513/http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Hides_Skins/Documents/COMPENDIUM2013.pdf |archive-date=28 January 2015 }} Cattle hides account for around 65% of the world's leather production.{{cite web |title=EST: Hides & Skins |url=http://www.fao.org/economic/est/est-commodities/hides-skins/en/ |access-date=2021-03-14 |website=Food and Agriculture Organization of the United Nations }}{{cite web |url=http://www.leathercouncil.org/introtoleather.htm |title=Introduction to Leather |website=International Council of Tanners |access-date=8 August 2018 |archive-date=4 August 2018 |archive-url=https://web.archive.org/web/20180804104737/http://www.leathercouncil.org/introtoleather.htm |url-status=usurped }}
Health
= Pests and diseases =
{{See|Veterinary medicine}}
{{Multiple image
|total_width = 250
|image1 = Shorthorn heifer foot-and-mouth disease1.png
|caption1 = Drooling due to foot-and-mouth disease
|image2 = Shorthorn heifer foot-and-mouth disease2.png
|caption2 = Infected hoof of the same heifer
}}
Cattle are subject to pests including arthropod parasites such as ticks (which can in turn transmit diseases caused by bacteria and protozoa),{{cite web |title=Ectoparasites of Cattle |url=https://www.nadis.org.uk/disease-a-z/cattle/ectoparasites-of-cattle/ |website=NADIS Animal Health Skills |access-date=14 February 2024}} and diseases caused by pathogens including bacteria and viruses. Some viral diseases are spread by insects—i.e. bluetongue disease is spread by midges. Psoroptic mange is a disabling skin condition caused by mites. Bovine tuberculosis is caused by a bacterium; it causes disease in humans and in wild animals such as deer and badgers.{{cite web |title=Diseases that affect cattle |date=26 April 2015 |url=https://www.daera-ni.gov.uk/topics/animal-health-and-welfare/animal-diseases/diseases-affect-cattle |publisher=Department of Agriculture, Environment and Rural Affairs |access-date=14 February 2024}} Foot-and-mouth disease is caused by a virus, affects a range of hoofed livestock and is highly contagious.{{cite journal |last1=Donaldson |first1=A. I. |last2=Alexandersen |first2=S. |last3=Sorensen |first3=J. H. |last4=Mikkelsen |first4=T. |title=Relative risks of the uncontrollable (airborne) spread of FMD by different species |journal=Veterinary Record |date=May 2001 |volume=148 |issue=19 |pages=602–604 |doi=10.1136/vr.148.19.602 |pmid=11386448 |s2cid=12025498 }} Bovine spongiform encephalopathy is a neurodegenerative disease spread by a prion, a misfolded brain protein, in contaminated meat.{{cite web |title=Bovine Spongiform Encephalopaphy: An Overview |url=http://www.aphis.usda.gov/publications/animal_health/content/printable_version/BSEbrochure12-2006.pdf |access-date=8 April 2008 |date=December 2006 |publisher=Animal and Plant Health Inspection Service, United States Department of Agriculture |url-status=dead |archive-url=https://web.archive.org/web/20080308030306/http://www.aphis.usda.gov/publications/animal_health/content/printable_version/BSEbrochure12-2006.pdf |archive-date=8 March 2008 |df=dmy }} Among the intestinal parasites of cattle are Paramphistomum flukes, affecting the rumen, and hookworms in the small intestine.{{cite news |last1=VanHoy |first1=Grace |title=Common Gastrointestinal Parasites of Cattle |url=https://www.msdvetmanual.com/digestive-system/gastrointestinal-parasites-of-ruminants/common-gastrointestinal-parasites-of-cattle |newspaper=MSD Veterinary Manual |access-date=14 February 2024 |date=June 2023}}
= Role of climate change =
{{main|Effects of climate change on livestock}}
File:Liu 2024 climate beef.png
Climate change is expected to exacerbate heat stress in cattle, and for longer periods.{{Cite journal |last1=Çaylı |first1=Ali M. |last2=Arslan |first2=Bilge |date=7 February 2022 |title=Analysis of the Thermal Environment and Determination of Heat Stress Periods for Dairy Cattle Under Eastern Mediterranean Climate Conditions |journal=Journal of Biosystems Engineering |volume=47 |pages=39–47 |doi=10.1007/s42853-021-00126-6 |s2cid=246655199}} Heat-stressed cattle may experience accelerated breakdown of adipose tissue by the liver, causing lipidosis.{{Cite journal |last=Lacetera |first=Nicola |date=2019-01-03 |title=Impact of climate change on animal health and welfare |journal=Animal Frontiers |volume=9 |issue=1 |pages=26–31 |doi=10.1093/af/vfy030 |pmc=6951873 |pmid=32002236}} Cattle eat less when heat stressed, resulting in ruminal acidosis, which can lead to laminitis. Cattle can attempt to deal with higher temperatures by panting more often; this rapidly decreases carbon dioxide concentrations at the price of increasing pH, respiratory alkalosis. To deal with this, cattle are forced to shed bicarbonate through urination, at the expense of rumen buffering. These two pathologies can both cause lameness. Another specific risk is mastitis. This worsens as Calliphora blowflies increase in number with continued warming, spreading mastitis-causing bacteria.{{cite journal |last1=Goulson |first1=Dave |last2=Derwent |first2=Lara C. |last3=Hanley |first3=Michael E. |last4=Dunn |first4=Derek W. |last5=Abolins |first5=Steven R. |date=5 September 2005 |title=Predicting calyptrate fly populations from the weather, and probable consequences of climate change |url=https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2005.01078.x |journal=Journal of Applied Ecology |volume=42 |issue=5 |pages=795–804 |doi=10.1111/j.1365-2664.2005.01078.x |bibcode=2005JApEc..42..795G |s2cid=3892520 }} Ticks too are likely to increase in temperate zones as the climate warms, increasing the risk of tick-borne diseases.{{cite journal |last1=Nava |first1=Santiago |last2=Gamietea |first2=Ignacio J. |last3=Morel |first3=Nicolas |last4=Guglielmone |first4=Alberto A. |last5=Estrada-Pena |first5=Agustin |date=6 July 2022 |title=Assessment of habitat suitability for the cattle tick Rhipicephalus (Boophilus) microplus in temperate areas |url=https://www.sciencedirect.com/science/article/abs/pii/S0034528822001850 |journal=Research in Veterinary Science |volume=150 |pages=10–21 |doi=10.1016/j.rvsc.2022.04.020 |pmid=35803002 |s2cid=250252036}} Both beef and milk production are likely to experience declines due to climate change.{{cite journal |last1=Liu |first1=Weihang |last2=Zhou |first2=Junxiong |last3=Ma |first3=Yuchi |last4=Chen |first4=Shuo |last5=Luo |first5=Yuchuan |date=3 February 2024 |title=Unequal impact of climate warming on meat yields of global cattle farming |journal=Communications Earth and Environment |volume=5 |issue=1 |page=65 |doi=10.1038/s43247-024-01232-x |bibcode=2024ComEE...5...65L |doi-access=free }}{{cite journal |last1=Ranjitkar |first1=Sailesh |last2=Bu |first2=Dengpan |last3=Van Wijk |first3=Mark |last4=Ma |first4=Ying |last5=Ma |first5=Lu |last6=Zhao |first6=Lianshen |last7=Shi |first7=Jianmin |last8=Liu |first8=Chousheng |last9=Xu |first9=Jianchu |date=2 April 2020 |title=Will heat stress take its toll on milk production in China? |url=https://link.springer.com/article/10.1007/s10584-020-02688-4 |journal=Climatic Change |language=en |volume=161 |issue=4 |pages=637–652 |doi=10.1007/s10584-020-02688-4 |bibcode=2020ClCh..161..637R |s2cid=214783104}}
Impact of cattle husbandry
= On public health =
Cattle health is at once a veterinary issue (for animal welfare and productivity), a public health issue (to limit the spread of disease), and a food safety issue (to ensure meat and dairy products are safe to eat). These concerns are reflected in farming regulations.{{cite web |title=Cattle Disease Guide |url=http://www.thecattlesite.com/diseaseinfo/ |access-date=4 December 2013 |archive-date=28 November 2013 |archive-url=https://web.archive.org/web/20131128061325/http://www.thecattlesite.com/diseaseinfo/ |url-status=dead }} These rules can become political matters, as when it was proposed in the UK in 2011 that milk from tuberculosis-infected cattle should be allowed to enter the food chain.{{cite news |last=Harvey |first=Fiona |author-link=Fiona Harvey |date=17 May 2011 |title=Easing of farming regulations could allow milk from TB-infected cattle into food chain |url=https://www.theguardian.com/environment/2011/may/17/farming-regulation-tb-cattle-milk |url-status=live |archive-url=https://web.archive.org/web/20140201102312/http://www.theguardian.com/environment/2011/may/17/farming-regulation-tb-cattle-milk |archive-date=1 February 2014 |access-date=4 December 2013 |newspaper=The Guardian}} Cattle disease attracted attention in the 1980s and 1990s when bovine spongiform encephalopathy (mad cow disease) broke out in the United Kingdom. BSE can cross into humans as the deadly variant Creutzfeldt–Jakob disease; 178 people in the UK had died from it by 2010.{{cite journal |last1=Garske |first1=Tini |last2=Ghani |first2=Azra C. |date=23 December 2010 |title=Uncertainty in the Tail of the Variant Creutzfeldt-Jakob Disease Epidemic in the UK |journal=PLOS ONE |volume=5 |issue=12 |pages=e15626 |doi=10.1371/journal.pone.0015626 |doi-access=free |pmid=21203419 |pmc=3009744 |bibcode=2010PLoSO...515626G }}
= On the environment =
{{Main|Environmental impact of cattle production}}
File:World_Emissions_Intensity_Of_Agricultural_Commodities_(2021).svg.]]
The gut flora of cattle produce methane, a powerful{{Cite web |date=2015 |title=Methane vs Carbon Dioxide: A Greenhouse Gas Showdown |url=https://www.onegreenplanet.org/animalsandnature/methane-vs-carbon-dioxide-a-greenhouse-gas-showdown/ |access-date=29 January 2022 |work=One Green Planet}} greenhouse gas, as a byproduct of enteric fermentation, with each cow belching out 100kg a year.{{Cite web |last=tdus |date=2019-06-27 |title=Cows and Climate Change |url=https://www.ucdavis.edu/food/news/making-cattle-more-sustainable |access-date=2024-03-25 |website=UC Davis}} Additional methane is produced by anaerobic fermentation of stored manure.US EPA. 2012. Inventory of U.S. greenhouse gases emissions and sinks: 1990–2010. US Environmental Protection Agency. EPA 430-R-12-001. Section 6.2. The FAO estimates that in 2015 around 7% of global greenhouse gas emissions were due to cattle, but this is uncertain.{{Cite web |title=Livestock Don't Contribute 14.5% of Global Greenhouse Gas Emissions |url=https://thebreakthrough.org/issues/food-agriculture-environment/livestock-dont-contribute-14-5-of-global-greenhouse-gas-emissions |access-date=2024-03-25 |website=The Breakthrough Institute}} Reducing methane emissions quickly helps limit climate change.
Concentrated animal feeding operations in particular produce substantial amounts of wastewater and manure,{{cite journal |last1=Bradford |first1=Scott A. |last2=Segal |first2=Eran |last3=Zheng |first3=Wei |last4=Wang |first4=Qiquan |last5=Hutchins |first5=Stephen R. |title=Reuse of Concentrated Animal Feeding Operation Wastewater on Agricultural Lands |journal=Journal of Environmental Quality |volume=37 |issue=S5 |date=2008 |pages=S97–S115 |doi=10.2134/jeq2007.0393| pmid=18765783 |bibcode=2008JEnvQ..37..-97B }}{{cite web |url=http://www.cals.ncsu.edu/waste_mgt/natlcenter/sanantonio/balvanz.pdf |title=Applying Alternative Technologies to CAFOs: A Case Study |first1=Richard |last1=Koelsch |first2=Carol |last2=Balvanz |first3=John |last3=George |first4=Dan |last4=Meyer |first5=John |last5=Nienaber |first6=Gene |last6=Tinker |access-date=16 January 2018 |url-status=dead |archive-url=https://web.archive.org/web/20131017230339/http://www.cals.ncsu.edu/waste_mgt/natlcenter/sanantonio/balvanz.pdf |archive-date=17 October 2013 }} which can cause environmental harms such as soil erosion, human and animal exposure to toxic chemicals, development of antibiotic resistant bacteria and an increase in E. coli contamination.{{cite web |last=Ikerd |first=John |title=The Economics of CAFOs & Sustainable Alternatives |url=http://web.missouri.edu/~ikerdj/papers/Fairfield%20IA%20-%20Economics%20of%20CAFOs.htm |publisher=Web.missouri.edu |access-date=15 October 2013 |url-status=live |archive-url=https://web.archive.org/web/20140810081852/http://web.missouri.edu/~ikerdj/papers/Fairfield%20IA%20-%20Economics%20of%20CAFOs.htm |archive-date=10 August 2014 }}{{cite web |last=Gurian-Sherman |first=Doug |title=CAFOs Uncovered: The Untold Costs of Confined Animal Feeding Operations |url=http://www.ucsusa.org/assets/documents/food_and_agriculture/cafos-uncovered.pdf |access-date=15 October 2013 |url-status=live |archive-url=https://web.archive.org/web/20130126213408/http://www.ucsusa.org/assets/documents/food_and_agriculture/cafos-uncovered.pdf |archive-date=26 January 2013 }}
In many world regions, overgrazing by cattle has reduced biodiversity of the grazed plants and of animals at different trophic levels in the ecosystem.{{cite journal |last=Filazzola |first=Alessandro |display-authors=etal |title=The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis |journal=Ecology Letters |volume=23 |issue=8 |year=2020 |pages=1298–1309 |doi=10.1111/ele.13527|pmid=32369874 |bibcode=2020EcolL..23.1298F }} A well documented consequence of overgrazing is woody plant encroachment in rangelands, which significantly reduces the carrying capacity of the land over time.{{cite book |last1=Archer |first1=Steven R. |chapter=Woody Plant Encroachment: Causes and Consequences |date=2017 |title=Rangeland Systems |pages=25–84 |editor-last=Briske |editor-first=David D. |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-46709-2_2 |isbn=978-3-319-46707-8 |last2=Andersen |first2=Erik M. |last3=Predick |first3=Katharine I. |last4=Schwinning |first4=Susanne |last5=Steidl |first5=Robert J. |last6=Woods |first6=Steven R.|doi-access=free }}
= On animal welfare =
{{Further|Cruelty to animals#Welfare concerns of farm animals}}
File:Calves.JPG production in individual crates has attracted welfare concerns.]]
Cattle husbandry practices including branding,{{Cite journal |last1=Schwartzkopf-Genswein |first1=K. S. |last2=Stookey |first2=J. M. |last3=Welford |first3=R. |date=1 August 1997 |title=Behavior of cattle during hot-iron and freeze branding and the effects on subsequent handling ease |journal=Journal of Animal Science |volume=75 |issue=8 |pages=2064–2072 |pmid=9263052 |doi=10.2527/1997.7582064x}} castration,{{Cite book |url=https://books.google.com/books?id=LpIbwuYIyEcC&q=cattle+castration+painful&pg=PT70 |title=Pain Management, An Issue of Veterinary Clinics: Food Animal Practice |last=Coetzee |first=Hans |date=19 May 2013 |publisher=Elsevier Health Sciences |isbn=978-1-4557-7376-3 |page=PT70}} dehorning,{{cite web |url=https://www.avma.org/KB/Resources/LiteratureReviews/Pages/Welfare-Implications-of-Dehorning-and-Disbudding-Cattle.aspx |title=Welfare Implications of Dehorning and Disbudding Cattle |website=www.avma.org |access-date=5 April 2017 |url-status=dead |archive-url=https://web.archive.org/web/20150905191320/https://www.avma.org/KB/Resources/LiteratureReviews/Pages/Welfare-Implications-of-Dehorning-and-Disbudding-Cattle.aspx |archive-date=5 September 2015}} ear tagging,{{Cite news |url=https://www.nytimes.com/2012/01/26/us/ear-tagging-proposal-may-mean-fewer-branded-cattle.html |title=Ear-Tagging Proposal May Mean Fewer Branded Cattle |last=Goode |first=Erica |date=25 January 2012 |work=The New York Times |access-date=5 April 2017 |url-status=live |archive-url=https://web.archive.org/web/20170406111331/http://www.nytimes.com/2012/01/26/us/ear-tagging-proposal-may-mean-fewer-branded-cattle.html |archive-date=6 April 2017}} nose ringing,{{Cite book |url=https://books.google.com/books?id=fzc7CgAAQBAJ&q=cattle+nose+ring+pain&pg=PA111 |title=Improving Animal Welfare, 2 Edition: A Practical Approach |last=Grandin |first=Temple |date=21 July 2015 |publisher=CABI |isbn=978-1-78064-467-7 |page=111}} restraint,{{cite web |url=http://www.grandin.com/references/abdlps.html |title=Restraint of Livestock |website=www.grandin.com |access-date=5 April 2017 |url-status=live |archive-url=https://web.archive.org/web/20171213024104/http://www.grandin.com/references/abdlps.html |archive-date=13 December 2017}} tail docking,{{Cite book |url=https://books.google.com/books?id=xPt1BgAAQBAJ&q=cattle+tail+docking+pain&pg=PA21 |title=Cow Talk: Understanding Dairy Cow Behaviour to Improve Their Welfare on Asian Farms |last1=Doyle |first1=Rebecca |last2=Moran |first2=John |date=3 February 2015 |publisher=Csiro Publishing |isbn=978-1-4863-0162-1 |pages=20–21}} the use of veal crates,{{cite web |title=The case against the veal crate: An examination of the scientific evidence that led to the banning of the veal crate system in the EU and of the alternative group housed systems that are better for calves, farmers and consumers |author=McKenna, C. |publisher=Compassion in World Farming |year=2001 |access-date=19 April 2016 |url=https://www.ciwf.org.uk/media/3818635/case-against-the-veal-crate.pdf}} and cattle prods{{Cite web |url=http://grandin.com/behaviour/principles/prods.html |title=Using Prods and Persuaders Properly to Handle Cattle, Pigs, and Sheep |website=grandin.com |access-date=31 May 2019}} have raised welfare concerns.{{Cite web |url=https://awionline.org/content/cattle |title=Cattle |website=awionline.org |access-date=31 May 2019}}
Stocking density is the number of animals within a specified area. High stocking density can affect cattle health, welfare, productivity,{{Cite web |last=Grant, R. |date=2011 |title=Taking advantage of natural behavior improves dairy cow performance |url=http://articles.extension.org/pages/11129/taking-advantage-of-natural-behavior-improves-dairy-cow-performance |url-status=live |archive-url=https://web.archive.org/web/20161202101756/http://articles.extension.org/pages/11129/taking-advantage-of-natural-behavior-improves-dairy-cow-performance |archive-date=2 December 2016}} and feeding behaviour.{{Cite journal |last1=Huzzey |first1=J. |last2=Keyserlingk |first2=M. |last3=Overton |first3=T. |year=2012 |title=The behaviour and physiological consequences of overstocking dairy cattle |url=https://www.cabdirect.org/cabdirect/abstract/20143159639 |journal=American Association of Bovine Practitioners |pages=92–97 |doi=10.21423/aabppro20123879 |s2cid=203405605}} Densely-stocked cattle feed more rapidly and lie down sooner, increasing the risk of teat infection, mastitis, and embryo loss.{{Cite journal |last1=Tyler |first1=J.W |last2=Fox |first2=L.K. |last3=Parish |first3=S.M. |last4=Swain |first4=J. |last5=Johnson |first5=D.J. |last6=Grassechi |first6=H.A. |year=1997 |title=Effect of feed availability on post-milking standing time in dairy cows |journal=Journal of Dairy Research |volume=64 |issue=4 |pages=617–620 |doi=10.1017/s0022029997002501 |pmid=9403771 |s2cid=41754001}}{{Cite journal |last1=Schefers |first1=J.M. |last2=Weigel |first2=K.A. |last3=Rawson |first3=C.L. |last4=Zwald |first4=N.R. |last5=Cook |first5=N.B. |year=2010 |title=Management practices associated with conception rate and service rate of lactating Holstein cows in large, commercial dairy herds |journal=Journal of Dairy Science |volume=93 |issue=4 |pages=1459–1467 |doi=10.3168/jds.2009-2015 |pmid=20338423 |doi-access=free}} The stress and negative health impacts induced by high stocking density such as in concentrated animal feeding operations or feedlots, auctions, and transport may be detrimental to cattle welfare.{{Cite journal |last=Grandin |first=Temple |date=1 December 2016 |title=Evaluation of the welfare of cattle housed in outdoor feedlot pens |journal=Veterinary and Animal Science |volume=1–2 |pages=23–28 |doi=10.1016/j.vas.2016.11.001 |pmid=32734021 |pmc=7386639 |doi-access=free}}
To produce milk, most calves are separated from their mothers soon after birth and fed milk replacement in order to retain the cows' milk for human consumption.{{cite web |url=https://www.vegsoc.org/info-hub/why-go-veggie/animals/cattle/ |title=Cattle |author=Vegetarian Society |author-link=Vegetarian Society |access-date=31 May 2019}}Dairy cattle are frequently artificially inseminated.{{cite news |last=Jacobs |first=Andrew |date=2020-12-29 |title=Is Dairy Farming Cruel to Cows? |url=https://www.nytimes.com/2020/12/29/science/dairy-farming-cows-milk.html |access-date=2025-03-08 |work=The New York Times |language=en-US |issn=0362-4331}} Animal welfare advocates are critical of this practice, stating that this breaks the natural bond between the mother and her calf. The welfare of veal calves is also a concern.{{cite web |title=EFSA: house calves in small groups to improve welfare |url=https://www.efsa.europa.eu/en/news/efsa-house-calves-small-groups-improve-welfare |publisher=European Food Safety Authority |access-date=14 February 2024 |date=29 March 2023}}
Two sports involving cattle are thought to be cruel by animal welfare groups: rodeos and bullfighting. Such groups oppose rodeo activities including bull riding, calf roping and steer roping, stating that rodeos are unnecessary and cause stress, injury, and death to the animals.{{Cite web |url=https://www.nbcnews.com/id/wbna25725170 |title=Animal rights group targets popular rodeo |last=Smith |first=Michael |agency=AP |date=17 July 2008 |website=msnbc.com |access-date=31 May 2019}} In Spain, the Running of the bulls faces opposition due to the stress and injuries incurred by the bulls during the event.{{cite web |url=http://www.lamalla.net/actualitat_cultural/festes_populars/article?id=71973 |archive-date=11 September 2012 |title=Passion for bulls in the street |first=Andres |last=Antebi |url-status=dead |archive-url=https://archive.today/20120911032132/http://www.lamalla.net/actualitat_cultural/festes_populars/article?id=71973 |access-date=23 October 2020 |language=ca}}
In culture
From early in civilisation, cattle have been used in barter.{{cite book |author1=Glyn Davies |author2=Julian Hodge Bank |title=A history of money: from ancient times to the present day |url=https://books.google.com/books?id=Yx68AAAAIAAJ |year=2002 |publisher=University of Wales Press |isbn=978-0-7083-1717-4 |pages=42–44}}{{cite book |last=Huerta de Soto |first=Jesús |title=Money, Bank Credit, and Economic Cycles |url=https://archive.org/details/bub_gb_AJLGKdOZneMC |year=2006 |publisher=Ludwig von Mises Institute |isbn=978-1-61016-388-0 |page=[https://archive.org/details/bub_gb_AJLGKdOZneMC/page/n105 51]}} Cattle play a part in several religions. Veneration of the cow is a symbol of Hindu community identity.{{cite book |last=Jha |first=D. N. |title=The myth of the holy cow |date=2002 |publisher=Verso |isbn=978-1-85984-676-6 |location=London |pages=20, 130}} Slaughter of cows is forbidden by law in several states of the Indian Union.{{cite news |title=India Supreme Court suspends cattle slaughter ban |publisher=BBC News |url=https://www.bbc.co.uk/news/world-asia-india-40565457 |access-date=7 March 2024 |archive-url=https://web.archive.org/web/20170714075428/https://www.bbc.co.uk/news/world-asia-india-40565457 |archive-date=14 July 2017 |date=11 July 2017 |quote=Cows are considered holy by India's majority Hindu population and slaughtering them is already banned in most but not all states,}}
The ox is one of the 12-year cycle of animals which appear in the Chinese zodiac. The astrological sign Taurus is represented as a bull in the Western zodiac.{{cite web |title=Taurus |url=https://iconographic.warburg.sas.ac.uk/category/vpc-taxonomy-017060 |publisher=The Warburg Institute |access-date=12 February 2024}}
File:Nuremberg chronicles f 108r 1.png|St Luke the evangelist depicted with a bull in the 1493 Nuremberg Chronicle
File:UK Durham Dun-Cow.jpg |A legend claims that monks carrying the body of Saint Cuthbert were led by a milk maid who had lost her dun cow. They built Durham Cathedral where it was found.{{cite web |title=Cuthbert's Move to Durham: Two Stories |url=https://www.durhamworldheritagesite.com/learn/history/st-cuthbert/body/durham |publisher=Durham Castle and Cathedral |access-date=12 February 2024}}
File:Aelbert Cuyp - Young Herdsman with Cows - WGA5829.jpg|Dutch Golden Age painting: Young Herdsman with Cows by Aelbert Cuyp, 1655–60
File:Norske Folkelivsbilleder 08 - En Aften ved Sæteren (Knud Bergslien).jpg|An Evening at the Hut of the Cow-Herdesses, Knud Bergslien, before 1858
File:Turin coat of arms.svg|Bull in the coat of arms of Turin, Italy
See also
{{Colbegin|colwidth=20em}}
- :Category:Individual cattle
- British Cattle Health Initiative
- Bull-baiting
- Bullocky
- Bulls and Cows (game)
- Cattle age determination
- Cowboy
- List of cattle breeds
{{Colend}}
References
{{reflist|30em}}
Further reading
{{refbegin}}
- Cattle Today (2006). [http://www.cattle-today.com/ Breeds of beef cattle].
- Johns, Catherine (2011). Cattle: History, Myth, Art. London: The British Museum Press. {{ISBN|978-0-7141-5084-0}}.
- Oklahoma State University (OSU). 2006. [http://www.ansi.okstate.edu/breeds/cattle Breeds of Cattle]. Retrieved 5 January 2007.
- {{cite book |last=Purdy |first=Herman R. |author2=R. John Dawes |author3=Robert Hough |url=http://www.breedsofcattle.net/ |title=Breeds Of Cattle |edition=2nd |year=2008 |ref=none}} A visual textbook containing History/Origin, Phenotype & Statistics of 45 breeds.
- Rath, S. 1998. The Complete Cow. Stillwater, MN: Voyageur Press. {{ISBN|0-89658-375-9}}.
{{Refend}}
External links
- {{Wikispecies-inline}}
- {{Commons-inline|Bos taurus}}
- {{Commons-inline|Bull|Bull (cattle)}}
{{Artiodactyla|R.4}}
{{Agriculture footer}}
{{Taxonbar|from=Q830}}
{{Authority control}}
Category:Articles containing video clips