:List of the most distant astronomical objects

{{Short description|none}}

File:JADES-GS-z14-0.png has been determined to be at a redshift of 14.32, making it the current record-holder for the most distant known galaxy (May 2024). This corresponds to a time less than 300 million years after the big bang.| alt=An infrared image from NASA’s James Webb Space Telescope that was taken by the NIRCam for the JWST Advanced Deep Extragalactic Survey (JADES) program.]]

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

For comparisons with the light travel distance of the astronomical objects listed below, the age of the universe since the Big Bang is currently estimated as 13.787±0.020 Gyr.

{{cite journal

|author=Planck Collaboration

|year=2020

|title=Planck 2018 results. VI. Cosmological parameters

|journal=Astronomy & Astrophysics

|volume=641 |at=page A6 (see PDF page 15, Table 2: "Age/Gyr", last column)

|doi=10.1051/0004-6361/201833910

|arxiv=1807.06209 |bibcode=2020A&A...641A...6P

|s2cid=119335614

}}

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

The proper distance provides a measurement of how far a galaxy is at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one: a(t_0) = 1. The proper distance represents the distance obtained as if one were able to freeze the flow of time (set dt = 0 in the FLRW metric) and walk all the way to a galaxy while using a meter stick.{{Cite book |last=Guidry |first=Mike |title=Modern general relativity: black holes, gravitational waves, and cosmology |date=2019 |publisher=Cambridge university press |isbn=978-1-107-19789-3 |location=Cambridge New York}} For practical reasons, the proper distance is calculated as the distance traveled by light (set ds = 0 in the FLRW metric) from the time of emission by a galaxy to the time an observer (on Earth) receives the light signal. It differs from the “light travel distance” since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c.{{Cite journal |last1=Davis |first1=Tamara M. |last2=Lineweaver |first2=Charles H. |date=2004 |title=Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe |url=https://www.cambridge.org/core/product/identifier/S132335800000607X/type/journal_article |journal=Publications of the Astronomical Society of Australia |language=en |volume=21 |issue=1 |pages=97–109 |doi=10.1071/AS03040 |arxiv=astro-ph/0310808 |bibcode=2004PASA...21...97D |s2cid=13068122 |issn=1323-3580}}   

Most distant spectroscopically-confirmed objects

{{sticky header}}

class="sortable wikitable sticky-header"

|+ Most distant astronomical objects with spectroscopic redshift determinations

Image

! Name

! Redshift
(z)

! Light travel distance§
(Gly){{cite web |author= |title=UCLA Cosmological Calculator |url=http://www.astro.ucla.edu/~wright/ACC.html |date=2015 |work=UCLA |access-date=6 August 2022 }} Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model#Parameters" ){{cite web |author= |title=UCLA Cosmological Calculator |url=http://www.astro.ucla.edu/~wright/ACC.html |date=2018 |work=UCLA |access-date=6 August 2022 }} Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters" ){{cite web |author= |title=ICRAR Cosmology Calculator |url=https://cosmocalc.icrar.org/ |date=2022 |work=International Centre for Radio Astronomy Research |access-date=6 August 2022 }} ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters"){{cite web |last=Kempner |first=Joshua |title=KEMPNER Cosmology Calculator |url=https://www.kempner.net/cosmic.php |date=2022 |work=Kempner.net |access-date=6 August 2022 }} KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model#Parameters")

!Proper distance

(Gly)

! Type

! Notes

100x100px

| JADES-GS-z14-0

| z = {{val|14.32|0.08

0.20}}

|

|

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.{{Cite journal |display-authors = etal | first1 = B. | last1 = Robertson | title = Earliest galaxies in the JADES Origins Field: luminosity function and cosmic star-formation rate density 300 Myr after the Big Bang |journal=Astrophysical Journal |date=2024-05-28 | volume = 970 | issue = 1 | page = 31 | doi = 10.3847/1538-4357/ad463d | doi-access = free | arxiv = 2312.10033 | bibcode = 2024ApJ...970...31R }}

| JADES-GS-z14-1

| z = {{val|13.90|0.17

0.17}}

|

|

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.{{Cite journal |last=Carniani |first=S. |display-authors=etal |date=2024-05-28 |title=A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ∼ 14 |journal=Astrophysical Journal |volume=633 |issue=8029 |pages=318–322 |doi=10.1038/s41586-024-07860-9 |pmid=39074505 |pmc=11390484 |arxiv=2405.18485}}

100px

| JADES-GS-z13-0

| z = {{val|13.20|0.04|0.07}}

| 13.576 / 13.596 / 13.474 / 13.473

|33.6

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.{{Cite journal|display-authors = etal |first1 = B. E. |last1 = Robertson |title = Identification and properties of intense star-forming galaxies at redshifts z > 10 |journal = Nature Astronomy |year = 2023 |volume = 7 |issue = 5 |pages = 611–621 |doi = 10.1038/s41550-023-01921-1 |arxiv = 2212.04480|bibcode = 2023NatAs...7..611R |s2cid = 257968812 }}

File:UNCOVER-z13 galaxy.png

|UNCOVER-z13

| z = {{val|13.079|0.014|0.001}}

| 13.51

|32.56

| Galaxy

|Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.{{Cite journal |last=Wang |first=Bingjie |display-authors=et al |date=2023-11-13 |title=UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies |journal=The Astrophysical Journal Letters |volume=957 |issue=2 |pages=L34 |doi=10.3847/2041-8213/acfe07 |arxiv=2308.03745 |bibcode=2023ApJ...957L..34W |issn=2041-8205 |doi-access=free }}

|JADES-GS-z13-1

|z = 13.05

|13.47

|

|Galaxy

|Lyman-alpha emitter, discovered by JWST in 2025. {{cite web |last=Wistok |first=Joris |date=2025 |title=Witnessing the onset of reionization through Lyman-α emission at redshift 13 |url=https://www.nature.com/articles/s41586-025-08779-5 |website=Nature |location= |publisher= |access-date=2025-04-04}}

| JADES-GS-z12-0

| z = {{val|12.63|0.24|0.08}}

| 13.556 / 13.576 / 13.454 / 13.453

|32.34

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRCam and JWST/NIRSpec, and CIII] line emission with JWST/NIRSpec. Most distant spectroscopic redshift from emission lines; most distant detection of non-primordial elements (C, O, Ne).

File:UNCOVER z12 and z13.jpg

| UNCOVER-z12

| z = {{val|12.393|0.004|0.001}}

| 13.48

|32.21

| Galaxy

|Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.

100px

| GLASS-z12

| z = {{val|12.117|0.01|0.01}}

| 13.536 / 13.556 / 13.434 / 13.433

|33.2

| Galaxy

| Lyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission{{cite journal|title=Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate|first=Tom J. L. C.|last=Bakx|display-authors=etal|arxiv=2208.13642|journal=Monthly Notices of the Royal Astronomical Society|doi=10.1093/mnras/stac3723|date=January 2023|volume=519 |issue=4 |pages=5076–5085 |doi-access=free }}

100px

| UDFj-39546284

| z = {{val|11.58|0.05|0.05}}

| 13.512 / 13.532 / 13.410 / 13.409

|31.77

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.

| CEERS J141946.36+525632.8
(Maisie's Galaxy)

{{Cite journal |last1=Haro |first1=Pablo Arrabal |last2=Dickinson |first2=Mark |last3=Finkelstein |first3=Steven L. |last4=Kartaltepe |first4=Jeyhan S. |last5=Donnan |first5=Callum T. |last6=Burgarella |first6=Denis |last7=Carnall |first7=Adam |last8=Cullen |first8=Fergus |last9=Dunlop |first9=James S. |last10=Fernández |first10=Vital |last11=Fujimoto |first11=Seiji |last12=Jung |first12=Intae |last13=Krips |first13=Melanie |last14=Larson |first14=Rebecca L. |last15=Papovich |first15=Casey |date=2023-08-14 |title=Confirmation and refutation of very luminous galaxies in the early universe |journal=Nature |volume=622 |issue=7984 |pages=707–711 |doi=10.1038/s41586-023-06521-7 |pmid=37579792 |issn=0028-0836|arxiv=2303.15431 |bibcode=2023Natur.622..707A |s2cid=257766818 }}

| z {{=}} {{val|11.44|0.09|0.08}}

| 13.4

|31.69

| Galaxy

| Lyman-break galaxy discovered by JWST

| CEERS2 588

{{cite arXiv |last1=Harikane |first1=Yuichi |last2=Nakajima |first2=Kimihiko |last3=Ouchi |first3=Masami |last4=Umeda |first4=Hiroya |last5=Isobe |first5=Yuki |last6=Ono |first6=Yoshiaki |last7=Xu |first7=Yi |last8=Zhang |first8=Yechi |display-authors=3 |title=Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History From 25 Galaxies at $z_\mathrm{spec}=8.61-13.20$ Confirmed with JWST/NIRSpec |eprint=2304.06658v3 |date=2023 |class=astro-ph.GA }}

| z {{=}} {{val|11.04}}

| 13.45

|31.45

| Galaxy

| Lyman-break galaxy discovered by JWST

100px

| GN-z11

| z = 10.6034 ± 0.0013

| 13.481 / 13.501 / 13.380 / 13.379

|31.18

| Galaxy

| Lyman-break galaxy; detection of the Lyman break with HST at 5.5σ{{cite journal|title=A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy |journal=The Astrophysical Journal |first1=P. A. |last1=Oesch |first2=G. |last2=Brammer |first3=P. |last3=van Dokkum |display-authors=etal |volume=819 |issue=2 |at=129 |date=March 2016 |arxiv=1603.00461 |bibcode=2016ApJ...819..129O |doi=10.3847/0004-637X/819/2/129|s2cid=119262750 |doi-access=free }} and carbon emission lines with Keck/MOSFIRE at 5.3σ.{{cite journal|title=Evidence for GN-z11 as a luminous galaxy at redshift 10.957|display-authors=etal|first1=Linhua|last1=Jiang|journal=Nature Astronomy|date=January 2021|volume=5|issue=3 |pages=256–261|doi=10.1038/s41550-020-01275-y|arxiv=2012.06936|bibcode=2021NatAs...5..256J|s2cid=229156468 }} Conclusive redshift by JWST in February 2023{{Cite journal |title=JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy |date=2023 |doi=10.1051/0004-6361/202346159 |arxiv=2302.07256 |last1=Bunker |first1=Andrew J. |last2=Saxena |first2=Aayush |last3=Cameron |first3=Alex J. |last4=Willott |first4=Chris J. |last5=Curtis-Lake |first5=Emma |last6=Jakobsen |first6=Peter |last7=Carniani |first7=Stefano |last8=Smit |first8=Renske |last9=Maiolino |first9=Roberto |last10=Witstok |first10=Joris |last11=Curti |first11=Mirko |last12=d'Eugenio |first12=Francesco |last13=Jones |first13=Gareth C. |last14=Ferruit |first14=Pierre |last15=Arribas |first15=Santiago |last16=Charlot |first16=Stephane |last17=Chevallard |first17=Jacopo |last18=Giardino |first18=Giovanna |last19=De Graaff |first19=Anna |last20=Looser |first20=Tobias J. |last21=Lützgendorf |first21=Nora |last22=Maseda |first22=Michael V. |last23=Rawle |first23=Tim |last24=Rix |first24=Hans-Walter |last25=Del Pino |first25=Bruno Rodríguez |last26=Alberts |first26=Stacey |last27=Egami |first27=Eiichi |last28=Eisenstein |first28=Daniel J. |last29=Endsley |first29=Ryan |last30=Hainline |first30=Kevin |journal=Astronomy & Astrophysics |volume=677 |pages=A88 |bibcode=2023A&A...677A..88B |s2cid=256846361 |display-authors=1 }}

| JADES-GS-z10-0 UDFj-39546284

| z = {{val|10.38|0.07|0.06}}

| 13.449 / 13.469 / 13.348 / 13.347

|31.04

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec

100px

| JD1

| z = {{val|9.793|0.002}}

| 13.409 / 13.429 / 13.308 / 13.307

|30.12

| Galaxy

| Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec{{cite journal|last1=Roberts-Borsani |first1=Guido |last2=Treu |first2=Tommaso |last3=Chen |first3=Wenlei |last4=Morishita |first4=Takahiro |last5=Vanzella |first5=Eros |last6=Zitrin |first6=Adi |last7=Bergamini |first7=Pietro |last8=Castellano |first8=Marco |last9=Fontana |first9=Adriano |last10=Grillo |first10=Claudio |last11=Kelly |first11=Patrick L. |last12=Merlin |first12=Emiliano |last13=Paris |first13=Diego |last14=Rosati |first14=Piero |last15=Acebron |first15=Ana |title=A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST |journal = Nature Astronomy |year = 2023 |volume = 618 |issue=7965 |pages = 480–483 |doi = 10.1038/s41586-023-05994-w |pmid=37198479 |arxiv = 2210.15639|bibcode = 2023Natur.618..480R |s2cid=258741077 }}

|Gz9p3

|z = 9.3127 ± 0.0002

|13.277

|30.27

|Galaxy

|A galaxy merger with a redshift estimated from [OII], Ne and H emission lines detected with JWST.{{Cite journal |last1=Boyett |first1=Kristan |last2=Trenti |first2=Michele |last3=Leethochawalit |first3=Nicha |last4=Calabró |first4=Antonello |last5=Metha |first5=Benjamin |last6=Roberts-Borsani |first6=Guido |last7=Dalmasso |first7=Nicoló |last8=Yang |first8=Lilan |last9=Santini |first9=Paola |last10=Treu |first10=Tommaso |last11=Jones |first11=Tucker |last12=Henry |first12=Alaina |last13=Mason |first13=Charlotte A. |last14=Morishita |first14=Takahiro |last15=Nanayakkara |first15=Themiya |date=2024-03-07 |title=A massive interacting galaxy 510 million years after the Big Bang |url=https://www.nature.com/articles/s41550-024-02218-7 |journal=Nature Astronomy |volume=8 |issue=5 |language=en |pages=657–672 |doi=10.1038/s41550-024-02218-7 |arxiv=2303.00306 |bibcode=2024NatAs...8..657B |issn=2397-3366}}

100px

| MACS1149-JD1

| z = {{val|9.1096|0.0006}}

| 13.361 / 13.381 / 13.261 / 13.260

|30.37

| Galaxy

| Detection of hydrogen emission line with the VLT, and oxygen line with ALMA{{cite journal |author=T. Hashimoto |author2=N. Laporte |author3=K. Mawatari |author4=R. S. Ellis |author5=A. K. Inoue |author6=E. Zackrisson |author7=G. Roberts-Borsani |author8=W. Zheng |author9=Y. Tamura |author10=F. E. Bauer |author11=T. Fletcher |author12=Y. Harikane |author13=B. Hatsukade |author14=N. H. Hayatsu |author15=Y. Matsuda |author16=H. Matsuo |author17=T. Okamoto |author18=M. Ouchi |author19=R. Pello |author20=C. Rydberg |author21=I. Shimizu |author22=Y. Taniguchi |author23=H. Umehata |author24=N. Yoshida | title=The Onset of Star Formation 250 Million Years After the Big Bang | journal=Nature | volume=557 | issue=7705 | pages=312–313 |arxiv=1805.05966 |bibcode=2018Natur.557..392H |doi=10.1038/s41586-018-0117-z | pmid=29765123 | year=2019 | s2cid=21702406 }}

100px

| EGSY8p7

| z = {{val|8.683|0.001|0.004}}

| 13.325 / 13.345 / 13.225 / 13.224

|30.05

| Galaxy

| Lyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence{{cite journal |author=Adi Zitrin |author2=Ivo Labbe |author3=Sirio Belli |author4=Rychard Bouwens |author5=Richard S. Ellis |author6=Guido Roberts-Borsani |author7=Daniel P. Stark |author8=Pascal A. Oesch |author9=Renske Smit | title=Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization | journal=The Astrophysical Journal | volume=810 | issue=1 | pages=L12 |arxiv=1507.02679 |bibcode=2015ApJ...810L..12Z |doi=10.1088/2041-8205/810/1/L12 | year=2015 |s2cid = 11524667}}

| SMACS-4590

| z = 8.496

| 13.308 / 13.328 / 13.208 / 13.207

|29.71

| Galaxy

| Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec{{cite journal|title=The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8|first=Mirko |last=Curti|display-authors=etal|journal=Monthly Notices of the Royal Astronomical Society|date=January 2023|volume=518|issue=1|pages=425–438|doi=10.1093/mnras/stac2737|doi-access=free |arxiv=2207.12375|bibcode=2023MNRAS.518..425C}}{{cite journal|title=A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories|first=A. C.|last=Carnall|display-authors=etal|journal=Monthly Notices of the Royal Astronomical Society: Letters|date=January 2023|volume=518|issue=1|pages=L45–L50|doi=10.1093/mnrasl/slac136|doi-access=free |arxiv=2207.08778|bibcode=2023MNRAS.518L..45C}}{{cite journal|title=First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs|first=D.|last=Schaerer|display-authors=etal|journal=Astronomy & Astrophysics|date=September 2022|volume=665|id=L4|page=6|doi=10.1051/0004-6361/202244556|arxiv=2207.10034 |bibcode=2022A&A...665L...4S|s2cid=252175886 }}{{cite journal|title=First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007|first=Harley|last=Katz|display-authors=etal|journal=Monthly Notices of the Royal Astronomical Society|date=January 2023|volume=518|issue=1|pages=592–603|doi=10.1093/mnras/stac2657|doi-access=free |arxiv=2207.13693|bibcode=2023MNRAS.518..592K}}

| A2744 YD4

| z = 8.38

| 13.297 / 13.317 / 13.197 / 13.196

|29.50

| Galaxy

| Lyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence{{cite journal |author1=Laporte, N. |author2=Ellis, R. S. |author3=Boone, F. |author4=Bauer, F. E. |author5=Quénard, D. |author6=Roberts-Borsani, G. W. |author7=Pelló, R. |author8=Pérez-Fournon, I. |author9=Streblyanska, A. | title=Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy | journal=The Astrophysical Journal | volume=832 | issue=2 | pages=L21 |arxiv=1703.02039 |bibcode=2017ApJ...837L..21L |doi=10.3847/2041-8213/aa62aa | year=2017 |s2cid = 51841290 |doi-access=free }}

| MACS0416 Y1

| z = {{val|8.3118|0.0003}}

| 13.290 / 13.310 / 13.190 / 13.189

|29.44

| Galaxy

| [O III] emission detected with ALMA at 6.3σ confidence{{cite journal |author1=Tamura, Y. |author2=Mawatari, K. |author3=Hashimoto, T. |author4=Inoue, A. K. |author5=Zackrisson, E. |author6=Christensen, L. |author7=Binggeli, C |author8=Matsuda, Y. |author9=Matsuo, H. |author10=Takeuchi, T. T. |author11=Asano, R. S. |author12=Sunaga, K. |author13=Shimizu, I. |author14=Okamoto, T. |author15=Yoshida, N. |author16=Lee, M. |author17=Shibuya, T. |author18=Taniguchi, Y. |author19=Umehata, H. |author20=Hatsukade, B. |author21=Kohno, K. |author22=Ota, K. | title=Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era | journal=The Astrophysical Journal | volume=874 | issue=1 | page=27 |arxiv=1806.04132 |bibcode=2019ApJ...874...27T |doi=10.3847/1538-4357/ab0374 | year=2017 | s2cid=55313459 |doi-access=free }}

| GRB 090423

| z = {{val|8.23|0.06|0.07}}

| 13.282 / 13.302 / 13.182 / 13.181

|30

| Gamma-ray burst

| Lyman-alpha break detected{{Cite journal |bibcode=2009Natur.461.1254T |title=A gamma-ray burst at a redshift of z~8.2 |journal=Nature |volume=461 |issue=7268 |pages=1254–7 |last1=Tanvir |first1=N. R. |last2=Fox |first2=D. B. |last3=Levan |first3=A. J. |last4=Berger |first4=E. |last5=Wiersema |first5=K. |last6=Fynbo |first6=J. P. U. |last7=Cucchiara |first7=A. |last8=Krühler |first8=T. |last9=Gehrels |first9=N. |last10=Bloom |first10=J. S. |last11=Greiner |first11=J. |last12=Evans |first12=P. A. |last13=Rol |first13=E. |last14=Olivares |first14=F. |last15=Hjorth |first15=J. |last16=Jakobsson |first16=P. |last17=Farihi |first17=J. |last18=Willingale |first18=R. |last19=Starling |first19=R. L. C. |last20=Cenko |first20=S. B. |last21=Perley |first21=D. |last22=Maund |first22=J. R. |last23=Duke |first23=J. |last24=Wijers |first24=R. A. M. J. |last25=Adamson |first25=A. J. |last26=Allan |first26=A. |last27=Bremer |first27=M. N. |last28=Burrows |first28=D. N. |last29=Castro-Tirado |first29=A. J. |last30=Cavanagh |first30=B. |display-authors=29 |year=2009 |doi=10.1038/nature08459 |pmid=19865165|arxiv = 0906.1577 |s2cid=205218350 }}

| RXJ2129-11002

| z = {{val|8.16|0.01}}

| 13.175

|29.31

| Galaxy

| [O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism{{cite journal |author1=Langeroodi, Danial |author2=Hjorth, Jens |author3=Chen, Wenlei |author4=Kelly, Patrick L. |author5=Williams, Hayley |author6=Lin, Yu-Heng |author7=Scarlata, Claudia |author8=Zitrin, Adi |author9=Broadhurst, Tom |author10=Diego, Jose M. |author11=Huang, Xiaosheng |author12=Filippenko, Alexei V. |author13=Foley, Ryan J. |author14=Jha, Saurabh |author15=Koekemoer, Anton M. |author16=Oguri, Masamune |author17=Perez-Fournon, Ismael |author18=Pierel, Justin |author19=Poidevin, Frederick |author20=Strolger, Lou | title=Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe | journal=The Astrophysical Journal |arxiv=2212.02491 |bibcode=2015ApJ...804L..30O | year=2022| volume=804 | issue=2 | doi=10.1088/2041-8205/804/2/L30 | s2cid=55115344 }}

| RXJ2129-11022

| z = {{val|8.15|0.01}}

| 13.174

|29.30

| Galaxy

| [O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism

100px

| EGS-zs8-1

| z = {{val|7.7302|0.0006}}

| 13.228 / 13.248 / 13.129 / 13.128

|29.5

| Galaxy

| Lyman-break galaxy{{cite journal |author=P. A. Oesch |author2=P. G. van Dokkum |author3=G. D. Illingworth |author4=R. J. Bouwens |author5=I. Momcheva |author6=B. Holden |author7=G. W. Roberts-Borsani |author8=R. Smit |author9=M. Franx |author10=I. Labbe |author11=V. Gonzalez |author12=D. Magee | title=A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE |arxiv=1502.05399 |bibcode=2015ApJ...804L..30O |doi=10.1088/2041-8205/804/2/L30 |volume=804 | issue=2 |journal=The Astrophysical Journal |pages=L30 | year=2015 |s2cid = 55115344}}

| SMACS-6355

| z = 7.665

| 13.221 / 13.241 / 13.121 / 13.120

|28.83

| Galaxy

| Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec

| z7_GSD_3811

| z = {{val|7.6637|0.0011}}

| 13.221 / 13.240 / 13.121 / 13.120

|28.83

| Galaxy

| Lyman-alpha emitter{{Cite journal| first1=M. |last1=Song |first2=S. L. |last2=Finkelstein |first3=R. C. |last3=Livermore |first4=P. L. |last4=Capak |first5=M. |last5=Dickinson |first6=A. |last6=Fontana

| title=Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66 |journal=The Astrophysical Journal |volume=826 |issue=2 |page=113 |arxiv=1602.02160 | year=2016 |doi=10.3847/0004-637X/826/2/113 |bibcode=2016ApJ...826..113S |s2cid=51806693 |doi-access=free }}

| SMACS-10612

| z = 7.658

| 13.221 / 13.241 / 13.120 / 13.119

|28.83

| Galaxy

| Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec>

| QSO J0313–1806

| z = {{val|7.6423|0.0013}}

| 13.218 / 13.238 / 13.119 / 13.118

|30

| Quasar

| Lyman-alpha break detected{{cite journal |arxiv=2101.03179 |doi=10.3847/2041-8213/abd8c6 |title=A Luminous Quasar at Redshift 7.642 |year=2021 |last1=Wang |first1=Feige |last2=Yang |first2=Jinyi |last3=Fan |first3=Xiaohui |last4=Hennawi |first4=Joseph F. |last5=Barth |first5=Aaron J. |last6=Banados |first6=Eduardo |last7=Bian |first7=Fuyan |last8=Boutsia |first8=Konstantina |last9=Connor |first9=Thomas |last10=Davies |first10=Frederick B. |last11=Decarli |first11=Roberto |last12=Eilers |first12=Anna-Christina |last13=Farina |first13=Emanuele Paolo |last14=Green |first14=Richard |last15=Jiang |first15=Linhua |last16=Li |first16=Jiang-Tao |last17=Mazzucchelli |first17=Chiara |last18=Nanni |first18=Riccardo |last19=Schindler |first19=Jan-Torge |last20=Venemans |first20=Bram |last21=Walter |first21=Fabian |last22=Wu |first22=Xue-Bing |last23=Yue |first23=Minghao |author3-link=Xiaohui Fan |journal=The Astrophysical Journal |volume=907 |issue=1 |pages=L1 |bibcode=2021ApJ...907L...1W |s2cid=231572944 |doi-access=free }}

| ULAS J1342+0928

| z = {{val|7.5413|0.0007}}

| 13.206 / 13.226 / 13.107 / 13.106

|29.36

| Quasar

| Redshift estimated from [C II] emission{{cite journal |author=Bañados, Eduardo|display-authors=etal|title=An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 |date=6 December 2017 |journal=Nature |volume=553|issue=7689|pages=473–476|doi=10.1038/nature25180 |pmid=29211709|arxiv=1712.01860 |bibcode=2018Natur.553..473B |s2cid=205263326 }}

100px

| z8_GND_5296

| z = 7.51

| 13.202 / 13.222 / 13.103 / 13.102

|30.01

| Galaxy

| Lyman-alpha emitter{{cite journal |author=S. L. Finkelstein |author2=C. Papovich |author3=M. Dickinson |author4=M. Song |author5=V. Tilvi |author6=A. M. Koekemoer |author7=K. D. Finkelstein |author8=B. Mobasher |author9=H. C. Ferguson |author10=M. Giavalisco |author11=N. Reddy |author12=M. L. N. Ashby |author13=A. Dekel |author14=G. G. Fazio |author15=A. Fontana |author16=N. A. Grogin |author17=J.-S. Huang |author18=D. Kocevski |author19=M. Rafelski |author20=B. J. Weiner |author21=S. P. Willner | title=A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 |arxiv=1310.6031 |journal=Nature |date=2013 |volume=502 |issue=7472 |pages=524–527 |doi=10.1038/nature12657 |bibcode=2013Natur.502..524F |pmid=24153304| s2cid=4448085 }}

100px

| A1689-zD1

| z = {{val|7.5|0.2}}

| 13.201 / 13.221 / 13.102 / 13.101

|30

| Galaxy

| Lyman-break galaxy{{Cite journal |last1=Watson |first1=Darach |last2=Christensen |first2=Lise |author3-link=Kirsten Kraiberg Knudsen |last3=Knudsen |first3=Kirsten Kraiberg |last4=Richard |first4=Johan |last5=Gallazzi |first5=Anna |last6=Michałowski |first6=Michał Jerzy |title=A dusty, normal galaxy in the epoch of reionization |journal=Nature |volume=519 |issue=7543 |pages=327–330 |doi=10.1038/nature14164 |pmid=25731171 |arxiv=1503.00002 |bibcode=2015Natur.519..327W |year=2015|s2cid=2514879 }}

| GS2_1406

| z = {{val|7.452|0.003}}

| 13.195 / 13.215 / 13.096 / 13.095

|28.62

| Galaxy

| Lyman-alpha emitter{{Cite journal| first1=R. L. |last1=Larson |first2=S. L. |last2=Finkelstein |first3=N. |last3=Pirzkal |first4=R. |last4=Ryan |first5=V. |last5=Tilvi |first6=S. |last6=Malhotra |first7=J. |last7=Rhoads |first8=K. |last8=Finkelstein | first9=I. |last9=Jung |first10=L. |last10=Christensen |first11=A. |last11=Cimatti |first12=I. |last12=Ferreras |first13=N. |last13=Grogin |first14=A. M. |last14=Koekemoer |first15=N. |last15=Hathi |first16=R. |last16=O'Connell |first17=G. |last17=Östlin |first18=A. |last18=Pasquali |first19=J. |last19=Pharo |first20=B. |last20=Rothberg |first21=R. A. |last21=Windhorst | title=Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey |journal=The Astrophysical Journal |volume=858 |issue=2 |page=113 |arxiv=1712.05807 | year=2018 |doi=10.3847/1538-4357/aab893 |bibcode=2018ApJ...858...94L |s2cid=119257857 |doi-access=free }}

100px

| GN-108036

| z = 7.213

| 13.164 / 13.184 / 13.065 / 13.064

|29

| Galaxy

| Lyman alpha emitter

100px

| SXDF-NB1006-2

| {{nowrap|z {{=}} {{val|7.2120|0.0003}}}}

| 13.164 / 13.184 / 13.065 / 13.064

|29

| Galaxy

| [O III] emission detected{{cite journal|title=Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch|url=https://www.eso.org/public/archives/releases/sciencepapers/eso1620/eso1620a.pdf|first1=Akio K.|last1=Inoue|display-authors=etal|journal=Science|volume=352|issue=6293|pages=1559–1562|doi=10.1126/science.aaf0714|arxiv=1606.04989|bibcode=2016Sci...352.1559I|date=June 2016|pmid=27312046|s2cid=206646433 }}

100px

| BDF-3299

| z = {{val|7.109|0.002}}

| 13.149 / 13.169 / 13.051 / 13.050

|28.25

| Galaxy

| Lyman-break galaxy{{cite journal |last=Vanzella |display-authors=etal |date=2011 |title=Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7 |journal=The Astrophysical Journal Letters |volume=730 |issue=2 |pages=L35 |doi=10.1088/2041-8205/730/2/L35 |bibcode=2011ApJ...730L..35V |arxiv=1011.5500 |s2cid=53459241 }}

100px

| ULAS J1120+0641

| z = {{val|7.085|0.003}}

| 13.146 / 13.166 / 13.048 / 13.047

|29.85

| Quasar

| Redshift estimated from Si III]+C III] and Mg II emission lines{{cite journal |title=A luminous quasar at a redshift of z = 7.085 |author=Daniel J. Mortlock |author2=Stephen J. Warren |author3=Bram P. Venemans|display-authors=etal |journal=Nature |volume=474 |issue=7353 |pages=616–619 |date=2011 |doi=10.1038/nature10159|arxiv=1106.6088 |bibcode = 2011Natur.474..616M |pmid=21720366|s2cid=2144362 }}

100px

| A1703 zD6

| z = {{val|7.045|0.004}}

| 13.140 / 13.160 / 13.042 / 13.041

|29

| Galaxy

| Gravitationally-lensed Lyman-alpha emitter{{cite journal|bibcode=2012ApJ...744..179S|doi= 10.1088/0004-637X/744/2/179|title=Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8|journal=The Astrophysical Journal|volume=744|issue=2|page=7|date=January 2012|last1=Schenker|first1=Matthew A.|display-authors=etal|arxiv=1107.1261|s2cid= 119244384}}

| BDF-521

| z = {{val|7.008|0.002}}

| 13.135 / 13.155 / 13.037 / 13.036

|28.43

| Galaxy

| Lyman-break galaxy

| G2_1408

| z = {{val|6.972|0.002}}

| 13.130 / 13.150 / 13.032 / 13.030

|28.10

| Galaxy

| Lyman-alpha emitter{{Cite journal |arxiv=1010.2754 |last1=Fontana |first1=A. |title=The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization? |journal=The Astrophysical Journal |volume=725 |issue=2 |pages=L205 |last2=Vanzella |first2=E. |last3=Pentericci |first3=L. |last4=Castellano |first4=M. |last5=Giavalisco |first5=M. |last6=Grazian |first6=A. |last7=Boutsia |first7=K. |last8=Cristiani |first8=S. |last9=Dickinson |first9=M. |last10=Giallongo |first10=E. |last11=Maiolino |first11=M. |last12=Moorwood |first12=A. |last13=Santini |first13=P. |year=2010 |doi=10.1088/2041-8205/725/2/L205 |bibcode=2010ApJ...725L.205F|s2cid=119270473 }}

100px

| IOK-1

| z = 6.965

| 13.129 / 13.149 / 13.030 / 13.029

|28.09

| Galaxy

| Lyman-alpha emitter{{Cite journal |arxiv=1107.3159 |title=Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies |journal=The Astrophysical Journal |volume=744 |issue=2 |page=83 |last1=Ono |first1=Yoshiaki |last2=Ouchi |first2=Masami |last3=Mobasher |first3=Bahram |last4=Dickinson |first4=Mark |last5=Penner |first5=Kyle |last6=Shimasaku |first6=Kazuhiro |last7=Weiner |first7=Benjamin J. |last8=Kartaltepe |first8=Jeyhan S. |last9=Nakajima |first9=Kimihiko |last10=Nayyeri |first10=Hooshang |last11=Stern |first11=Daniel |last12=Kashikawa |first12=Nobunari |last13=Spinrad |first13=Hyron |year=2011 |doi=10.1088/0004-637X/744/2/83 |bibcode=2012ApJ...744...83O|s2cid = 119306980}}

|SDSS J124244.26+455442.9

|z = 6.968

|

|

|Quasar

| {{cite arXiv |last=Rakshit |first=Suvendu |date=2019 |title=Spectral properties of quasars from Sloan Digital Sky Survey data release 14: The catalog |arxiv=1910.10395 |class=Astrophysics}}

|SDSS J234950.71+061509.9

|z = 6.949

|

|

|Quasar

| {{cite arXiv |last=Rakshit |first=Suvendu |date=2019 |title=Spectral properties of quasars from Sloan Digital Sky Survey data release 14: The catalog |arxiv=1910.10395 |class=Astrophysics}}

100px

| LAE J095950.99+021219.1

| z = 6.944

| 13.126 / 13.146 / 13.028 / 13.027

|28.07

| Galaxy

| Lyman-alpha emitter{{Cite journal |arxiv=1205.3161 |last1=Rhoads |first1=James E. |title=A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field |journal=The Astrophysical Journal |volume=752 |issue=2 |pages=L28 |last2=Hibon |first2=Pascale |last3=Malhotra |first3=Sangeeta |last4=Cooper |first4=Michael |last5=Weiner |first5=Benjamin |year=2012 |doi=10.1088/2041-8205/752/2/L28 |bibcode=2012ApJ...752L..28R|s2cid=118383532 }}

| SDF-46975

| z = 6.844

| 13.111 / 13.131 / 13.013 / 13.012

|27.95

| Galaxy

| Lyman-alpha emitter

| PSO J172.3556+18.7734

|z = {{val|6.823|0.003|0.001}}

| 13.107 / 13.127 / 13.010 / 13.009

|27.93

| Quasar
(astrophysical jet)

| Redshift estimated from Mg II emission{{cite journal |title=The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82 |journal=The Astrophysical Journal |publisher=Harvard University |bibcode=2021ApJ...909...80B |last1=Bañados |first1=Eduardo |last2=Mazzucchelli |first2=Chiara |last3=Momjian |first3=Emmanuel |last4=Eilers |first4=Anna-Christina |last5=Wang |first5=Feige |last6=Schindler |first6=Jan-Torge |last7=Connor |first7=Thomas |last8=Andika |first8=Irham Taufik |last9=Barth |first9=Aaron J. |last10=Carilli |first10=Chris |last11=Davies |first11=Frederick B. |last12=Decarli |first12=Roberto |last13=Fan |first13=Xiaohui |last14=Farina |first14=Emanuele Paolo |last15=Hennawi |first15=Joseph F. |last16=Pensabene |first16=Antonio |last17=Stern |first17=Daniel |last18=Venemans |first18=Bram P. |last19=Wenzl |first19=Lukas |last20=Yang |first20=Jinyi |year=2021 |volume=909 |issue=1 |page=80 |doi=10.3847/1538-4357/abe239 |arxiv=2103.03295 |s2cid=232135300 |doi-access=free }}

colspan="7" |

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

† Numeric value obtained using Wright (2006) with H_{0} = 70, \Omega_{CM} = 0.30, \Omega_{DE} = 0.70.

Candidate most distant objects

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared.{{cite journal|title=First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73|first=Haojing|last=Yan|display-authors=etal|journal=The Astrophysical Journal Letters|date=January 2023|volume=942|issue=L9|page=20|doi-access=free|doi=10.3847/2041-8213/aca80c|arxiv=2207.11558|bibcode=2023ApJ...942L...9Y}} Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.{{cite web |url=http://www.firstgalaxies.org/the-latest-results |title=Our Latest Results |author1=Garth Illingworth |author2=Rychard Bouwens |author3=Pascal Oesch |author4=Ivo Labbe |author5=Dan Magee |website=FirstGalaxies |date=December 2012 |access-date=March 10, 2016}} Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers.{{cite journal|title=A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch|first=Yuichi|last=Harikane|journal=The Astrophysical Journal Supplement Series |year=2023 |volume=265 |issue=1 |page=5 |display-authors=etal|arxiv=2208.01612|doi=10.3847/1538-4365/acaaa9 |bibcode=2023ApJS..265....5H |s2cid=251253150 |doi-access=free }}

class="wikitable sticky-header"

|+ Notable candidates for most distant astronomical objects

Name

! Redshift
(z)

! Light travel distance§
(Gly)

! Type

! Notes

F200DB-045

| zp = {{val|20.4|0.3|0.3}}
or {{val|0.70|0.19|0.55}} or {{val|0.40|0.15|0.26}}

| 13.725 / 13.745 / 13.623 / 13.621

| Galaxy

| Lyman-break galaxy discovered by JWST
NOTE: The redshift value of the galaxy presented by the procedure in one study may differ from the values presented in other studies using different procedures.{{cite journal |arxiv=2208.01612v3|last1=Harikane |first1=Yuichi |last2=Ouchi |first2=Masami |last3=Oguri |first3=Masamune |last4=Ono |first4=Yoshiaki |last5=Nakajima |first5=Kimihiko |last6=Isobe |first6=Yuki |last7=Umeda |first7=Hiroya |last8=Mawatari |first8=Ken |last9=Zhang |first9=Yechi |title=A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch |journal=The Astrophysical Journal Supplement Series |year=2023 |volume=265 |issue=1 |page=5 |doi=10.3847/1538-4365/acaaa9 |bibcode=2023ApJS..265....5H |s2cid=251253150 |doi-access=free }}{{cite journal |arxiv=2207.11671v2|last1=Morishita |first1=Takahiro |last2=Stiavelli |first2=Massimo |title=Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323 |journal=The Astrophysical Journal Letters |year=2023 |volume=946 |issue=2 |pages=L35 |doi=10.3847/2041-8213/acbf50 |bibcode=2023ApJ...946L..35M |s2cid=254220684 |doi-access=free }}

F200DB-175

| zp = {{val|16.2|0.3|0.0}}

| 13.657 / 13.677 / 13.555 / 13.554

| Galaxy

| Lyman-break galaxy discovered by JWST

S5-z17-1

| {{nowrap|z {{=}} {{val|16.0089|0.0004}}}}
or {{val|4.6108|0.0001}}

| 13.653 / 13.673 / 13.551 / 13.550

| Galaxy

| Lyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z = {{val|4.6108|0.0001}}) or [O III] (z = {{val|16.0089|0.0004}}).{{cite journal|title=ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?|first=Seiji|last=Fujimoto|journal=The Astrophysical Journal |display-authors=etal|arxiv=2211.03896|date=2023|volume=955 |issue=2 |page=130 |doi=10.3847/1538-4357/aceb67 |bibcode=2023ApJ...955..130F |doi-access=free }}

F150DB-041

| zp = {{val|16.0|0.2|0.2}}
or {{val|3.70|0.02|0.59}}

| 13.653 / 13.673 / 13.551 / 13.549

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z16a

| zp = {{val|15.92|0.17|0.15}}
or {{val|2.96|0.73|0.21}}

| 13.651 / 13.671 / 13.549 / 13.548

| Galaxy

| Lyman-break galaxy discovered by JWST{{cite journal|title=Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723|first=Atek|last=Hakim|display-authors=etal|journal=Monthly Notices of the Royal Astronomical Society|doi=10.1093/mnras/stac3144|arxiv=2207.12338|bibcode=2023MNRAS.519.1201A|date=November 2022|volume=519 |issue=1 |pages=1201–1220 |doi-access=free }}{{cite journal|title=Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field|first=N. J.|last=Adams|display-authors=etal|journal=Monthly Notices of the Royal Astronomical Society|doi=10.1093/mnras/stac3347|arxiv=2207.11217|bibcode=2023MNRAS.518.4755A|date=November 2022|volume=518 |issue=3 |pages=4755–4766 |doi-access=free }}

F200DB-015

| zp = {{val|15.8|3.4|0.1}}

| 13.648 / 13.668 / 13.546 / 13.545

| Galaxy

| Lyman-break galaxy discovered by JWST

F200DB-181

| zp = {{val|15.8|0.5|0.3}}

| 13.648 / 13.668 / 13.546 / 13.545

| Galaxy

| Lyman-break galaxy discovered by JWST

F200DB-159

| zp = {{val|15.8|4.0|15.2}}

| 13.648 / 13.668 / 13.546 / 13.545

| Galaxy

| Lyman-break galaxy discovered by JWST

F200DB-086

| zp = {{val|15.4|0.6|14.6}}
or {{val|3.53|10.28|1.84}}

| 13.639 / 13.659 / 13.537 / 13.536

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z16b

| zp = {{val|15.32|0.16|0.13}}
or {{val|15.39|0.18|0.26}}

| 13.637 / 13.657 / 13.535 / 13.534

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-048

| zp = {{val|15.0|0.2|0.8}}

| 13.629 / 13.649 / 13.527 / 13.526

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-007

| zp = {{val|14.6|0.4|0.4}}

| 13.619 / 13.639 / 13.517 / 13.516

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-004

| zp = {{val|14.0|0.4|2.0}}

| 13.602 / 13.622 / 13.500 / 13.499

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-079

| zp = {{val|13.8|0.5|1.9}}

| 13.596 / 13.616 / 13.494 / 13.493

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-007

| zp = {{val|13.4|0.6|2.0}}

| 13.583 / 13.603 / 13.481 / 13.480

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-053

| zp = {{val|13.4|0.3|2.3}}

| 13.583 / 13.603 / 13.481 / 13.480

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-050

| zp = {{val|13.4|0.6|10.0}}

| 13.583 / 13.603 / 13.481 / 13.480

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-058

| zp = {{val|13.4|0.6|12.5}}
{{val|3.42|0.30|0.20}}

| 13.583 / 13.603 / 13.481 / 13.480

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-038

| zp = {{val|13.4|0.4|13.2}}

| 13.583 / 13.603 / 13.481 / 13.480

| Galaxy

| Lyman-break galaxy discovered by JWST

HD1

| z = {{val|13.27}}

| 13.579 / 13.599 / 13.477 / 13.476

| Galaxy

| Not yet spectroscopically confirmed. Guinness World Record of the [https://www.guinnessworldrecords.com/world-records/115865-most-distant-confirmed-galaxy most distant confirmed galaxy]
Lyman-break galaxy (5σ confidence) followed with a tentative ALMA detection of a single [O III] oxygen emission line only (4σ confidence){{cite journal |display-authors = etal |first1 = Y. |last1 = Harikane |title = A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16 |journal=The Astrophysical Journal | volume=929 | issue=1 | page=1 |bibcode=2022ApJ...929....1H |doi=10.3847/1538-4357/ac53a9 |date = April 2022 |arxiv = 2112.09141|s2cid = 246823511 |doi-access = free }}

F150DA-010

| zp = {{val|12.8|0.6|1.5}}

| 13.562 / 13.582 / 13.460 / 13.459

| Galaxy

| Lyman-break galaxy discovered by JWST

S5-z12-1

| zp = {{val|12.57|1.23|0.46}}

| 13.553 / 13.573 / 13.452 / 13.451

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-27535 4

| zp = {{val|12.56|1.75|0.27}}

| 13.553 / 13.573 / 13.452 / 13.451

| Galaxy

| Lyman-break galaxy discovered by JWST{{cite journal|last=Donnan|first=C. T.|display-authors=et al. |title=The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 - 15 from deep JWST and ground-based near-infrared imaging|journal=Monthly Notices of the Royal Astronomical Society|doi=10.1093/mnras/stac3472|arxiv=2207.12356|bibcode=2023MNRAS.518.6011D|date=November 2022|volume=518 |issue=4 |pages=6011–6040 |doi-access=free }}

SMACS-1566

| zp = {{val|12.29|1.50|0.44}}

| 13.542 / 13.562 / 13.441 / 13.440

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z12b
(F150DA-077)

| zp = {{val|12.26|0.17|0.16}}
or {{val|13.4|0.4|1.7}}

| 13.541 / 13.561 / 13.440 / 13.439

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z12a

| zp = {{val|12.20|0.21|0.12}}

| 13.539 / 13.559 / 13.437 / 13.436

| Galaxy

| Lyman-break galaxy discovered by JWST

CR2-z12-4

| zp = {{val|12.08|2.11|1.25}}

| 13.534 / 13.554 / 13.432 / 13.431

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-10566

| zp = {{val|12.03|0.57|0.26}}

| 13.532 / 13.552 / 13.430 / 13.429

| Galaxy

| Lyman-break galaxy discovered by JWST

XDFH-2395446286

| zp = {{val|12.0|0.1|0.2}}

| 13.530 / 13.550 / 13.429 / 13.428

| Galaxy

| Lyman-break galaxy detected by JWST and Hubble{{cite journal|title=Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF|first=Rychard J.|last=Bouwens|journal=Monthly Notices of the Royal Astronomical Society |year=2023 |volume=523 |pages=1036–1055 |display-authors=etal|arxiv=2211.02607|doi=10.1093/mnras/stad1145 |doi-access=free }}

CR2-z12-2

| zp = {{val|11.96|1.44|0.87}}

| 13.529 / 13.549 / 13.427 / 13.426

| Galaxy

| Lyman-break galaxy discovered by JWST

9-BUSCAR

| zp = {{val|11.91|0.10|0.22}}

| 13.527 / 13.547 / 13.425 / 13.424

| Galaxy

| Lyman-break galaxy discovered by JWST{{cite journal|first1=Giulia|last1=Rodighiero|author1-link=Giulia Rodighiero|display-authors=etal|title=JWST unveils heavily obscured (active and passive) sources up to z 13|journal=Monthly Notices of the Royal Astronomical Society: Letters|volume=518|issue=1|pages=L19–L24|date=January 2023|doi=10.1093/mnrasl/slac115 |doi-access=free |arxiv=2208.02825|bibcode=2023MNRAS.518L..19R}}

SMACS-8347

| zp = {{val|11.90|0.27|0.39}}

| 13.526 / 13.546 / 13.425 / 13.424

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-26409 4

| zp = {{val|11.90|1.60|0.70}}

| 13.526 / 13.546 / 13.425 / 13.424

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-069

| zp = {{val|11.8|1.7|0.2}}

| 13.522 / 13.542 / 13.420 / 13.419

| Galaxy

| Lyman-break galaxy discovered by JWST

XDFH-2334046578

| zp = {{val|11.8|0.4|0.5}}

| 13.522 / 13.542 / 13.420 / 13.419

| Galaxy

| Lyman-break galaxy detected by JWST and Hubble

CR2-z12-3

| zp = {{val|11.66|0.69|0.71}}

| 13.515 / 13.535 / 13.414 / 13.413

| Galaxy

| Lyman-break galaxy discovered by JWST

CR2-z12-1

| zp = {{val|11.63|0.51|0.53}}

| 13.514 / 13.534 / 13.413 / 13.412

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-088

| zp = {{val|11.6|0.3|0.2}}

| 13.513 / 13.533 / 13.411 / 13.410

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-084

| zp = {{val|11.6|0.4|0.4}}

| 13.513 / 13.533 / 13.411 / 13.410

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-044

| zp = {{val|11.4|0.4|11.3}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

XDFH-2404647339

| zp = {{val|11.4|0.4|0.5}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy detected by JWST and Hubble

F150DB-075

| zp = {{val|11.4|0.4|0.1}}
{{val|0.04|0.01|0.01}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-062

| zp = {{val|11.4|0.3|0.3}}
{{val|1.78|0.20|0.08}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-127682

| zp = {{val|11.40|0.59|0.51}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-5268 2

| zp = {{val|11.40|0.30|1.11}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-060

| zp = {{val|11.4|0.6|8.2}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-031

| zp = {{val|11.4|1.0|8.2}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-052

| zp = {{val|11.4|0.8|10.6}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-054

| zp = {{val|11.4|0.5|10.8}}

| 13.503 / 13.523 / 13.402 / 13.401

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z11d

| zp = {{val|11.28|0.32}}
or {{val|2.35|0.30|0.67}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-77241

| zp = {{val|11.27|0.39|0.70}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-6647

| zp = {{val|11.27|0.58|0.28}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-622 4

| zp = {{val|11.27|0.48|0.60}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z11c

| zp = {{val|11.22|0.32}}
or {{val|3.84|0.05|0.04}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z11b

| zp = {{val|11.22|0.56}}
or {{val|6.94|0.07|0.07}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-005

| zp = {{val|11.2|0.4|0.3}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-020

| zp = {{val|11.2|0.2|7.9}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

CEERS-61486

| zp = {{val|11.15|0.37|0.35}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z11e
(F150DA-081)

| zp = {{val|11.10|0.21|0.34}}
or {{val|13.4|0.6|2.2}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z11a

| zp = {{val|11.05|0.09|0.08}}
or {{val|1.73|0.18|0.04}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

CR3-z12-1

| zp = {{val|11.05|2.24|0.47}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-026

| zp = {{val|11.0|0.5|0.3}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DA-036

| zp = {{val|11.0|0.4|7.8}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SMACS-z10e

| zp = {{val|10.89|0.16|0.14}}
or {{val|1.38|1.37|0.24}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

F150DB-040

| zp = {{val|10.8|0.3|0.2}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

EGS-14506

| zp = {{val|10.71|0.34|0.62}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST{{cite journal|first1=Lily|last1=Whitler|display-authors=etal|title=On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST|journal=Monthly Notices of the Royal Astronomical Society|date=December 2022|volume=519 |issue=1 |pages=157–171 |doi=10.1093/mnras/stac3535|doi-access=free |arxiv=2208.01599|bibcode=2023MNRAS.519..157W}}

MACS0647-JD

| zp = {{val|10.6|0.3}}

|

| Galaxy

| Gravitationally lensed into three images by a galaxy cluster; detected by JWST and Hubble{{cite journal | bibcode = 2013ApJ...762...32C | title=CLASH: Three Strongly Lensed Images of a Candidate z ~ 11 Galaxy | journal=The Astrophysical Journal | volume=762 | issue=1 | page=32 | year=2013 | doi=10.1088/0004-637x/762/1/32|arxiv = 1211.3663 | last1=Coe | first1=Dan | last2=Zitrin | first2=Adi | last3=Carrasco | first3=Mauricio | last4=Shu | first4=Xinwen | last5=Zheng | first5=Wei | last6=Postman | first6=Marc | last7=Bradley | first7=Larry | last8=Koekemoer | first8=Anton | last9=Bouwens | first9=Rychard | last10=Broadhurst | first10=Tom | last11=Monna | first11=Anna | last12=Host | first12=Ole | last13=Moustakas | first13=Leonidas A. | last14=Ford | first14=Holland | last15=Moustakas | first15=John | last16=Van Der Wel | first16=Arjen | last17=Donahue | first17=Megan | last18=Rodney | first18=Steven A. | last19=Benítez | first19=Narciso | last20=Jouvel | first20=Stephanie | last21=Seitz | first21=Stella | last22=Kelson | first22=Daniel D. | last23=Rosati | first23=Piero | s2cid=119114237 }}{{cite journal|title=JWST Reveals a Possible z ~ 11 Galaxy Merger in Triply Lensed MACS0647–JD|first=Tiger Yu-Yang|last=Hsiao|journal=The Astrophysical Journal Letters |year=2023 |volume=949 |issue=2 |pages=L34 |display-authors=etal|arxiv=2210.14123|doi=10.3847/2041-8213/acc94b |bibcode=2023ApJ...949L..34H |s2cid=253107903 |doi-access=free }}

GLASS-z10
(GLASS-1698)

| z = 10.38

|

| Galaxy

| Lyman-break galaxy discovered by JWST; tentative (4.4σ) ALMA detection of [O III] emission line only{{cite journal|title=Two Remarkably Luminous Galaxy Candidates at z ≈ 10 − 12 Revealed by JWST|first=Rohan P.|last=Naidu|display-authors=etal|journal=The Astrophysical Journal Letters|volume=940|issue=1|id=L14|page=11|doi=10.3847/2041-8213/ac9b22|arxiv=2207.09434|bibcode=2022ApJ...940L..14N|date=November 2022|s2cid=250644267 |doi-access=free }}{{cite journal|title=ALMA Observation of a z ≳ 10 Galaxy Candidate Discovered with JWST|first=Ilsang|last=Yoon|journal=The Astrophysical Journal |display-authors=etal|arxiv=2210.08413|date=2023|volume=950 |issue=1 |page=61 |doi=10.3847/1538-4357/acc94d |bibcode=2023ApJ...950...61Y |doi-access=free }}

EGS-7860

| zp = {{val|10.11|0.60|0.82}}

|

| Galaxy

| Lyman-break galaxy discovered by JWST

SPT0615-JD

| zp = {{val|9.9|0.8|0.6}}

| 13.419

| Galaxy

| {{cite journal |arxiv=1801.03103 |title= A Candidate z~10 Galaxy Strongly Lensed into a Spatially Resolved Arc|journal= The Astrophysical Journal|volume= 864|pages= L22|last1= Salmon|first1= Brett|last2= Coe|first2= Dan|last3= Bradley|first3= Larry|last4= Bradač|first4= Marusa|last5= Huang|first5= Kuang-Han|last6= Strait|first6= Victoria|last7= Oesch|first7= Pascal|last8= Paterno-Mahler|first8= Rachel|last9= Zitrin|first9= Adi|last10= Acebron|first10= Ana|last11= Cibirka|first11= Nathália|last12= Kikuchihara|first12= Shotaro|last13= Oguri|first13= Masamune|last14= Brammer|first14= Gabriel B|last15= Sharon|first15= Keren|last16= Trenti|first16= Michele|last17= Avila|first17= Roberto J|last18= Ogaz|first18= Sara|last19= Andrade-Santos|first19= Felipe|last20= Carrasco|first20= Daniela|last21= Cerny|first21= Catherine|last22= Dawson|first22= William|last23= Frye|first23= Brenda L|last24= Hoag|first24= Austin|last25= Jones|first25= Christine|last26= Mainali|first26= Ramesh|last27= Ouchi|first27= Masami|last28= Rodney|first28= Steven A|last29= Stark|first29= Daniel|last30= Umetsu|first30= Keiichi|year= 2018|doi= 10.3847/2041-8213/aadc10|s2cid= 78087820|doi-access= free}}

A2744-JD

| zp≅9.8

| 13.412

| Galaxy

| Galaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift.{{cite web |url=http://www.nasa.gov/press/2014/october/nasa-s-hubble-finds-extremely-distant-galaxy-through-cosmic-magnifying-glass/#.VJBxQmTF_fY |title=Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass |work=NASA|date=23 April 2015 }}{{cite journal | doi=10.1088/2041-8205/793/1/L12 | volume=793 | issue=1 | title=A Geometrically Supported z ~ 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744 | journal=The Astrophysical Journal | pages=L12 |arxiv=1407.3769 |bibcode=2014ApJ...793L..12Z | year=2014 | last1=Zitrin | first1=Adi | last2=Zheng | first2=Wei | last3=Broadhurst | first3=Tom | last4=Moustakas | first4=John | last5=Lam | first5=Daniel | last6=Shu | first6=Xinwen | last7=Huang | first7=Xingxing | last8=Diego | first8=Jose M. | last9=Ford | first9=Holland | last10=Lim | first10=Jeremy | last11=Bauer | first11=Franz E. | last12=Infante | first12=Leopoldo | last13=Kelson | first13=Daniel D. | last14=Molino | first14=Alberto | s2cid=43853349 | url=http://hub.hku.hk/bitstream/10722/206809/1/content.pdf }}

MACS1149-JD1

| zp≅9.6

| 13.398{{cite web |url=http://www.nasa.gov/mission_pages/spitzer/news/spitzer20120919.html |title=NASA Telescopes Spy Ultra-Distant Galaxy|publisher=NASA }}

| Candidate galaxy or protogalaxy

|{{Cite journal | last1=Zheng | first1=W. | last2=Postman | first2=M. | last3=Zitrin | first3=A. | last4=Moustakas | first4=J. | last5=Shu | first5=X. | last6=Jouvel | first6=S. | last7=Høst | first7=O. | last8=Molino | first8=A. | last9=Bradley | first9=L. | last10=Coe | doi=10.1038/nature11446 | first10=D. | last11=Moustakas | first11=L. A. | last12=Carrasco | first12=M. | last13=Ford | first13=H. | last14=Benítez | first14=N. | last15=Lauer | first15=T. R. | last16=Seitz | first16=S. | last17=Bouwens | first17=R. | author-link17 = Rychard Bouwens| last18=Koekemoer | first18=A. | last19=Medezinski | first19=E. | last20=Bartelmann | first20=M. | last21=Broadhurst | first21=T. | last22=Donahue | first22=M. |author22-link= Megan Donahue | last23=Grillo | first23=C. | last24=Infante | first24=L. | last25=Jha | first25=S. W. | last26=Kelson | first26=D. D. | last27=Lahav | first27=O. | last28=Lemze | first28=D. | last29=Melchior | first29=P. | last30=Meneghetti | first30=M. | title=A magnified young galaxy from about 500 million years after the Big Bang | journal=Nature | volume=489 | issue=7416 | pages=406–408 | year=2012 | pmid=22996554 |arxiv=1204.2305 |bibcode=2012Natur.489..406Z | s2cid=4415218 }}

GRB 090429B

| zp≅9.4

| 13.383Penn State Science, [http://science.psu.edu/news-and-events/2011-news/Fox5-2011 "Cosmic Explosion is New Candidate for Most Distant Object in the Universe"], Derek. B. Fox, Barbara K. Kennedy, 25 May 2011

| Gamma-ray burst

|Space Daily, [http://www.spacedaily.com/reports/Explosion_Helps_Researcher_Spot_Universe_Most_Distant_Object_999.html Explosion Helps Researcher Spot Universe's Most Distant Object], 27 May 2011 The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.

UDFy-33436598

| zp≅8.6

| 13.317

| Candidate galaxy or protogalaxy

|{{cite web |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=50876 |title=ESA Science & Technology: The Hubble eXtreme Deep Field (annotated) }}

UDFy-38135539

| zp≅8.6

| 13.317

| Candidate galaxy or protogalaxy

| A spectroscopic redshift of z = 8.55 was claimed for this source in 2010,{{cite news |url=https://www.newscientist.com/article/dn19603-dim-galaxy-is-most-distant-object-yet-found.html |title=Dim galaxy is most distant object yet found |author=David Shiga |work=New Scientist}} but has subsequently been shown to be mistaken.{{Cite journal |bibcode=2013MNRAS.430.3314B |title=VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman & |journal=Monthly Notices of the Royal Astronomical Society |volume=430 |issue=4 |page=3314 |last1=Bunker |first1=Andrew J. |last2=Caruana |first2=Joseph |last3=Wilkins |first3=Stephen M. |last4=Stanway |first4=Elizabeth R. |last5=Lorenzoni |first5=Silvio |last6=Lacy |first6=Mark |last7=Jarvis |first7=Matt J. |last8=Hickey |first8=Samantha |year=2013 |doi=10.1093/mnras/stt132|doi-access=free |arxiv = 1301.4477 }}

BoRG-58

| zp≅8

| 13.258

| Galaxy cluster or protocluster

| Protocluster candidate{{Cite journal |title=Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8|journal=The Astrophysical Journal |volume=746 |issue=1 |page=55 |last1=Trenti |first1=M. |last2=Bradley |first2=L. D. |last3=Stiavelli |first3=M. |last4=Shull |first4=J. M. |last5=Oesch |first5=P. |last6=Bouwens |first6=R. J. | author-link6 = Rychard Bouwens|last7=Munoz |first7=J. A. |last8=Romano-Diaz |first8=E. |last9=Treu |first9=T. |last10=Shlosman |first10=I. |last11=Carollo |first11=C. M. | author-link11 = C. Marcella Carollo| year=2011 |arxiv=1110.0468 |doi=10.1088/0004-637X/746/1/55 |bibcode=2012ApJ...746...55T |s2cid=119294290 }}

colspan=5|

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

{{dynamic list}}

List of most distant objects by type

{{Update|date=June 2023}}

class="wikitable sticky-header"

|+ Most distant object by type

Type

! Object

! Redshift
(distance)

! Notes

Any astronomical object, no matter what type

|rowspan=2 |JADES-GS-z14-0

|rowspan=2 |z = 14.32

|rowspan=2 |Most distant galaxy with a spectroscopically confirmed redshift {{as of|2024|lc=y}}.

Galaxy or protogalaxy
Galaxy cluster

| CL J1001+0220

| z ≅ 2.506

| As of 2016{{cite journal |arxiv=1604.07404 |doi= 10.3847/0004-637X/828/1/56 |title=Discovery of a galaxy cluster with a violently starbursting core at z=2.506 |journal=The Astrophysical Journal |volume=828 |number=1 |year=2016 |last1=Wang |first1=Tao |last2=Elbaz |first2=David |last3=Daddi |first3=Emanuele |last4=Finoguenov |first4=Alexis |last5=Liu |first5=Daizhong |last6=Schrieber |first6=Corenin |last7=Martin |first7=Sergio |last8=Strazzullo |first8=Veronica |last9=Valentino |first9=Francesco |last10=van Der Burg |first10=Remco |last11=Zanella |first11=Anita |last12=Cisela |first12=Laure |last13=Gobat |first13=Raphael |last14=Le Brun |first14=Amandine |last15=Pannella |first15=Maurilio |last16=Sargent |first16=Mark |last17=Shu |first17=Xinwen |last18=Tan |first18=Qinghua |last19=Cappelluti |first19=Nico | last20=Li |first20=Xanxia |page=56|bibcode = 2016ApJ...828...56W |s2cid= 8771287 |doi-access= free }}{{See also|List of galaxy clusters}}

Galaxy supercluster

| Hyperion proto-supercluster

| z = 2.45

| This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date.{{Cite journal|arxiv=1806.06073|title=The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS|last1=Cucciati|first1=O.|last2=Lemaux|first2=B. C.|last3=Zamorani|first3=G.|last4=Le Fevre|first4=O.|last5=Tasca|first5=L. A. M.|last6=Hathi|first6=N. P.|last7=Lee|first7=K-G.|last8=Bardelli|first8=S.|last9=Cassata|first9=P.|last10=Garilli|first10=B.|last11=Le Brun|first11=V.|last12=Maccagni|first12=D.|last13=Pentericci|first13=L.|last14=Thomas|first14=R.|last15=Vanzella|first15=E.|last16=Zucca|first16=E.|last17=Lubin|first17=L. M.|last18=Amorin|first18=R.|last19=Cassara'|first19=L. P.|last20=Cimatti|first20=A.|last21=Talia|first21=M.|last22=Vergani|first22=D.|last23=Koekemoer|first23=A.|last24=Pforr|first24=J.|last25=Salvato|first25=M.|journal = Astronomy & Astrophysics|year=2018|volume = 619|pages = A49|doi = 10.1051/0004-6361/201833655|bibcode = 2018A&A...619A..49C|s2cid = 119472428}} {{See also|List of superclusters}}

Galaxy protocluster

| A2744z7p9OD

| z = 7.88

| This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date.{{cite journal|title= Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang|author1=Morishita, Takahiro |author2=Roberts-Borsani, Guido |author3=Treu, Tommaso |author4=Brammer, Gabriel |author5=Mason, Charlotte A. |author6=Trenti, Michele |author7=Vulcani, Benedetta |author8=Wang, Xin |author9=Acebron, Ana |author10=Bahé, Yannick |author11=Bergamini, Pietro |author12=Boyett, Kristan |author13=Bradac, Marusa |author14=Calabrò, Antonello |author15=Castellano, Marco |author16=Chen, Wenlei |author17=De Lucia, Gabriella |author18=Filippenko, Alexei V. |author19=Fontana, Adriano |author20=Glazebrook, Karl |author21=Grillo, Claudio |author22=Henry, Alaina |author23=Jones, Tucker |author24=Kelly, Patrick L. |author25=Koekemoer, Anton M. |author26=Leethochawalit, Nicha |author27=Lu, Ting-Yi |author28=Marchesini, Danilo |author29=Mascia, Sara |author30=Mercurio, Amata |author31=Merlin, Emiliano |author32=Metha, Benjamin |author33=Nanayakkara, Themiya |author34=Nonino, Mario |author35=Paris, Diego |author36=Pentericci, Laura |author37=Santini, Paola |author38=Strait, Victoria |author39=Vanzella, Eros |author40=Windhorst, Rogier A. |author41=Rosati, Piero |author42=Xie, Lizhi |date= 30 January 2023|arxiv= 2211.09097|journal= Astrophysical Journal Letters |volume=947 |issue=2 |doi=10.3847/2041-8213/acb99e |bibcode=2023ApJ...947L..24M |s2cid=253553396 |doi-access=free }} {{See also|List of galaxy groups and clusters}}

Quasar

| UHZ1

| z ~ 10.0

| {{Citation |last=Bogdán |first=Ákos |title=Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar |date=2023-11-06 |journal=Nature Astronomy |volume=8 |issue=1 |pages=126–133 |url=https://www.nature.com/articles/s41550-023-02111-9 |access-date=2024-08-31 |language=en |arxiv=2305.15458 |bibcode=2024NatAs...8..126B |doi=10.1038/s41550-023-02111-9 |s2cid=258887541 |display-authors=etal}}{{See also|List of quasars}}

Black hole

| GN-z11

| z = {{val|10.6034|0.0013}}{{cite journal |arxiv=2302.07256 |doi=10.1051/0004-6361/202346159 |title=JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy |date=2023 |last1=Bunker |first1=Andrew J. |last2=Saxena |first2=Aayush |last3=Cameron |first3=Alex J. |last4=Willott |first4=Chris J. |last5=Curtis-Lake |first5=Emma |last6=Jakobsen |first6=Peter |last7=Carniani |first7=Stefano |last8=Smit |first8=Renske |last9=Maiolino |first9=Roberto |last10=Witstok |first10=Joris |last11=Curti |first11=Mirko |last12=d'Eugenio |first12=Francesco |last13=Jones |first13=Gareth C. |last14=Ferruit |first14=Pierre |last15=Arribas |first15=Santiago |last16=Charlot |first16=Stephane |last17=Chevallard |first17=Jacopo |last18=Giardino |first18=Giovanna |last19=De Graaff |first19=Anna |last20=Looser |first20=Tobias J. |last21=Lützgendorf |first21=Nora |last22=Maseda |first22=Michael V. |last23=Rawle |first23=Tim |last24=Rix |first24=Hans-Walter |last25=Del Pino |first25=Bruno Rodríguez |last26=Alberts |first26=Stacey |last27=Egami |first27=Eiichi |last28=Eisenstein |first28=Daniel J. |last29=Endsley |first29=Ryan |last30=Hainline |first30=Kevin |journal=Astronomy & Astrophysics |volume=677 |pages=A88 |bibcode=2023A&A...677A..88B |display-authors=1 }}

| {{cite web|website=Space.com|title=James Webb Space Telescope discovers oldest and most distant black hole ever seen|author=Robert Lea|date=January 17, 2024|url=https://www.space.com/james-webb-space-telescope-oldest-black-hole}}{{cite news|newspaper=The Telegraph|title=Oldest black hole ever seen challenges what we know about their formation|author=Joe Pinkstone|date=January 17, 2024|url=https://www.telegraph.co.uk/news/2024/01/17/oldest-black-hole-challenges-formation-nasa-cambridge-bang/}}{{cite journal|last1=Maiolino|first1=Roberto|last2=Scholtz|first2=Jan|last3=Witstok|first3=Joris|last4=Carniani|first4=Stefano|last5=D'Eugenio|first5=Francesco|last6=de Graaff|first6=Anna|last7=Übler|first7=Hannah|last8=Tacchella|first8=Sandro|last9=Curtis-Lake|first9=Emma|last10=Arribas|first10=Santiago|last11=Bunker|first11=Andrew|last12=Charlot|first12=Stéphane|last13=Chevallard|first13=Jacopo|last14=Curti|first14=Mirko|last15=Looser|first15=Tobias J.|last16=Maseda|first16=Michael V.|last17=Rawle|first17=Timothy D.|last18=Rodríguez del Pino|first18=Bruno|last19=Willott|first19=Chris J.|last20=Egami|first20=Eiichi|last21=Eisenstein|first21=Daniel J.|last22=Hainline|first22=Kevin N.|last23=Robertson|first23=Brant|last24=Williams|first24=Christina C.|last25=Willmer|first25=Christopher N. A.|last26=Baker|first26=William M.|last27=Boyett|first27=Kristan|last28=DeCoursey|first28=Christa|last29=Fabian|first29=Andrew C.|last30=Helton|first30=Jakob M.|last31=Ji|first31=Zhiyuan|last32=Jones|first32=Gareth C.|last33=Kumari|first33=Nimisha|last34=Laporte|first34=Nicolas|last35=Nelson|first35=Erica J.|last36=Perna|first36=Michele|last37=Sandles|first37=Lester|last38=Shivaei|first38=Irene|last39=Sun|first39=Fengwu|date=17 January 2024|title=A small and vigorous black hole in the early Universe|url=https://www.nature.com/articles/s41586-024-07052-5|journal=Nature|volume=627 |issue=8002 |pages=59–63 |doi=10.1038/s41586-024-07052-5|pmid=38232944 |accessdate=4 March 2024|arxiv=2305.12492|bibcode=2024Natur.627...59M }}

Star or protostar or post-stellar corpse
(detected by an event)

| Progenitor of GRB 090423

| z = 8.2

|NASA, [https://science.nasa.gov/science-news/science-at-nasa/2009/28apr_grbsmash/ "New Gamma-Ray Burst Smashes Cosmic Distance Record"] {{Webarchive|url=https://web.archive.org/web/20110310193130/http://science.nasa.gov/science-news/science-at-nasa/2009/28apr_grbsmash/ |date=2011-03-10 }}, 28 April 2009 Note, GRB 090429B has a photometric redshift zp≅9.4,Science Codex, [http://www.sciencecodex.com/nasas_swift_finds_most_distant_gammaray_burst_yet "GRB 090429B – most distant gamma-ray burst yet"] {{Webarchive|url=https://web.archive.org/web/20110531000312/http://www.sciencecodex.com/nasas_swift_finds_most_distant_gammaray_burst_yet |date=2011-05-31 }}, NASA/Goddard, 27 May 2011 and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.{{See also|List of gamma-ray bursts}} Estimated an approximate distance of 13 billion lightyears from Earth

Star or protostar or post-stellar corpse
(detected as a star)

| WHL0137-LS (Earendel)

| {{nowrap|1=z = 6.2 ± 0.1}}
(12.9 Gly)

| Most distant individual star detected (March, 2022).{{cite journal |author=Welch, Brian |display-authors=et al. |title=A highly magnified star at redshift 6.2 |url=https://www.nature.com/articles/s41586-022-04449-y |date=30 March 2022 |journal=Nature |volume=603 |issue=7903 |pages=815–818 |doi=10.1038/s41586-022-04449-y |pmid=35354998 |arxiv=2209.14866 |bibcode=2022Natur.603..815W |s2cid=247842625 |access-date=30 March 2022 }}{{cite news |last1=Gianopoulos |first1=Andrea |title=Record Broken: Hubble Spots Farthest Star Ever Seen |url=https://www.nasa.gov/feature/goddard/2022/record-broken-hubble-spots-farthest-star-ever-seen |date=30 March 2022 |work=NASA |access-date=30 March 2022 }}

Previous records include SDSS J1229+1122{{cite magazine |author=Camille M. Carlisle |url=http://www.skyandtelescope.com/astronomy-news/the-most-distant-star-everseen/ |title=The Most Distant Star Ever Seen? |magazine=Sky and Telescope |date=12 April 2013}} and MACS J1149 Lensed Star 1.{{cite journal | doi=10.1038/s41550-018-0430-3 | title=Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens | year=2018 | last1=Kelly | first1=Patrick L. | last2=Diego | first2=Jose M. | last3=Rodney | first3=Steven | last4=Kaiser | first4=Nick | last5=Broadhurst | first5=Tom | last6=Zitrin | first6=Adi | last7=Treu | first7=Tommaso | last8=Pérez-González | first8=Pablo G. | last9=Morishita | first9=Takahiro | last10=Jauzac | first10=Mathilde | last11=Selsing | first11=Jonatan | last12=Oguri | first12=Masamune | last13=Pueyo | first13=Laurent | last14=Ross | first14=Timothy W. | last15=Filippenko | first15=Alexei V. | last16=Smith | first16=Nathan | last17=Hjorth | first17=Jens | last18=Cenko | first18=S. Bradley | last19=Wang | first19=Xin | last20=Howell | first20=D. Andrew | last21=Richard | first21=Johan | last22=Frye | first22=Brenda L. | last23=Jha | first23=Saurabh W. | last24=Foley | first24=Ryan J. | last25=Norman | first25=Colin | last26=Bradac | first26=Marusa | last27=Zheng | first27=Weikang | last28=Brammer | first28=Gabriel | last29=Benito | first29=Alberto Molino | last30=Cava | first30=Antonio | journal=Nature Astronomy | volume=2 | issue=4 | pages=334–342 | arxiv=1706.10279 | bibcode=2018NatAs...2..334K | s2cid=119412560 | display-authors=1 }}

Star cluster

|rowspan=2 | The Sparkler

|rowspan=2 | z = 1.378
(13.9 Gly)

|rowspan=2 | Galaxy with globular clusters gravitationally lensed in SMACS J0723.3-7327{{cite journal|first=Lamiya|last=Mowla|display-authors=etal|title=The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST|journal=The Astrophysical Journal Letters|date=October 2022|volume=937|issue=2|id=L35|page=9|doi-access=free|doi=10.3847/2041-8213/ac90ca|arxiv=2208.02233|bibcode=2022ApJ...937L..35M}}

System of star clusters
X-ray jet

| PJ352–15 quasar jet

| z = 5.831
(12.7 Gly){{Cite journal|arxiv = 2103.03879|doi = 10.3847/1538-4357/abe710|title = Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years|year = 2021|last1 = Connor|first1 = Thomas|last2 = Bañados|first2 = Eduardo|last3 = Stern|first3 = Daniel|last4 = Carilli|first4 = Chris|last5 = Fabian|first5 = Andrew|last6 = Momjian|first6 = Emmanuel|last7 = Rojas-Ruiz|first7 = Sofía|last8 = Decarli|first8 = Roberto|last9 = Farina|first9 = Emanuele Paolo|last10 = Mazzucchelli|first10 = Chiara|last11 = Earnshaw|first11 = Hannah P.|journal = The Astrophysical Journal|volume = 911|issue = 2|page = 120|bibcode = 2021ApJ...911..120C|s2cid = 232148026 | doi-access=free }}

| The previous recordholder was at 12.4 Gly.[https://www.nasa.gov/mission_pages/chandra/images/gigantic-jet-spied-from-black-hole-in-early-universe.html NASA.gov]SpaceDaily, [http://www.spacedaily.com/reports/Record_Setting_X_ray_Jet_Discovered_999.html "Record-Setting X-ray Jet Discovered"], 30 November 2012 (accessed 4 December 2012)

Microquasar

| XMMU J004243.6+412519

| (2.5 Mly)

| First extragalactic microquasar discoveredESA, [http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=51225 "Artist's impression of the X-ray binary XMMU J004243.6+412519"], 12 December 2012 (accessed 18 December 2012)e! Science News, [http://esciencenews.com/sources/scientific.blogging/2012/12/12/xmmu.j004243.6412519.black.hole.binary.at.the.eddington.limit "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit"], 12 December 2012 (accessed 18 December 2012)SpaceDaily, [http://www.spacedaily.com/reports/Microquasar_found_in_neighbor_galaxy_tantalizing_scientists_999.html "Microquasar found in neighbor galaxy, tantalizing scientists"], 17 December 2012 (accessed 18 December 2012)

Nebula-like object

| Himiko

| z = 6.595

| Possibly one of the largest objects in the early universe.{{Cite journal |last1=Ouchi |first1=Masami |last2=Ono |first2=Yoshiaki |last3=Egami |first3=Eiichi |last4=Saito |first4=Tomoki |last5=Oguri |first5=Masamune |last6=McCarthy |first6=Patrick J. |last7=Farrah |first7=Duncan |last8=Kashikawa |first8=Nobunari |last9=Momcheva |first9=Ivelina |last10=Shimasaku |first10=Kazuhiro |last11=Nakanishi |first11=Kouichiro |last12=Furusawa |first12=Hisanori |last13=Akiyama |first13=Masayuki |last14=Dunlop |first14=James S. |last15=Mortier |first15=Angela M. J. |date=2009-05-01 |title=Discovery of a Giant Lyα Emitter Near the Reionization Epoch |url=https://ui.adsabs.harvard.edu/abs/2009ApJ...696.1164O |journal=The Astrophysical Journal |volume=696 |issue=2 |pages=1164–1175 |doi=10.1088/0004-637X/696/2/1164 |arxiv=0807.4174 |bibcode=2009ApJ...696.1164O |s2cid=15246638 |issn=0004-637X}}{{cite news|url=http://www.space.com/scienceastronomy/090422-space-blob.html|title=Giant Mystery Blob Discovered Near Dawn of Time|last=Hsu|first=Jeremy|date=2009-04-22|publisher=SPACE.com|access-date=2009-04-24}}

Magnetic field

|9io9

|z = 2.554 (11.1 Gly)

|Observations from ALMA has shown that the lensed galaxy 9io9 contains a magnetic field.

Planet

| SWEEPS-11 / SWEEPS-04

| (27,710 ly)

|USA Today, [https://www.usatoday.com/tech/science/space/2006-01-25-exoplanet-discovery_x.htm "Smallest, most distant planet outside solar system found"], Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)

  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy.{{cite encyclopedia |url=http://exoplanet.eu/star.php?st=PA-99-N2 |archive-url=https://web.archive.org/web/20100206051747/http://exoplanet.eu/star.php?st=PA-99-N2 |url-status=dead |archive-date=February 6, 2010 |title=Notes for star PA-99-N2 |author=Schneider, J. |encyclopedia=Extrasolar Planets Encyclopaedia |access-date=2010-08-06}}
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).Exoplaneten.de, [http://www.exoplaneten.de/Q0957+561/english.html "The Microlensing Event of Q0957+561"] {{Webarchive|url=https://web.archive.org/web/20120211130721/http://www.exoplaneten.de/Q0957+561/english.html |date=2012-02-11 }} (accessed 5 August 2010){{cite journal | last1=Schild | first1=R.E. | year=1996 | title=Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B | journal=Astrophysical Journal | volume=464 | page=125 | doi=10.1086/177304 | bibcode=1996ApJ...464..125S}}

class="wikitable sticky-header"

|+ Most distant event by type

Type

! Event

! Redshift

! Notes

Gamma-ray burst

| GRB 090423

| z = 8.2

| Note, GRB 090429B has a photometric redshift zp≅9.4, and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.{{See also|List of gamma-ray bursts}}

Core collapse supernova

| SN 1000+0216

| z = 3.8993

|{{cite journal |bibcode=2012Natur.491..228C |title=Superluminous supernovae at redshifts of 2.05 and 3.90 |journal=Nature |volume=491 |issue=7423 |pages=228–31 |last1=Cooke |first1=Jeff |last2=Sullivan |first2=Mark |last3=Gal-Yam |first3=Avishay |last4=Barton |first4=Elizabeth J. |last5=Carlberg |first5=Raymond G. |last6=Ryan-Weber |first6=Emma V.|author6-link=Emma Ryan-Weber |last7=Horst |first7=Chuck |last8=Omori |first8=Yuuki |last9=Díaz |first9=C. Gonzalo |year=2012 |doi=10.1038/nature11521 |pmid=23123848|arxiv = 1211.2003 |s2cid=4397580 }}

{{See also|List of most distant supernovae}}

Type Ia supernova

| SN UDS10Wil

|z = 1.914

|{{cite web |url=http://www.spacetelescope.org/images/heic1306d/ |title=Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference |work=www.spacetelescope.org}}

{{See also|List of supernovae}}

Type Ia supernova

| SN SCP-0401
(Mingus)

| z = 1.71

| First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN.Science Newsline, [http://www.sciencenewsline.com/articles/2013010923190007.html "The Farthest Supernova Yet for Measuring Cosmic History"] {{Webarchive|url=https://web.archive.org/web/20130521070143/http://www.sciencenewsline.com/articles/2013010923190007.html |date=2013-05-21 }}, Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)Mike Wall, [http://www.space.com/19198-most-distant-supernova-hubble-discovery-aas221.html "Most Distant 'Standard Candle' Star Explosion Found"], Space.com, 9 January 2013 (accessed 10 January 2013)

{{See also|List of supernovae}}

Cosmic Decoupling

| Cosmic Microwave Background Radiation creation

| z~1000 to 1089

|{{cite journal |journal=Astrophysical Journal Supplement |title=Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results |volume=180 |issue=2 |pages=225–245 |date=2009 |doi=10.1088/0067-0049/180/2/225 |bibcode=2009ApJS..180..225H |arxiv=0803.0732 |s2cid=3629998 |last1=Hinshaw |first1=G. |last2=Weiland |first2=J. L. |last3=Hill |first3=R. S. |last4=Odegard |first4=N. |last5=Larson |first5=D. |last6=Bennett |first6=C. L. |last7=Dunkley |first7=J. |last8=Gold |first8=B. |last9=Greason |first9=M. R. |last10=Jarosik |first10=N. |last11=Komatsu |first11=E. |last12=Nolta |first12=M. R. |last13=Page |first13=L. |last14=Spergel |first14=D. N. |last15=Wollack |first15=E. |last16=Halpern |first16=M. |last17=Kogut |first17=A. |last18=Limon |first18=M. |last19=Meyer |first19=S. S. |last20=Tucker |first20=G. S. |last21=Wright |first21=E. L. }}Redshift states the Cosmic microwave background radiation as having a redshift of z = 1089

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

class="wikitable sticky-header"

|+ Most distant object titleholders (not including candidates based on photometric redshifts)

Object

! Type

! Date

! Distance
(z = Redshift)

! Notes

JADES-GS-z14-0

| Galaxy

| 2024–present

| z = 14.32

|

JADES-GS-z13-0

| Galaxy

| 2022–2024

| z = 13.20

|

GN-z11

| Galaxy

| 2016–2022

| z = 10.6

|

EGSY8p7

| Galaxy

| 2015−2016

| z = 8.68

| {{cite web |first=Jonathan |last=Amos |title=Hubble sets new cosmic distance record |url=https://www.bbc.com/news/science-environment-35721734 |work=BBC News |date=3 March 2016 }}{{cite news |url=http://www.space.com/30170-most-distant-galaxy-discovered.html |title=Ancient Galaxy Is Most Distant Ever Found |date=5 August 2015 |first=Mike |last=Wall |website=Space.com }}{{cite news |url=http://astronomynow.com/2015/08/06/a-new-record-keck-observatory-measures-most-distant-galaxy/ |title=A new record: Keck Observatory measures most distant galaxy |date=6 August 2015 |author=W. M. Keck Observatory |website=Astronomy Now }}{{cite news |url=http://www.huffingtonpost.com/mario-de-leo-winkler/the-farthest-object-in-th_b_7795982.html |title=The Farthest Object in the Universe |author=Mario De Leo Winkler |date=15 July 2015 |work=Huffington Post }}

Progenitor of GRB 090423 / Remnant of GRB 090423

| Gamma-ray burst progenitor / Gamma-ray burst remnant

| 2009–2015

| z = 8.2

|{{cite magazine |magazine=New Scientist |url=https://www.newscientist.com/article/dn17035-most-distant-object-in-the-universe-spotted.html |title=Most distant object in the universe spotted |first=Rachel |last=Courtland |date=27 April 2009 |access-date=2009-11-11}}

IOK-1

| Galaxy

| 2006 − 2009

| z = 6.96

|{{cite magazine |magazine=New Scientist |url=https://www.newscientist.com/article/dn10069-first-generation-of-galaxies-glimpsed-forming.html |title=First generation of galaxies glimpsed forming |first=David |last=Shiga |date=13 September 2006 |access-date=2009-11-11}}{{cite journal |doi=10.1038/nature05104 |pmid=16971942 |year=2006 |last1=Iye |first1=M. |title=A galaxy at a redshift z = 6.96 |journal=Nature |volume=443 |issue=7108 |pages=186–188 |last2=Ota |first2=K. |last3=Kashikawa |first3=N. |last4=Furusawa |first4=H. |last5=Hashimoto |first5=T. |last6=Hattori |first6=T. |last7=Matsuda |first7=Y. |last8=Morokuma |first8=T. |last9=Ouchi |first9=M. |last10=Shimasaku |first10=K. |bibcode=2006Natur.443..186I|arxiv = astro-ph/0609393 |s2cid=2876103 }}{{cite journal |last1=Taniguchi |first1=Yoshi |title=Star Forming Galaxies at z > 5 |journal=Proceedings of the International Astronomical Union |date=23 June 2008 |volume=3 |issue=S250 |pages=429–436 |arxiv=0804.0644 |doi=10.1017/S1743921308020796|bibcode=2008IAUS..250..429T |s2cid=198472 }}

SDF J132522.3+273520

| Galaxy

| 2005 − 2006

| z = 6.597

|{{cite journal |url=http://pasj.asj.or.jp/v57/n1/570114/57012649.pdf |bibcode=2005PASJ...57..165T |doi=10.1093/pasj/57.1.165 |title=The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 |journal=Publications of the Astronomical Society of Japan |volume=57 |pages=165–182 |year=2005 |last1=Taniguchi |first1=Yoshiaki |last2=Ajiki |first2=Masaru |last3=Nagao |first3=Tohru |last4=Shioya |first4=Yasuhiro |last5=Murayama |first5=Takashi |last6=Kashikawa |first6=Nobunari |last7=Kodaira |first7=Keiichi |last8=Kaifu |first8=Norio |last9=Ando |first9=Hiroyasu |last10=Karoji |first10=Hiroshi |last11=Akiyama |first11=Masayuki |last12=Aoki |first12=Kentaro |last13=Doi |first13=Mamoru |last14=Fujita |first14=Shinobu S. |last15=Furusawa |first15=Hisanori |last16=Hayashino |first16=Tomoki |last17=Iwamuro |first17=Fumihide |last18=Iye |first18=Masanori |last19=Kobayashi |first19=Naoto |last20=Kodama |first20=Tadayuki |last21=Komiyama |first21=Yutaka |last22=Matsuda |first22=Yuichi |last23=Miyazaki |first23=Satoshi |last24=Mizumoto |first24=Yoshihiko |last25=Morokuma |first25=Tomoki |last26=Motohara |first26=Kentaro |last27=Nariai |first27=Kyoji |last28=Ohta |first28=Koji |last29=Ohyama |first29=Youichi |last30=Okamura |first30=Sadanori |display-authors=6|arxiv = astro-ph/0407542 }}

SDF J132418.3+271455

| Galaxy

| 2003 − 2005

| z = 6.578

|{{cite news |work=BBC News |url=http://news.bbc.co.uk/2/hi/science/nature/2884411.stm |title=Most distant galaxy detected |date=25 March 2003}}{{cite web |website=SpaceRef |url=http://www.spaceref.com/news/viewpr.html?pid=11046 |title=Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More |archive-url=https://archive.today/20121209015117/http://www.spaceref.com/news/viewpr.html?pid=11046 |archive-date=2012-12-09 |date=March 24, 2003}}{{Cite journal |arxiv=astro-ph/0301096 |last1=Kodaira |first1=K. |title=The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field |journal=Publications of the Astronomical Society of Japan |volume=55 |issue=2 |pages=L17 |last2=Taniguchi |first2=Y. |last3=Kashikawa |first3=N. |last4=Kaifu |first4=N. |last5=Ando |first5=H. |last6=Karoji |first6=H. |last7=Ajiki |first7=Masaru |last8=Akiyama |first8=Masayuki |last9=Aoki |first9=Kentaro |last10=Doi |first10=Mamoru |last11=Fujita |first11=Shinobu S. |last12=Furusawa |first12=Hisanori |last13=Hayashino |first13=Tomoki |last14=Imanishi |first14=Masatoshi |last15=Iwamuro |first15=Fumihide |last16=Iye |first16=Masanori |last17=Kawabata |first17=Koji S. |last18=Kobayashi |first18=Naoto |last19=Kodama |first19=Tadayuki |last20=Komiyama |first20=Yutaka |last21=Kosugi |first21=George |last22=Matsuda |first22=Yuichi |last23=Miyazaki |first23=Satoshi |last24=Mizumoto |first24=Yoshihiko |last25=Motohara |first25=Kentaro |last26=Murayama |first26=Takashi |last27=Nagao |first27=Tohru |last28=Nariai |first28=Kyoji |last29=Ohta |first29=Kouji |last30=Ohyama |first30=Youichi |year=2003 |doi=10.1093/pasj/55.2.L17 |display-authors=6 |bibcode = 2003PASJ...55L..17K }}

HCM-6A

| Galaxy

| 2002 − 2003

| z = 6.56

| The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28{{cite magazine |magazine=New Scientist |url=https://www.newscientist.com/article/dn2046-new-record-for-universes-most-distant-object.html |title=New record for Universe's most distant object |date=14 March 2002}}{{cite news |work=BBC News |url=http://news.bbc.co.uk/2/hi/science/nature/1871043.stm |title=Far away stars light early cosmos |date=14 March 2002}}{{cite journal | doi = 10.1086/340424 | volume=568 | title=A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 | year=2002 | journal=The Astrophysical Journal | pages=L75–L79 | last1 = Hu | first1 = E. M. | issue=2 | arxiv=astro-ph/0203091 | bibcode=2002ApJ...568L..75H| doi-access=free }}{{cite web |url=http://hera.ph1.uni-koeln.de/~heintzma/U/Lens.htm |title=K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370 |publisher=Hera.ph1.uni-koeln.de |date=2008-04-14 |access-date=2010-10-22 |archive-url=https://web.archive.org/web/20110518140741/http://hera.ph1.uni-koeln.de/~heintzma/U/Lens.htm |archive-date=2011-05-18 }}

SDSS J1030+0524
(SDSSp J103027.10+052455.0)

| Quasar

| 2001 − 2002

| z = 6.28

|{{Cite journal |arxiv=astro-ph/0112075 |last1=Pentericci |first1=L. |title=VLT observations of the z = 6.28 quasar SDSS 1030+0524 |journal=The Astronomical Journal |volume=123 |issue=5 |page=2151 |last2=Fan |first2=X. |last3=Rix |first3=H. W. |last4=Strauss |first4=M. A. |last5=Narayanan |first5=V. K. |last6=Richards |first6=G T. |last7=Schneider |first7=D. P. |last8=Krolik |first8=J. |last9=Heckman |first9=T. |last10=Brinkmann |first10=J. |last11=Lamb |first11=D. Q. |last12=Szokoly |first12=G. P. |year=2002 |doi=10.1086/340077 |bibcode=2002AJ....123.2151P|s2cid=119041760 }}{{cite journal |journal=The Astrophysical Journal |volume=578 |issue=2 |pages=702–707 |date=20 October 2002 |title=A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524 |first1=Zoltan |last1=Haiman |first2=Renyue |last2=Cen|doi=10.1086/342610 |arxiv=astro-ph/0205143 }}{{cite journal |doi=10.1086/375547 |title=Probing the Ionization State of the Universe atz>6 |journal=The Astronomical Journal |volume=126 |issue=1 |pages=1–14 |year=2003 |last1=White |first1=Richard L. |last2=Becker |first2=Robert H. |last3=Fan |first3=Xiaohui |last4=Strauss |first4=Michael A. |bibcode=2003AJ....126....1W|arxiv = astro-ph/0303476 |s2cid=51505828 }}{{cite journal |bibcode=2004ApJ...611L..13F |doi=10.1086/423669 |title=The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524 |journal=The Astrophysical Journal |volume=611 |issue=1 |pages=L13–L16 |year=2004 |last1=Farrah |first1=D. |last2=Priddey |first2=R. |last3=Wilman |first3=R. |last4=Haehnelt |first4=M. |last5=McMahon |first5=R.|arxiv = astro-ph/0406561 |s2cid=14854831 }}

SDSS 1044–0125
(SDSSp J104433.04–012502.2)

| Quasar

| 2000 − 2001

| z = 5.82

|{{cite journal |publisher=Eberly College of Science, Penn State University |journal=Science Journal |date=Summer 2000 |volume=17 |issue=1 |url=http://www.science.psu.edu/journal/Sum2000/DistObj.htm |title=International Team of Astronomers Finds Most Distant Object |url-status=dead |archive-url=https://web.archive.org/web/20090912024541/http://www.science.psu.edu/journal/Sum2000/DistObj.htm |archive-date=2009-09-12}}{{cite journal |journal=The Astrophysical Journal |volume=522 |issue=1 |pages=L9–L12 |date=1999-09-01 |title=An Extremely Luminous Galaxy at z = 5.74 |doi=10.1086/312205 |first1=Esther M. |last1=Hu |first2=Richard G. |last2=McMahon |first3=Lennox L. |last3=Cowie|arxiv=astro-ph/9907079 |bibcode=1999ApJ...522L...9H }}{{cite news |publisher=Eberly College of Science, Penn State University |url=http://www.science.psu.edu/alert/Schneider6-2001.htm |title=Discovery Announced of Two Most Distant Objects |url-status=dead |archive-url=https://web.archive.org/web/20071121093952/http://www.science.psu.edu/alert/Schneider6-2001.htm |archive-date=2007-11-21 |date=5 June 2001}}{{cite press release |agency=SDSS |work=Space News |url=https://spacenews.com/early-results-from-the-sloan-digital-sky-survey-from-under-our-nose-to-the-edge-of-the-universe/ |title=Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe |date=5 June 2001}}{{cite news |publisher=Eberly College of Science, Penn State University |url=http://www.science.psu.edu/alert/Brandt12-2000.htm |title=X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite |url-status=dead |archive-url=https://web.archive.org/web/20071121231510/http://www.science.psu.edu/alert/Brandt12-2000.htm |archive-date=2007-11-21 |date=1 December 2000}}{{cite web |publisher=University of Wisconsin-Madison |url=http://www.astro.wisc.edu/~stanway/research/highzobj.html |title=Confirmed High Redshift (z > 5.5) Galaxies |date=10 February 2005 |url-status=dead |archive-url=https://web.archive.org/web/20070618233852/http://www.astro.wisc.edu/~stanway/research/highzobj.html |archive-date=2007-06-18 }}{{cite web |website=Space.com |url=http://www.space.com/scienceastronomy/astronomy/distant_object_001201.html |title=Most Distant Object in Universe Comes Closer |date=1 December 2000 |first=Robin |last=Lloyd |url-status=dead |archive-url=https://web.archive.org/web/20091209042357/http://www.space.com/scienceastronomy/astronomy/distant_object_001201.html |archive-date=2009-12-09}}

SSA22-HCM1

| Galaxy

| 1999–2000

| z>=5.74

|

HDF 4-473.0

| Galaxy

| 1998–1999

| z = 5.60

|{{cite journal |journal=Publications of the Astronomical Society of the Pacific |volume=111 |pages=1475–1502 |date=December 1999 |title=Search Techniques for Distant Galaxies |url=http://ned.ipac.caltech.edu/level5/Sept04/Stern/Stern1.html |first1=Daniel |last1=Stern |first2=Hyron |last2=Spinrad |issue=766 |doi=10.1086/316471 |arxiv=astro-ph/9912082|bibcode=1999PASP..111.1475S }}

RD1 (0140+326 RD1)

| Galaxy

| 1998

| z = 5.34

|{{cite news |newspaper=The New York Times |url=https://query.nytimes.com/gst/fullpage.html?res=9B0DEFDD123DF933A15753C1A96E958260&sec=&spon=&pagewanted=3 |title=Peering Back in Time, Astronomers Glimpse Galaxies Aborning |date=October 20, 1998 |first=John Noble |last=Wilford |url-access=subscription}}{{cite web |series=Astronomy Picture of the Day |publisher=NASA |url=http://apod.nasa.gov/apod/ap980324.html |title=A Baby Galaxy |date=March 24, 1998}}{{Cite journal |arxiv=astro-ph/9803137 |last1=Dey |first1=Arjun |title=A Galaxy at z = 5.34 |journal=The Astrophysical Journal |volume=498 |issue=2 |pages=L93 |last2=Spinrad |first2=Hyron |last3=Stern |first3=Daniel |last4=Graham |first4=James R. |last5=Chaffee |first5=Frederic H. |year=1998 |doi=10.1086/311331 |bibcode=1998ApJ...498L..93D}}{{cite web |url=http://www.astro.ucla.edu/~wright/old_new_cosmo.html#12Mar98 |title=A New Most Distant Object: z = 5.34 |publisher=Astro.ucla.edu |access-date=2010-10-22}}

CL 1358+62 G1 & CL 1358+62 G2

| Galaxies

| 1997 − 1998

| z = 4.92

| These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe.{{cite web |series=Astronomy Picture of the Day |publisher=NASA |url=http://apod.nasa.gov/apod/ap970731.html |title=Behind CL1358+62: A New Farthest Object |date=July 31, 1997}}{{cite journal |bibcode=1997ApJ...486L..75F |doi=10.1086/310844 |title=A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62 |journal=The Astrophysical Journal |volume=486 |issue=2 |pages=L75 |year=1997 |last1=Franx |first1=Marijn |last2=Illingworth |first2=Garth D. |last3=Kelson |first3=Daniel D. |last4=Van Dokkum |first4=Pieter G. |last5=Tran |first5=Kim-Vy|arxiv = astro-ph/9704090 |s2cid=14502310 }}{{cite journal | doi = 10.1023/a:1017052809781 | url = http://nedwww.ipac.caltech.edu/level5/Illingworth/Ill8.html | bibcode=1999Ap&SS.269..165I | volume=269/270 | year=1999 | journal=Astrophysics and Space Science | pages=165–181 | last1 = Illingworth | first1 = Garth | title = Galaxies at High Redshift | arxiv = astro-ph/0009187 | s2cid = 119363931 }}

PC 1247–3406

| Quasar

| 1991 − 1997

| z = 4.897

|{{cite journal |last1=Schneider |first1=Donald P. |last2=Schmidt |first2=Maarten |last3=Gunn |first3=James E. |title=PC 1247 + 3406 - an optically selected quasar with a redshift of 4.897 |journal=The Astronomical Journal |date=September 1991 |volume=102 |page=837 |doi=10.1086/115914|bibcode=1991AJ....102..837S }}{{cite journal |bibcode=1994AJ....108.1147S |title=Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4 |journal=The Astronomical Journal |volume=108 |page=1147 |last1=Smith |first1=J. D. |last2=Djorgovski |first2=S. |last3=Thompson |first3=D. |last4=Brisken |first4=W. F. |last5=Neugebauer |first5=G. |last6=Matthews |first6=K. |last7=Meylan |first7=G. |last8=Piotto |first8=G. |last9=Suntzeff |first9=N. B. |year=1994 |doi=10.1086/117143|url=https://authors.library.caltech.edu/74253/2/1994AJ____108_1147S.pdf }}{{cite magazine |magazine=New Scientist |issue=1842 |date=10 October 1992 |page=17 |url=https://www.newscientist.com/article/mg13618423.200-science-infant-galaxys-light-show-.html |title=Science: Infant galaxy's light show |first=Ken |last=Croswell}}{{cite press release |publisher=FermiLab |url=http://www.princeton.edu/pr/news/98/q4/1208-skysur.htm |title=Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar |url-status=dead |archive-url=https://web.archive.org/web/20090912194951/http://www.princeton.edu/pr/news/98/q4/1208-skysur.htm |archive-date=2009-09-12 |date=December 8, 1998}}{{cite journal |bibcode=1998MNRAS.294L...7H |title=Discovery of radio-loud quasars with z = 4.72 and z = 4.01 |journal=Monthly Notices of the Royal Astronomical Society |volume=294 |issue=1 |pages=L7–L12 |last1=Hook |first1=Isobel M. |last2=McMahon |first2=Richard G. |year=1998 |doi=10.1046/j.1365-8711.1998.01368.x| doi-access=free |arxiv = astro-ph/9801026 }}

PC 1158+4635

| Quasar

| 1989 − 1991

| z = 4.73

|{{cite journal |bibcode=1991AJ....101....5T |title=Quasars and galaxy formation. I – the Z greater than 4 objects |journal=Astronomical Journal |volume=101 |page=5 |last1=Turner |first1=Edwin L. |year=1991 |doi=10.1086/115663}}SIMBAD, [http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=PC+1158%2B4635 Object query : PC 1158+4635], QSO B1158+4635 – Quasar{{cite journal |doi=10.1111/j.1749-6632.1991.tb32157.x |title=Young Galaxies |journal=Annals of the New York Academy of Sciences |volume=647 |issue=1 Texas/ESO–Cer |pages=31–41 |year=1991 |last1=Cowie |first1=Lennox L. |bibcode=1991NYASA.647...31C|s2cid=222074763 }}New York Times, [https://query.nytimes.com/gst/fullpage.html?res=950DE0DB153AF933A15752C1A96F948260&scp=11&sq=most+distant+quasar&st=nyt Peering to Edge of Time, Scientists Are Astonished], November 20, 1989

Q0051–279

| Quasar

| 1987 − 1989

| z = 4.43

|{{cite journal |bibcode=1987Natur.330..453W |doi=10.1038/330453a0 |title=Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field |journal=Nature |volume=330 |issue=6147 |page=453 |year=1987 |last1=Warren |first1=S. J. |last2=Hewett |first2=P. C. |last3=Osmer |first3=P. S. |last4=Irwin |first4=M. J.|s2cid=4352819 }}{{cite journal |bibcode=1988Ap.....29..657L |doi=10.1007/BF01005972 |title=Absorption spectra of quasars |journal=Astrophysics |volume=29 |issue=2 |pages=657–671 |year=1989 |last1=Levshakov |first1=S. A.|s2cid=122978350 }}{{cite news |newspaper=The New York Times |url=https://query.nytimes.com/gst/fullpage.html?res=940DE3DF143CF937A25752C0A96E948260&sec=&spon=&pagewanted=all |title=Objects Detected in Universe May Be the Most Distant Ever Sighted |date=January 14, 1988 |url-access=subscription |first=John Noble |last=Wilford }}{{cite news |work=The New York Times |url=https://query.nytimes.com/gst/fullpage.html?res=940DE7D8113CF933A25756C0A96E948260&sec=&spon=&pagewanted=all |title=Astronomers Peer Deeper Into Cosmos |date=May 10, 1988 |url-access=subscription |first=John Noble |last=Wilford}}

Q0000–26
(QSO B0000–26)

| Quasar

| 1987

| z = 4.11

|{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Q0000-26 |title=Object query : Q0000-26}}

PC 0910+5625
(QSO B0910+5625)

| Quasar

| 1987

| z = 4.04

| This was the second quasar discovered with a redshift over 4.{{cite journal |bibcode=1987ApJ...321L...7S |title=PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04 |journal=Astrophysical Journal |volume=321 |pages=L7 |last1=Schmidt |first1=Maarten |last2=Schneider |first2=Donald P. |last3=Gunn |first3=James E. |year=1987 |doi=10.1086/184996}}{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=PC+0910%2B5625&submit=SIMBAD+search |title=Object query : PC 0910+5625}}

Q0046–293
(QSO J0048–2903)

| Quasar

| 1987

| z = 4.01

|{{cite journal |bibcode=1987Natur.325..131W |title=First observation of a quasar with a redshift of 4 |journal=Nature |volume=325 |issue=6100 |page=131 |last1=Warren |first1=S. J. |last2=Hewett |first2=P. C. |last3=Irwin |first3=M. J. |last4=McMahon |first4=R. G. |last5=Bridgeland |first5=M. T. |last6=Bunclark |first6=P. S. |last7=Kibblewhite |first7=E. J. |year=1987 |doi=10.1038/325131a0|s2cid=4335291 }}{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Q0046-293 |title=Object query : Q0046-293}}

Q1208+1011
(QSO B1208+1011)

| Quasar

| 1986 − 1987

| z = 3.80

| This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45{{pprime}}.{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=Q1208%2B1011 |title=Object query : Q1208+1011}}{{cite magazine |magazine=New Scientist |url=https://www.newscientist.com/article/mg13217953.100-science-quasar-doubles-help-to-fix-the-hubble-constant.html |title=Quasar doubles help to fix the Hubble constant |date=16 November 1991 |first=Nigel |last=Henbest}}

PKS 2000-330
(QSO J2003–3251, Q2000–330)

| Quasar

| 1982 − 1986

| z = 3.78

|{{cite web |publisher=Orwell Astronomical Society |location=Ipswich |url=http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_astro_news.htm |title=Archived Astronomy News Items, 1972–1997 |archive-url=https://web.archive.org/web/20090912004912/http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_astro_news.htm |archive-date=2009-09-12 }}{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=PKS+2000-330 |title=Object query : PKS 2000-330}}

OQ172
(QSO B1442+101)

| Quasar

| 1974 − 1982

| z = 3.53

|{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=OQ172 |title=Object query : OQ172}}

OH471
(QSO B0642+449)

| Quasar

| 1973 − 1974

| z = 3.408

| Nickname was "the blaze marking the edge of the universe".{{cite web |website=OSU Big Ear |url=http://www.bigear.org/ohsmarkr/History_OSURO.htm |title=History of the OSU Radio Observatory}}{{cite magazine |magazine=Time |url=http://www.time.com/time/magazine/article/0,9171,945213,00.html |archive-url=https://web.archive.org/web/20081214071937/http://www.time.com/time/magazine/article/0,9171,945213,00.html |archive-date=2008-12-14 |title=The Edge of Night |date=April 23, 1973}}{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=OH471 |title=QSO B0642+449 – Quasar}}{{cite journal |bibcode=1990RPPh...53.1095W |doi=10.1088/0034-4885/53/8/003 |title=The detection of high-redshift quasars |journal=Reports on Progress in Physics |volume=53 |issue=8 |page=1095 |year=1990 |last1=Warren |first1=S. J. |last2=Hewett |first2=P. C.|s2cid=250880776 }}

4C 05.34

| Quasar

| 1970 − 1973

| z = 2.877

| Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.{{cite web |url=http://www.reciprocalsystem.com/ce/q3y.htm |title=Quasars – Three Years Later |access-date=2010-02-17 |archive-date=2017-01-18 |archive-url=https://web.archive.org/web/20170118162311/http://www.reciprocalsystem.com/ce/q3y.htm |url-status=dead }}{{cite book |title=The Structure of the Physical Universe |volume=III: The Universe of Motion |url=http://library.rstheory.com/books/uom/23.html |chapter=Chapter 23 – Quasar Redshifts |archive-url=https://web.archive.org/web/20080619085211/http://library.rstheory.com/books/uom/23.html |archive-date=2008-06-19 |first=Dewey Bernard |last=Larson |isbn=0-913138-11-8 |year=1984|publisher=North Pacific Publishers }}{{cite journal |bibcode=1971ApJ...163..235B |title=Some Inferences from Spectrophotometry of Quasi-Stellar Sources |journal=Astrophysical Journal |volume=163 |page=235 |last1=Bahcall |first1=John N. |last2=Oke |first2=J. B. |year=1971 |doi=10.1086/150762|doi-access=free }}

5C 02.56
(7C 105517.75+495540.95)

| Quasar

| 1968 − 1970

| z = 2.399

|{{cite journal |bibcode=1970Natur.226..532L |doi=10.1038/226532a0 |title=The Unusually Large Redshift of 4C 05.34 |journal=Nature |volume=226 |issue=5245 |page=532 |year=1970 |last1=Lynds |first1=R. |last2=Wills |first2=D. |pmid=16057373|s2cid=28297458 |doi-access=free }}{{cite web |website=SIMBAD |url=http://simbad.harvard.edu/simbad/sim-id?Ident=5C+02.56+&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id |title=7C 105517.75+495540.95 – Quasar}}

4C 25.05
(4C 25.5)

| Quasar

| 1968

| z = 2.358

|{{cite journal |bibcode=1968ApJ...154L..41B |title=The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies |journal=Astrophysical Journal |volume=154 |pages=L41 |last1=Burbidge |first1=Geoffrey |year=1968 |doi=10.1086/180265|doi-access=free }}

PKS 0237–23
(QSO B0237–2321)

| Quasar

| 1967 − 1968

| z = 2.225

|{{cite magazine |magazine=Time |url=http://www.time.com/time/magazine/article/0,9171,843526,00.html |archive-url=https://web.archive.org/web/20081215131450/http://www.time.com/time/magazine/article/0,9171,843526,00.html |archive-date=2008-12-15 |title=A Farther-Out Quasar |date=April 7, 1967}}{{cite web |website=SIMBAD |url=http://simbad.u-strasbg.fr/simbad/sim-id?Ident=%401251167&Name=QSO%20B0237-2321 |title=Object query : QSO B0237-2321}}{{cite journal |bibcode=1967ApJ...147..851B |title=On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects |journal=Astrophysical Journal |volume=147 |page=851 |last1=Burbidge |first1=Geoffrey |year=1967 |doi=10.1086/149072}}

4C 12.39
(Q1116+12, PKS 1116+12)

| Quasar

| 1966 − 1967

| z = 2.1291

|SIMBAD, [http://simbad.harvard.edu/simbad/sim-id?Ident=Q1116%2B12&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id Object query : Q1116+12], 4C 12.39 – Quasar

4C 01.02
(Q0106+01, PKS 0106+1)

| Quasar

| 1965 − 1966

| z = 2.0990

|Time Magazine, [https://web.archive.org/web/20090911161032/http://www.time.com/time/magazine/article/0,9171,899107-1,00.html The Man on the Mountain], Friday, Mar. 11, 1966SIMBAD, [http://simbad.harvard.edu/simbad/sim-id?Ident=Q0106%2B01&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id Object query : Q0106+01], 4C 01.02 – Quasar

3C 9

| Quasar

| 1965

| z = 2.018

|Time Magazine, [https://web.archive.org/web/20080220093047/http://www.time.com/time/magazine/article/0,9171,901720,00.html Toward the Edge of the Universe], Friday, May. 21, 1965Time Magazine, [https://web.archive.org/web/20080423044527/http://www.time.com/time/magazine/article/0,9171,898892,00.html The Quasi-Quasars], Friday, Jun. 18, 1965The Cosmic Century: A History of Astrophysics and Cosmology [https://archive.org/details/cosmiccenturyhis0000long/page/379 p. 379] by Malcolm S. Longair – 2006{{cite journal |bibcode=1965ApJ...141.1295S |title=Large Redshifts of Five Quasi-Stellar Sources |journal=Astrophysical Journal |volume=141 |page=1295 |last1=Schmidt |first1=Maarten |year=1965 |doi=10.1086/148217}}[http://www.astro.caltech.edu/~george/ay21/qso.txt The Discovery of Radio Galaxies and Quasars], 1965

3C 147

| Quasar

| 1964 − 1965

| z = 0.545

|{{cite journal |bibcode=1965qssg.conf..269S |title=Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147 |journal=Quasi-Stellar Sources and Gravitational Collapse |page=269 |last1=Schmidt |first1=Maarten |last2=Matthews |first2=Thomas A. |year=1965}}{{cite journal |bibcode=1992AJ....103.1451S |title=Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM |journal=Astronomical Journal |volume=103 |page=1451 |last1=Schneider |first1=Donald P. |last2=Van Gorkom |first2=J. H. |last3=Schmidt |first3=Maarten |last4=Gunn |first4=James E. |year=1992 |doi=10.1086/116159}}{{cite magazine |magazine=Time Magazine |url=https://content.time.com/time/magazine/article/0,9171,875737,00.html |title=Astronomy: Finding the Fastest Galaxy: 76,000 Miles per Second |date=April 10, 1964 |volume=83 |number=15 }}{{cite journal |bibcode=1964ApJ...139..781S |title=Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147 |journal=Astrophysical Journal |volume=139 |page=781 |last1=Schmidt |first1=Maarten |last2=Matthews |first2=Thomas A. |year=1964 |doi=10.1086/147815}}

3C 295

| Radio galaxy

| 1960 − 1964

| z = 0.461

|{{cite web |url=http://www.astro.caltech.edu/~george/ay21/qso.txt |title=The Discovery of Radio Galaxies and Quasars |access-date=2010-10-22}}{{cite journal |bibcode= 1993ARA&A..31..639M|doi=10.1146/annurev.aa.31.090193.003231 |title=High Redshift Radio Galaxies |journal=Annual Review of Astronomy and Astrophysics |volume=31 |pages=639–688 |year=1993 |last1=McCarthy |first1=Patrick J.}}{{cite journal |bibcode=1961ApJ...133..355S |title=The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models |journal=Astrophysical Journal |volume=133 |page=355 |last1=Sandage |first1=Allan |year=1961 |doi=10.1086/147041}}

LEDA 25177 (MCG+01-23-008)

| Brightest cluster galaxy

| 1951 − 1960

| z = 0.2
(V = 61000 km/s)

| This galaxy lies in the Hydra Supercluster. It is located at B1950.0 {{RA|08|55|4}} {{DEC|+03|21}} and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732).{{cite journal |bibcode=1953MNRAS.113..658H |title=The law of red shifts (George Darwin Lecture) |journal=Monthly Notices of the Royal Astronomical Society |volume=113 |issue=6 |pages=658–666 |last1=Hubble |first1=E. P. |year=1953 |doi=10.1093/mnras/113.6.658|doi-access=free }}{{cite journal |last1=Sandage |first1=Allan | title=Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation | url=http://nedwww.ipac.caltech.edu/level5/Sept01/Sandage/Sand6.html | journal=Annu. Rev. Astron. Astrophys. | volume=1988 | issue=26 | pages=561–630 }}{{cite journal |bibcode=1956AJ.....61...97H |title=Redshifts and magnitudes of extragalactic nebulae |journal=Astronomical Journal |volume=61 |page=97 |last1=Humason |first1=M. L. |last2=Mayall |first2=N. U. |last3=Sandage |first3=A. R. |year=1956 |doi=10.1086/107297}}{{cite journal |bibcode=1953Obs....73...97. |title=1053 May 8 meeting of the Royal Astronomical Society |journal=The Observatory |volume=73 |page=97 |year=1953}}{{cite journal |bibcode=1958ASPL....7..393M |title=From Atoms to Galaxies |journal=Astronomical Society of the Pacific Leaflets |volume=7 |issue=349 |page=393 |last1=Merrill |first1=Paul W. |year=1958}}

LEDA 51975 (MCG+05-34-069)

| Brightest cluster galaxy

| 1936 –

| z = 0.13
(V = 39000 km/s)

| The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0 {{RA|14|30|6}} {{DEC|+31|46}} apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.{{cite journal |last1=Humason |first1=M. L. |title=The Apparent Radial Velocities of 100 Extra-Galactic Nebulae |journal=The Astrophysical Journal |date=January 1936 |volume=83 |page=10 |doi=10.1086/143696 |bibcode=1936ApJ....83...10H|doi-access=free }}"The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; [http://nedwww.ipac.caltech.edu/level5/Sept03/Sandage/Sandage5_2.html 5.2.1. The Mount Wilson Years]; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486

LEDA 20221 (MCG+06-16-021)

| Brightest cluster galaxy

| 1932 –

| z = 0.075
(V = 23000 km/s)

| This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0 {{RA|07|05|0}} {{DEC|+35|04}}{{cite journal |last1=Chant |first1=C. A. |title=Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates) |journal=Journal of the Royal Astronomical Society of Canada |date=1 April 1932 |volume=26 |page=180 |bibcode=1932JRASC..26..180C}}

BCG of WMH Christie's Leo Cluster

| Brightest cluster galaxy

| 1931 − 1932

| z =
(V = 19700 km/s)

|{{cite journal |last1=Humason |first1=Milton L. |title=Apparent Velocity-Shifts in the Spectra of Faint Nebulae |journal=The Astrophysical Journal |date=July 1931 |volume=74 |page=35 |doi=10.1086/143287 |bibcode=1931ApJ....74...35H}}{{cite journal |last1=Hubble |first1=Edwin |last2=Humason |first2=Milton L. |title=The Velocity-Distance Relation among Extra-Galactic Nebulae |journal=The Astrophysical Journal |date=July 1931 |volume=74 |page=43 |doi=10.1086/143323 |bibcode=1931ApJ....74...43H}}{{cite journal |last1=Humason |first1=M. L. |title=The Large Apparent Velocities of Extra-Galactic Nebulae |journal=Leaflet of the Astronomical Society of the Pacific |date=1 January 1931 |volume=1 |issue=37 |page=149 |bibcode=1931ASPL....1..149H}}

BCG of Baede's Ursa Major Cluster

| Brightest cluster galaxy

| 1930 − 1931

| z =
(V = 11700 km/s)

|{{cite journal |bibcode=1930ApJ....71..351H |title=The Rayton short-focus spectrographic objective |journal=Astrophysical Journal |volume=71 |page=351 |last1=Humason |first1=M. L. |year=1930 |doi=10.1086/143255|doi-access=free }}

NGC 4860

| Galaxy

| 1929 − 1930

| z = 0.026
(V = 7800 km/s)

|{{cite journal |bibcode=1929PASP...41..244. |title=The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929 |journal=Publications of the Astronomical Society of the Pacific |volume=41 |issue=242 |page=244 |year=1929 |doi=10.1086/123945|doi-access=free }}

style="background:#c0c0e0;"

| NGC 7619

| Galaxy

| 1929

| z = 0.012
(V = 3779 km/s)

| Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3; [http://antwrp.gsfc.nasa.gov/diamond_jubilee/d_1996/hum_1929.html The Large Radial Velocity of N. G. C. 7619]; January 17, 1929The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621; [http://antwrp.gsfc.nasa.gov/diamond_jubilee/d_1996/sandage_hubble.html EDWIN HUBBLE 1889–1953]

style="background:#e0e0c0;"

| NGC 584
(Dreyer nebula 584)

| Galaxy

| 1921 − 1929

| z = 0.006
(V = 1800 km/s)

| At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.{{cite journal |bibcode=1996PASP..108.1073T |title=H_0: The Incredible Shrinking Constant, 1925–1975 |journal=Publications of the Astronomical Society of the Pacific |volume=108 |page=1073 |last1=Trimble |first1=Virginia |year=1996 |doi=10.1086/133837|s2cid=122165424 |url=https://escholarship.org/content/qt0tg0q2qx/qt0tg0q2qx.pdf?t=nlq2m6 }}{{cite journal |bibcode=1920BHarO.739....1B |title=Comet Skjellerup |journal=Harvard College Observatory Bulletin |volume=739 |page=1 |last1=Bailey |first1=S. I. |year=1920}}New York Times, [https://query.nytimes.com/gst/abstract.html?res=9906E2DA153CE533A2575AC1A9679C946095D6CF DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.]; January 19, 1921, WednesdayNew York Times, [https://query.nytimes.com/gst/abstract.html?res=9F06E1DB153CE533A2575BC1A9679C946095D6CF Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.]; January 18, 1921, Tuesday

style="background:#e0e0c0;"

| M104 (NGC 4594)

| Galaxy

| 1913 − 1921

| z = 0.004
(V = 1180 km/s)

| This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.National Academy of Sciences; [https://books.google.com/books?id=h9xnzIV_zQYC Biographical Memoirs: V. 52] – Vesto Melvin Slipher; {{ISBN|0-309-03099-4}}

style="background:#e0c0c0;"

| Arcturus
(Alpha Bootis)

| Star

| 1891 − 1910

| 160 ly
(18 mas)
(this is very inaccurate, true=37 ly)

| This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.Hawera & Normanby Star, [http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&d=HNS19101229.2.10 "Items of Interest"], 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.Evening Star (San Jose), [https://news.google.com/newspapers?id=VvQxAAAAIBAJ&sjid=T-MFAAAAIBAJ&pg=984,6069796&dq=parallax+star&hl=en "Colossal Arcturus"], Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.Nelson Evening Mail, [http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&d=NEM18911102.2.16 "British Bloodthirstiness"], 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010."Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), [https://archive.org/details/handbookastrono00lardgoog/page/n171 p.121]

Capella
(Alpha Aurigae)

| Star

| 1849–1891

| 72 ly
(46 mas)

|"The Three Heavens", Josiah Crampton, William Hunt and Company (1876), [https://archive.org/details/threeheavens00cramgoog/page/n215 p.164]{{in lang|de}} Kosmos: Entwurf einer physischen Weltbeschreibung, Volume 4, Alexander von Humboldt, J. G. Cotta (1858), [https://books.google.com/books?id=MbYqAQAAIAAJ p.195]"Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', [https://books.google.com/books?id=cvY0AAAAcAAJ&pg=PA552 p.551 (section 851)]

Polaris
(Alpha Ursae Minoris)

| Star

| 1847 – 1849

| 50 ly
(80 mas)
(this is very inaccurate, true=~375 ly)

|The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati

Vega
(Alpha Lyrae)

| Star (part of a double star pair)

| 1839 – 1847

| 7.77 pc
(125 mas)

|The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)

61 Cygni

| Binary star

| 1838 − 1839

| 3.48 pc
(313.6 mas)

| This was the first star other than the Sun to have its distance measured.SEDS, [http://messier.seds.org/xtra/Bios/bessel.html "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)"] {{webarchive|url=https://web.archive.org/web/20120204150631/http://messier.seds.org/xtra/Bios/bessel.html |date=February 4, 2012 }} . Retrieved 11 November 2009.Harper's New Monthly Magazine, [http://digital.library.cornell.edu/cgi/t/text/pageviewer-idx?c=harp;cc=harp;idno=harp0049-6;node=harp0049-6%3A1;size=l;frm=frameset;seq=837;view=image;page=root "Some Talks of an Astronomer"], Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)

style="background:#e0e0c0;"

| Uranus

| Planet of the Solar System

| 1781 − 1838

| 18 AU

| This was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.

style="background:#c0c0e0;"

| Saturn

| Planet of the Solar System

| 1619 − 1781

| 10 AU

| From Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.

style="background:#e0c0e0;"

| Mars

| Planet of the Solar System

| 1609 − 1619

| 2.6 AU when Mars is diametrically opposed to Earth

| Kepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.

style="background:#e0c0e0;"

| Sun

| Star

| 3rd century BC — 1609

| 380 Earth radii (very inaccurate, true=16000 Earth radii)

| Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.

style="background:#e0c0e0;"

| Moon

| Moon of a planet

| 3rd century BC

| 20 Earth radii (very inaccurate, true=64 Earth radii)

| Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.

colspan=5|

{{smalldiv|1=

  • z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion
  • mas represents parallax, a measure of angle and distance can be determined through trigonometry

}}

List of objects by year of discovery that turned out to be most distant

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

class="wikitable sticky-header"

|+ Examples

Year of recordModern
light travel distance (Mly)
ObjectTypeDetected usingFirst record by (1)
9642.5{{Cite journal |last1=Jensen |first1=Joseph B. |last2=Tonry |first2=John L. |last3=Barris |first3=Brian J. |last4=Thompson |first4=Rodger I. |last5=Liu |first5=Michael C. |last6=Rieke |first6=Marcia J. |last7=Ajhar |first7=Edward A. |last8=Blakeslee |first8=John P. | title=Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations | journal=Astrophysical Journal |date=February 2003 | volume=583 | issue=2 | pages=712–726 | bibcode=2003ApJ...583..712J | doi=10.1086/345430 |arxiv=astro-ph/0210129 |s2cid=551714 }}Andromeda GalaxySpiral galaxynaked eyefurthest object visible with the naked eye, but first recorded by Abd al-Rahman al-Sufi{{Cite book |last1=Kepple |first1=George Robert |first2=Glen W. |last2=Sanner |title=The Night Sky Observer's Guide |volume=1 |publisher=Willmann-Bell |date=1998 |isbn=978-0-943396-58-3 |page=18}}
16543Triangulum GalaxySpiral galaxyrefracting telescopeGiovanni Battista Hodierna{{Cite journal |last1=Fodera-Serio |first1=G. |last2=Indorato |first2=L. |last3=Nastasi |first3=P. | title=Hodierna's Observations of Nebulae and his Cosmology | journal=Journal for the History of Astronomy | volume=16 | issue=1 |date=February 1985 | pages=1–36 | bibcode=1985JHA....16....1F |doi=10.1177/002182868501600101 | doi-access=free }}
177968{{Cite journal | first1=G. |last1=Gavazzi | first2=A. |last2=Boselli | first3=M. |last3=Scodeggio | first4=D. |last4=Pierini | first5=E. |last5=Belsole | name-list-style=amp | title=The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully-Fisher distance determinations | journal=Monthly Notices of the Royal Astronomical Society | date=1999 | volume=304 | issue=3 | pages=595–610 | bibcode=1999MNRAS.304..595G | doi=10.1046/j.1365-8711.1999.02350.x | doi-access=free |arxiv=astro-ph/9812275 | s2cid=41700753 }}Messier 58Barred spiral galaxyrefracting telescopeCharles Messier{{Cite book | last=Burnham | first=Robert Jr | author-link=Robert Burnham Jr | title=Burnham's Celestial Handbook |volume=3: Pavo Through Vulpecula | publisher=Dover | date=1978 | pages=[https://archive.org/details/burnhamscelestia03burn/page/2086 2086–2088] | isbn=978-0-486-23673-5 | url=https://archive.org/details/burnhamscelestia03burn/page/2086 }}
178576.4{{cite web |url=http://www.astro.yale.edu/obey/cgi-bin/catalog.cgi?n584 |title=The OBEY Survey – NGC 584 }}NGC 584GalaxyWilliam Herschel
1880s206 ± 29{{cite web |title=Distance Results for NGC 0001 |work=NASA/IPAC Extragalactic Database |url=http://nedwww.ipac.caltech.edu/cgi-bin/nDistance?name=NGC+0001 |access-date=2010-05-03}}NGC 1Spiral galaxyDreyer, Herschel
19592,400{{cite journal |bibcode=1972Ap&SS..15..395F |title=On the Mass and Distance of the Quasi-Stellar Object 3C 273 |journal=Astrophysics and Space Science |volume=15 |issue=3 |page=395 |last1=Falla |first1=D. F. |last2=Evans |first2=A. |year=1972 |doi=10.1007/BF00649767|s2cid=124870214 }}3C 273QuasarParkes Radio TelescopeMaarten Schmidt, Bev Oke[http://www.aavso.org/vstar/vsots/spring05.shtml Variable Star Of The Season] {{webarchive |url=https://web.archive.org/web/20090123191313/http://www.aavso.org/vstar/vsots/spring05.shtml |date=January 23, 2009 }}
19605,000{{cite journal |bibcode=1960ApJ...132..908M |title=A New Distant Cluster of Galaxies |journal=Astrophysical Journal |volume=132 |page=908 |last1=Minkowski |first1=R. |year=1960 |doi=10.1086/146994}}3C 295Radio galaxyPalomar ObservatoryRudolph Minkowski
colspan="6" | {{center|Data missing from table}}
200913,000{{cite news |url=http://www.cnn.com/2009/TECH/04/29/gamma.ray.burst.space/index.html |title=Exploding star is oldest object seen in universe |work=CNN |date=2009-04-29 |access-date=2010-10-22}}GRB 090423Gamma-ray burst progenitorSwift Gamma-Ray Burst MissionKrimm, H. et al.{{Cite journal | journal=GCN Circulars | volume=9198 | url=http://gcn.gsfc.nasa.gov/gcn3/9198.gcn3 |page=1 | last=Krimm |first=H. | display-authors=etal | title=GRB 090423: Swift detection of a burst | date=2009| bibcode=2009GCN..9198....1K }}

See also

References

{{Reflist}}

{{Galaxy}}

{{Star}}

{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}

{{DEFAULTSORT:Astronomical objects, List of most distant}}

Most distant

Astronomical objects, most distant