10-simplex
{{Short description|Convex regular 10-polytope}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Regular hendecaxennon | |
bgcolor=#ffffff align=center colspan=2|280px Orthogonal projection inside Petrie polygon | |
bgcolor=#e7dcc3|Type | Regular 10-polytope |
bgcolor=#e7dcc3|Family | simplex |
bgcolor=#e7dcc3|Schläfli symbol | {3,3,3,3,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | |{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|9-faces | 11 9-simplex25px |
bgcolor=#e7dcc3|8-faces | 55 8-simplex25px |
9
|bgcolor=#e7dcc3|7-faces | 165 7-simplex25px |
bgcolor=#e7dcc3|6-faces | 330 6-simplex25px |
bgcolor=#e7dcc3|5-faces | 462 5-simplex25px |
bgcolor=#e7dcc3|4-faces | 462 5-cell25px |
bgcolor=#e7dcc3|Cells | 330 tetrahedron25px |
bgcolor=#e7dcc3|Faces | 165 triangle25px |
bgcolor=#e7dcc3|Edges | 55 |
bgcolor=#e7dcc3|Vertices | 11 |
bgcolor=#e7dcc3|Vertex figure | 9-simplex |
bgcolor=#e7dcc3|Petrie polygon | hendecagon |
bgcolor=#e7dcc3|Coxeter group | A10 [3,3,3,3,3,3,3,3,3] |
bgcolor=#e7dcc3|Dual | Self-dual polytope|Self-dual |
bgcolor=#e7dcc3|Properties | convex |
In geometry, a 10-simplex is a self-dual regular 10-polytope. It has 11 vertices, 55 edges, 165 triangle faces, 330 tetrahedral cells, 462 5-cell 4-faces, 462 5-simplex 5-faces, 330 6-simplex 6-faces, 165 7-simplex 7-faces, 55 8-simplex 8-faces, and 11 9-simplex 9-faces. Its dihedral angle is cos−1(1/10), or approximately 84.26°.
It can also be called a hendecaxennon, or hendeca-10-tope, as an 11-facetted polytope in 10-dimensions. Acronym: ux{{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/ux.htm (x3o3o3o3o3o3o3o3o3o – ux)]}}
The name hendecaxennon is derived from hendeca for 11 facets in Greek and -xenn (variation of ennea for nine), having 9-dimensional facets, and -on.
Coordinates
The Cartesian coordinates of the vertices of an origin-centered regular 10-simplex having edge length 2 are:
:
:
:
:
:
:
:
:
:
:
More simply, the vertices of the 10-simplex can be positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,0,1). This construction is based on facets of the 11-orthoplex.
Images
{{A10 Coxeter plane graphs|t0|100}}
Related polytopes
The 2-skeleton of the 10-simplex is topologically related to the 11-cell abstract regular polychoron which has the same 11 vertices, 55 edges, but only 1/3 the faces (55).
References
{{reflist}}
- Coxeter, H.S.M.:
- {{cite book |title-link=Regular Polytopes (book) |author-mask=1 |first=H.S.M. |last=Coxeter |chapter=Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) |title=Regular Polytopes |publisher=Dover |edition=3rd |year=1973 |isbn=0-486-61480-8 |pages=[https://archive.org/details/regularpolytopes00coxe_869/page/n319 296] }}
- {{cite book |editor-first=F. Arthur |editor-last=Sherk |editor2-first=Peter |editor2-last=McMullen |editor3-first=Anthony C. |editor3-last=Thompson |editor4-first=Asia Ivic |editor4-last=Weiss |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |publisher=Wiley |year=1995 |isbn=978-0-471-01003-6 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PP1}}
- (Paper 22) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi Regular Polytopes I |journal=Math. Zeit. |volume=46 |pages=380–407 |year=1940 |doi=10.1007/BF01181449 |s2cid=186237114 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA251 |url-access=subscription }}
- (Paper 23) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes II |journal=Math. Zeit. |volume=188 |pages=559–591 |year=1985 |issue=4 |doi=10.1007/BF01161657 |s2cid=120429557 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA279|url-access=subscription }}
- (Paper 24) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes III |journal=Math. Zeit. |volume=200 |pages=3–45 |year=1988 |doi=10.1007/BF01161745 |s2cid=186237142 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA313|url-access=subscription }}
- {{cite book |author-link=John Horton Conway |first1=John H. |last1=Conway |first2=Heidi |last2=Burgiel |first3=Chaim |last3=Goodman-Strauss |chapter=26. Hemicubes: 1n1 |title=The Symmetries of Things |year=2008 |isbn=978-1-56881-220-5 |pages=409 }}
- {{cite thesis |author-link=Norman Johnson (mathematician) |first=Norman |last=Johnson |title=Uniform Polytopes |date=1991 |type=Manuscript }}
- {{cite thesis |first=N.W. |last=Johnson |title=The Theory of Uniform Polytopes and Honeycombs |date=1966 |type=PhD |publisher=University of Toronto |url=https://search.library.utoronto.ca/details?402790 |oclc=258527038}}
- {{KlitzingPolytopes|polyxenna.htm|10D uniform polytopes (polyxenna)}} x3o3o3o3o3o3o3o3o3o – ux {{sfn whitelist|CITEREFKlitzing}}
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}