2 21 polytope#Truncated 221 polytope

{{DISPLAYTITLE:2 21 polytope}}

class=wikitable width=320 align=right style="margin-left:1em"
align=center valign=top

|140px
221
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|140px
Rectified 221
{{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}

|140px
Truncated 221
{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}

align=center valign=top

|140px
(122)
{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}

|140px
Birectified 221
(Rectified 122)
{{CDD|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}

valign=top

!colspan=3|Orthogonal projections in E6 Coxeter plane

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure.Gosset, 1900 It is also called the Schläfli polytope.

Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied{{cite journal | last=Coxeter | first=H.S.M. | author-link=Harold Scott MacDonald Coxeter | year=1940 | title=The Polytope 221 Whose Twenty-Seven Vertices Correspond to the Lines on the General Cubic Surface | journal=Amer. J. Math. | volume=62 | issue=1 | pages=457–486 | jstor=2371466 | doi=10.2307/2371466}} its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221.

The rectified 221 is constructed by points at the mid-edges of the 221. The birectified 221 is constructed by points at the triangle face centers of the 221, and is the same as the rectified 122.

These polytopes are a part of family of 39 convex uniform polytopes in 6-dimensions, made of uniform 5-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}.

{{-}}

2<sub>21</sub> polytope

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|221 polytope

bgcolor=#e7dcc3|TypeUniform 6-polytope
bgcolor=#e7dcc3|Familyk21 polytope
bgcolor=#e7dcc3|Schläfli symbol{3,3,32,1}
bgcolor=#e7dcc3|Coxeter symbol221
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}} or {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}}
bgcolor=#e7dcc3|5-faces99 total:
27 211 40px
72 {34} 40px
bgcolor=#e7dcc3|4-faces648:
432 {33} 40px
216 {33} 40px
bgcolor=#e7dcc3|Cells1080 {3,3} 40px
bgcolor=#e7dcc3|Faces720 {3}40px
bgcolor=#e7dcc3|Edges216
bgcolor=#e7dcc3|Vertices27
bgcolor=#e7dcc3|Vertex figure121 (5-demicube)
bgcolor=#e7dcc3|Petrie polygonDodecagon
bgcolor=#e7dcc3|Coxeter groupE6, [32,2,1], order 51840
bgcolor=#e7dcc3|Propertiesconvex

The 221 has 27 vertices, and 99 facets: 27 5-orthoplexes and 72 5-simplices. Its vertex figure is a 5-demicube.

For visualization this 6-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 27 vertices within a 12-gonal regular polygon (called a Petrie polygon). Its 216 edges are drawn between 2 rings of 12 vertices, and 3 vertices projected into the center. Higher elements (faces, cells, etc.) can also be extracted and drawn on this projection.

The Schläfli graph is the 1-skeleton of this polytope.

= Alternate names =

  • E. L. Elte named it V27 (for its 27 vertices) in his 1912 listing of semiregular polytopes.Elte, 1912
  • Icosihepta-heptacontadi-peton - 27-72 facetted polypeton (Acronym: jak) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/jak.htm (x3o3o3o3o *c3o - jak)]}}

= Coordinates =

The 27 vertices can be expressed in 8-space as an edge-figure of the 421 polytope:

(-2, 0, 0, 0,-2, 0, 0, 0),

( 0,-2, 0, 0,-2, 0, 0, 0),

( 0, 0,-2, 0,-2, 0, 0, 0),

( 0, 0, 0,-2,-2, 0, 0, 0),

( 0, 0, 0, 0,-2, 0, 0,-2),

( 0, 0, 0, 0, 0,-2,-2, 0)

( 2, 0, 0, 0,-2, 0, 0, 0),

( 0, 2, 0, 0,-2, 0, 0, 0),

( 0, 0, 2, 0,-2, 0, 0, 0),

( 0, 0, 0, 2,-2, 0, 0, 0),

( 0, 0, 0, 0,-2, 0, 0, 2)

(-1,-1,-1,-1,-1,-1,-1,-1),

(-1,-1,-1, 1,-1,-1,-1, 1),

(-1,-1, 1,-1,-1,-1,-1, 1),

(-1,-1, 1, 1,-1,-1,-1,-1),

(-1, 1,-1,-1,-1,-1,-1, 1),

(-1, 1,-1, 1,-1,-1,-1,-1),

(-1, 1, 1,-1,-1,-1,-1,-1),

( 1,-1,-1,-1,-1,-1,-1, 1),

( 1,-1, 1,-1,-1,-1,-1,-1),

( 1,-1,-1, 1,-1,-1,-1,-1),

( 1, 1,-1,-1,-1,-1,-1,-1),

(-1, 1, 1, 1,-1,-1,-1, 1),

( 1,-1, 1, 1,-1,-1,-1, 1),

( 1, 1,-1, 1,-1,-1,-1, 1),

( 1, 1, 1,-1,-1,-1,-1, 1),

( 1, 1, 1, 1,-1,-1,-1,-1)

= Construction =

Its construction is based on the E6 group.

The facet information can be extracted from its Coxeter-Dynkin diagram, {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}.

Removing the node on the short branch leaves the 5-simplex, {{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}.

Removing the node on the end of the 2-length branch leaves the 5-orthoplex in its alternated form: (211), {{CDD|nodea|3a|branch|3a|nodea|3a|nodea_1}}.

Every simplex facet touches a 5-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-demicube (121 polytope), {{CDD|nodea|3a|nodea|3a|branch|3a|nodea_1}}. The edge-figure is the vertex figure of the vertex figure, a rectified 5-cell, (021 polytope), {{CDD|nodea|3a|nodea|3a|branch_10}}.

Seen in a configuration matrix, the element counts can be derived from the Coxeter group orders.Coxeter, Regular Polytopes, 11.8 Gosset figures in six, seven, and eight dimensions, pp. 202–203

class=wikitable

!E6

{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}k-facefkf0f1f2f3colspan=2|f4colspan=2|f5k-figurenotes
align=right

|D5

{{CDD|nodea_x|2|nodea|3a|branch|3a|nodea|3a|nodea}}( )

!f0

|BGCOLOR="#ffe0ff"|27

168016080401610h{4,3,3,3}E6/D5 = 51840/1920 = 27
align=right

|A4A1

{{CDD|nodea_1|2|nodea_x|2|branch|3a|nodea|3a|nodea}}{ }

!f1

2BGCOLOR="#ffe0e0" |2161030201055r{3,3,3}E6/A4A1 = 51840/120/2 = 216
align=right

|A2A2A1

{{CDD|nodea_1|3a|nodea|2|nodes_x0|2|nodea|3a|nodea}}{3}

!f2

33BGCOLOR="#ffffe0" |72066323{3}x{ }E6/A2A2A1 = 51840/6/6/2 = 720
align=right

|A3A1

{{CDD|nodea_1|3a|nodea|3a|nodes_0x|2|nodea_x|2|nodea}}{3,3}

!f3

464BGCOLOR="#e0ffe0" |10802112{ }v( )E6/A3A1 = 51840/24/2 = 1080
align=right

|A4

{{CDD|nodea_1|3a|nodea|3a|nodes_0x|3a|nodea|2|nodea_x}}rowspan=2|{3,3,3}

!rowspan=2|f4

510105BGCOLOR="#e0ffff" |432BGCOLOR="#e0ffff" |*11rowspan=2|{ }E6/A4 = 51840/120 = 432
align=right

|A4A1

{{CDD|nodea_1|3a|nodea|3a|branch|2|nodea_x|2|nodea}}510105BGCOLOR="#e0ffff" |*BGCOLOR="#e0ffff" |21602E6/A4A1 = 51840/120/2 = 216
align=right

|A5

{{CDD|nodea_1|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea}}{3,3,3,3}

!rowspan=2|f5

615201560BGCOLOR="#e0e0ff" |72BGCOLOR="#e0e0ff"|*rowspan=2|( )E6/A5 = 51840/720 = 72
align=right

|D5

{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|2|nodea_x}}{3,3,3,4}104080801616BGCOLOR="#e0e0ff"|*BGCOLOR="#e0e0ff"|27E6/D5 = 51840/1920 = 27

= Images =

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow. The number of vertices by color are given in parentheses.

class=wikitable width=480

|+ Coxeter plane orthographic projections

E6
[12]

!D5
[8]

!D4 / A2
[6]

!B6
[12/2]

valign=top align=center

|120px
(1,3)

|120px
(1,3)

|120px
(3,9)

|120px
(1,3)

A5
[6]

!A4
[5]

!A3 / D3
[4]

valign=top align=center

|120px
(1,3)

|120px
(1,2)

|120px
(1,4,7)

= Geometric folding =

The 221 is related to the 24-cell by a geometric folding of the E6/F4 Coxeter-Dynkin diagrams. This can be seen in the Coxeter plane projections. The 24 vertices of the 24-cell are projected in the same two rings as seen in the 221.

class=wikitable
align=center valign=top

|E6
{{Dynkin|node|3|loop1|nodes|3s|nodes}}

|F4
{{Dynkin2|node|3|node|4b|node|3|node}}

align=center valign=top

|160px
221
{{CDD|node|3|node|split1|nodes|3ab|nodes_10l}}

|160px
24-cell
{{CDD|node|3|node|4|node|3|node_1}}

This polytope can tessellate Euclidean 6-space, forming the 222 honeycomb with this Coxeter-Dynkin diagram: {{CDD|node_1|3|node|3|node|split1|nodes|3ab|nodes}}.

= Related complex polyhedra =

The regular complex polygon 3{3}3{3}3, {{CDD|3node_1|3|3node|3|3node}}, in \mathbb{C}^2 has a real representation as the 221 polytope, {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}}, in 4-dimensional space. It is called a Hessian polyhedron after Edmund Hess. It has 27 vertices, 72 3-edges, and 27 3{3}3 faces. Its complex reflection group is 3[3]3[3]3, order 648.

= Related polytopes =

The 221 is fourth in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes.

{{k 21 polytopes}}

The 221 polytope is fourth in dimensional series 2k2.

{{2 k1 polytopes}}

The 221 polytope is second in dimensional series 22k.

{{2 2k polytopes}}

Rectified 2<sub>21</sub> polytope

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Rectified 221 polytope

bgcolor=#e7dcc3|TypeUniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt1{3,3,32,1}
bgcolor=#e7dcc3|Coxeter symbolt1(221)
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}} or {{CDD|nodes|3ab|nodes_10lru|split2|node|3|node}}
bgcolor=#e7dcc3|5-faces126 total:

72 t1{34} 40px

27 t1{33,4} 40px

27 t1{3,32,1} 40px

bgcolor=#e7dcc3|4-faces1350
bgcolor=#e7dcc3|Cells4320
bgcolor=#e7dcc3|Faces5040
bgcolor=#e7dcc3|Edges2160
bgcolor=#e7dcc3|Vertices216
bgcolor=#e7dcc3|Vertex figurerectified 5-cell prism
bgcolor=#e7dcc3|Coxeter groupE6, [32,2,1], order 51840
bgcolor=#e7dcc3|Propertiesconvex

The rectified 221 has 216 vertices, and 126 facets: 72 rectified 5-simplices, and 27 rectified 5-orthoplexes and 27 5-demicubes . Its vertex figure is a rectified 5-cell prism.

= Alternate names =

  • Rectified icosihepta-heptacontadi-peton as a rectified 27-72 facetted polypeton (Acronym: rojak) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/rojak.htm (o3x3o3o3o *c3o - rojak)]}}

= Construction =

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}.

Removing the ring on the short branch leaves the rectified 5-simplex, {{CDD|nodea|3a|nodea|3a|nodea|3a|nodea_1|3a|nodea}}.

Removing the ring on the end of the other 2-length branch leaves the rectified 5-orthoplex in its alternated form: t1(211), {{CDD|nodea|3a|branch|3a|nodea_1|3a|nodea}}.

Removing the ring on the end of the same 2-length branch leaves the 5-demicube: (121), {{CDD|nodea|3a|nodea|3a|branch|3a|nodea_1}}.

The vertex figure is determined by removing the ringed ring and ringing the neighboring ring. This makes rectified 5-cell prism, t1{3,3,3}x{}, {{CDD|nodea|3a|nodea|3a|branch_10|2|nodea_1}}.

= Images =

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

class=wikitable width=600

|+ Coxeter plane orthographic projections

E6
[12]

!D5
[8]

!D4 / A2
[6]

!B6
[12/2]

valign=top align=center

|150px

|150px

|150px

|150px

A5
[6]

!A4
[5]

!A3 / D3
[4]

valign=top align=center

|150px

|150px

|150px

Truncated 2<sub>21</sub> polytope

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Truncated 221 polytope

bgcolor=#e7dcc3|TypeUniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt{3,3,32,1}
bgcolor=#e7dcc3|Coxeter symbolt(221)
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}} or {{CDD|nodes_10r|3ab|nodes_10lru|split2|node|3|node}}
bgcolor=#e7dcc3|5-faces72+27+27
bgcolor=#e7dcc3|4-faces432+216+432+270
bgcolor=#e7dcc3|Cells1080+2160+1080
bgcolor=#e7dcc3|Faces720+4320
bgcolor=#e7dcc3|Edges216+2160
bgcolor=#e7dcc3|Vertices432
bgcolor=#e7dcc3|Vertex figure( ) v r{3,3,3}
bgcolor=#e7dcc3|Coxeter groupE6, [32,2,1], order 51840
bgcolor=#e7dcc3|Propertiesconvex

The truncated 221 has 432 vertices, 2376 edges, 5040 faces, 4320 cells, 1350 4-faces, and 126 5-faces. Its vertex figure is a rectified 5-cell pyramid.

= Alternate names =

  • Truncated icosihepta-heptacontadi-peton as a truncated 27-72 facetted polypeton (Acronym: tojak){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/tojak.htm (x3x3o3o3o *c3o - tojak)]}}

= Images =

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow, green, cyan, blue, purple.

class=wikitable width=600

|+ Coxeter plane orthographic projections

E6
[12]

!D5
[8]

!D4 / A2
[6]

!B6
[12/2]

valign=top align=center

|150px

|150px

|150px

|150px

A5
[6]

!A4
[5]

!A3 / D3
[4]

valign=top align=center

|150px

|150px

|150px

See also

Notes

{{reflist}}

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • {{citation | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912}}
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 17) Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248] See figure 1: (p. 232) (Node-edge graph of polytope)
  • {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3o3o3o *c3o - jak, o3x3o3o3o *c3o - rojak, x3x3o3o3o *c3o - tojak {{sfn whitelist| CITEREFKlitzing}}

{{Polytopes}}

Category:6-polytopes