2 41 polytope

{{DISPLAYTITLE:2 41 polytope}}

class=wikitable width=450 align=right style="margin-left:1em;"
align=center valign=top

|150px
421
{{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|150px
142
{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}

|150px
241
{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}

align=center valign=top

|150px
Rectified 421
{{CDD|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|150px
Rectified 142
{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}

|150px
Rectified 241
{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}

align=center valign=top

|150px
Birectified 421
{{CDD|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|150px
Trirectified 421
{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}

valign=top

!colspan=3|Orthogonal projections in E6 Coxeter plane

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences.

The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142.

These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

2<sub>41</sub> polytope

{{clear}}

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|241 polytope

bgcolor=#e7dcc3|TypeUniform 8-polytope
bgcolor=#e7dcc3|Family2k1 polytope
bgcolor=#e7dcc3|Schläfli symbol{3,3,34,1}
bgcolor=#e7dcc3|Coxeter symbol241
bgcolor=#e7dcc3|Coxeter diagram{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
bgcolor=#e7dcc3|7-faces17520:
240 23125px
17280 {36}25px
bgcolor=#e7dcc3|6-faces144960:
6720 22125px
138240 {35}25px
bgcolor=#e7dcc3|5-faces544320:
60480 21125px
483840 {34}25px
bgcolor=#e7dcc3|4-faces1209600:
241920 20125px
967680 {33}25px
bgcolor=#e7dcc3|Cells1209600 {32}25px
bgcolor=#e7dcc3|Faces483840 {3}25px
bgcolor=#e7dcc3|Edges69120
bgcolor=#e7dcc3|Vertices2160
bgcolor=#e7dcc3|Vertex figure141
bgcolor=#e7dcc3|Petrie polygon30-gon
bgcolor=#e7dcc3|Coxeter groupE8, [34,2,1]
bgcolor=#e7dcc3|Propertiesconvex

The 241 is composed of 17,520 facets (240 231 polytopes and 17,280 7-simplices), 144,960 6-faces (6,720 221 polytopes and 138,240 6-simplices), 544,320 5-faces (60,480 211 and 483,840 5-simplices), 1,209,600 4-faces (4-simplices), 1,209,600 cells (tetrahedra), 483,840 faces (triangles), 69,120 edges, and 2160 vertices. Its vertex figure is a 7-demicube.

This polytope is a facet in the uniform tessellation, 251 with Coxeter-Dynkin diagram:

:{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

= Alternate names =

  • E. L. Elte named it V2160 (for its 2160 vertices) in his 1912 listing of semiregular polytopes.Elte, 1912
  • It is named 241 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Diacositetracont-myriaheptachiliadiacosioctaconta-zetton (Acronym Bay) - 240-17280 facetted polyzetton (Jonathan Bowers)Klitzing, (x3o3o3o *c3o3o3o3o - bay)

= Coordinates =

The 2160 vertices can be defined as follows:

: 16 permutations of (±4,0,0,0,0,0,0,0) of (8-orthoplex)

: 1120 permutations of (±2,±2,±2,±2,0,0,0,0) of (trirectified 8-orthoplex)

: 1024 permutations of (±3,±1,±1,±1,±1,±1,±1,±1) with an odd number of minus-signs

= Construction =

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the short branch leaves the 7-simplex: {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}. There are 17280 of these facets

Removing the node on the end of the 4-length branch leaves the 231, {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}. There are 240 of these facets. They are centered at the positions of the 240 vertices in the 421 polytope.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 7-demicube, 141, {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203

class="wikitable collapsible collapsed" style="text-align: center;"

!colspan="2"|

! Configuration matrix

valign=top

!E8

{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}k-facefkf0f1f2f3colspan=2|f4colspan=2|f5colspan=2|f6colspan=2|f7k-figurenotes
align=right

|D7

{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|2|nodea_x}}( )

!f0

|BGCOLOR="#e0e0ff" |2160

64672224056022402801344844481464h{4,3,3,3,3,3}E8/D7 = 192*10!/64/7! = 2160
align=right

|A6A1

{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|2|nodea_x|2|nodea_1}}{ }

!f1

2BGCOLOR="#ffe0ff"|69120211053514035105214277r{3,3,3,3,3}E8/A6A1 = 192*10!/7!/2 = 69120
align=right

|A4A2A1

{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|2|nodes_x0|2|nodea|3a|nodea_1}}{3}

!f2

33BGCOLOR="#ffe0e0"|483840105201020101052{}x{3,3,3}E8/A4A2A1 = 192*10!/5!/3!/2 = 483840
align=right

|A3A3

{{CDD|nodea|3a|nodea|3a|nodea|2|nodea_x|2|nodes_0x|3a|nodea|3a|nodea_1}}{3,3}

!f3

464BGCOLOR="#ffffe0"|120960014466441{3,3}V( )E8/A3A3 = 192*10!/4!/4! = 1209600
align=right

|A4A3

{{CDD|nodea|3a|nodea|3a|nodea|2|nodea_x|2|branch|3a|nodea|3a|nodea_1}}rowspan=2|{3,3,3}

!rowspan=2|f4

510105BGCOLOR="#e0ffe0"|241920BGCOLOR="#e0ffe0"|*406040{3,3}E8/A4A3 = 192*10!/5!/4! = 241920
align=right

|A4A2

{{CDD|nodea|3a|nodea|2|nodea_x|2|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}}510105BGCOLOR="#e0ffe0"|*BGCOLOR="#e0ffe0"|967680133331{3}V( )E8/A4A2 = 192*10!/5!/3! = 967680
align=right

|D5A2

{{CDD|nodea|3a|nodea|2|nodea_x|2|nodea|3a|branch|3a|nodea|3a|nodea_1}}{3,3,31,1}

!rowspan=2|f5

104080801616BGCOLOR="#e0ffff"|60480BGCOLOR="#e0ffff"|*3030{3}E8/D5A2 = 192*10!/16/5!/2 = 40480
align=right

|A5A1

{{CDD|nodea|2|nodea_x|2|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}}{3,3,3,3}615201506BGCOLOR="#e0ffff"|*BGCOLOR="#e0ffff"|4838401221{ }V( )E8/A5A1 = 192*10!/6!/2 = 483840
align=right

|E6A1

{{CDD|nodea|2|nodea_x|2|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}{3,3,32,1}

!rowspan=2|f6

2721672010802164322772BGCOLOR="#e0e0ff"|6720BGCOLOR="#e0e0ff"|*20rowspan=2|{ }E8/E6A1 = 192*10!/72/6! = 6720
align=right

|A6

{{CDD|nodea_x|2|nodea|3a|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}}{3,3,3,3,3}721353502107BGCOLOR="#e0e0ff"|*BGCOLOR="#e0e0ff"|13824011E8/A6 = 192*10!/7! = 138240
align=right

|E7

{{CDD|nodea_x|2|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}{3,3,33,1}

!rowspan=2|f7

12620161008020160403212096756403256576BGCOLOR="#ffe0ff"|240BGCOLOR="#ffe0ff"|*rowspan=2|( )E8/E7 = 192*10!/72!/8! = 240
align=right

|A7

{{CDD|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodes_0x|3a|nodea|3a|nodea_1}}{3,3,3,3,3,3}828567005602808BGCOLOR="#ffe0ff"|*BGCOLOR="#ffe0ff"|17280E8/A7 = 192*10!/8! = 17280

= Visualizations =

[[File:E8 241 Petrie Projection.png|right|thumb|290px|

The projection of 241 to the E8 Coxeter plane (aka. the Petrie projection) with polytope radius 2\sqrt{2} and 69120 edges of length 2\sqrt{2}]]

[[File:E8_241-3D.png|right|thumb|290px|Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:

{{ubl

| u {{=}} (1, φ, 0, −1, φ, 0,0,0)

| v {{=}} (φ, 0, 1, φ, 0, −1,0,0)

| w {{=}} (0, 1, φ, 0, −1, φ,0,0)

}}

The 2160 projected 241 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms.

The overlapping vertices are color coded by overlap count. Also shown is a list of each hull group, the normed distance from the origin, and the number of vertices in the group.

]]

[[File:E8_241-3D_Concentric_Hulls_List.png|right|thumb|290px|The 2160 projected 241 polytope projected to 3D (as above) with each normed hull group listed individually with vertex counts. Notice the last two outer hulls are a combination of two overlapped Icosahedrons (24) and a Icosidodecahedron (30).

]]

class=wikitable width=600

!E8
[30]

![20]

![24]

align=center

|200px
(1)

|200px

|200px

align=center

!E7
[18]

!E6
[12]

![6]

align=center

|200px

|200px
(1,8,24,32)

|200px

Petrie polygon projections are 12, 18, or 30-sided based on the E6, E7, and E8 symmetries (respectively). The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

class=wikitable width=600
align=center

!D3 / B2 / A3
[4]

!D4 / B3 / A2
[6]

!D5 / B4
[8]

align=center

|200px

|200px

|200px

align=center

!D6 / B5 / A4
[10]

!D7 / B6
[12]

!D8 / B7 / A6
[14]

align=center

|200px

|200px
(1,3,9,12,18,21,36)

|200px

align=center

!B8
[16/2]

!A5
[6]

!A7
[8]

align=center

|200px

|200px

|200px

= Related polytopes and honeycombs =

{{2 k1 polytopes}}

Rectified 2_41 polytope

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Rectified 241 polytope

bgcolor=#e7dcc3|TypeUniform 8-polytope
bgcolor=#e7dcc3|Schläfli symbolt1{3,3,34,1}
bgcolor=#e7dcc3|Coxeter symbolt1(241)
bgcolor=#e7dcc3|Coxeter diagram{{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
bgcolor=#e7dcc3|7-faces19680 total:

240 t1(221)

17280 t1{36}

2160 141

bgcolor=#e7dcc3|6-faces313440
bgcolor=#e7dcc3|5-faces1693440
bgcolor=#e7dcc3|4-faces4717440
bgcolor=#e7dcc3|Cells7257600
bgcolor=#e7dcc3|Faces5322240
bgcolor=#e7dcc3|Edges19680
bgcolor=#e7dcc3|Vertices69120
bgcolor=#e7dcc3|Vertex figurerectified 6-simplex prism
bgcolor=#e7dcc3|Petrie polygon30-gon
bgcolor=#e7dcc3|Coxeter groupE8, [34,2,1]
bgcolor=#e7dcc3|Propertiesconvex

The rectified 241 is a rectification of the 241 polytope, with vertices positioned at the mid-edges of the 241.

= Alternate names =

  • Rectified Diacositetracont-myriaheptachiliadiacosioctaconta-zetton for rectified 240-17280 facetted polyzetton (known as robay for short)Jonathan BowersKlitzing, (o3x3o3o *c3o3o3o3o - robay)

= Construction =

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space, defined by root vectors of the E8 Coxeter group.

The facet information can be extracted from its Coxeter-Dynkin diagram: {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the short branch leaves the rectified 7-simplex: {{CDD|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the end of the 4-length branch leaves the rectified 231, {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}.

Removing the node on the end of the 2-length branch leaves the 7-demicube, 141{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the rectified 6-simplex prism, {{CDD|nodea_1|2|branch_10|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.

= Visualizations =

Petrie polygon projections are 12, 18, or 30-sided based on the E6, E7, and E8 symmetries (respectively). The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

class=wikitable width=600

!E8
[30]

![20]

![24]

align=center

|200px
(1)

|200px

|200px

align=center

!E7
[18]

!E6
[12]

![6]

align=center

|200px

|200px
(1,8,24,32)

|200px

class=wikitable width=600
align=center

!D3 / B2 / A3
[4]

!D4 / B3 / A2
[6]

!D5 / B4
[8]

align=center

|200px

|200px

|200px

align=center

!D6 / B5 / A4
[10]

!D7 / B6
[12]

!D8 / B7 / A6
[14]

align=center

|200px

|200px
(1,3,9,12,18,21,36)

|200px

align=center

!B8
[16/2]

!A5
[6]

!A7
[8]

align=center

|200px

|200px

|200px

See also

Notes

{{reflist}}

References

  • {{citation | last = Elte | first = E. L. | title = The Semiregular Polytopes of the Hyperspaces | publisher = University of Groningen | location = Groningen | year = 1912}}
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • {{KlitzingPolytopes|polyzetta.htm|8D|Uniform polyzetta}} x3o3o3o *c3o3o3o3o - bay, o3x3o3o *c3o3o3o3o - robay

{{Polytopes}}

Category:8-polytopes

Category:E8 (mathematics)