Uniform 2 k1 polytope

{{Short description|Uniform polytope}}

{{DISPLAYTITLE:Uniform 2 k1 polytope}}

In geometry, 2k1 polytope is a uniform polytope in n dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol as 2k1 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. It can be named by an extended Schläfli symbol {3,3,3k,1}.

Family members

The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-orthoplex (pentacross) in 5-dimensions, and the 4-simplex (5-cell) in 4-dimensions.

Each polytope is constructed from (n-1)-simplex and 2k-1,1 (n-1)-polytope facets, each has a vertex figure as an (n-1)-demicube, {31,n-2,1}.

The sequence ends with k=6 (n=10), as an infinite hyperbolic tessellation of 9-space.

The complete family of 2k1 polytope polytopes are:

  1. 5-cell: 201, (5 tetrahedra cells)
  2. Pentacross: 211, (32 5-cell (201) facets)
  3. 221, (72 5-simplex and 27 5-orthoplex (211) facets)
  4. 231, (576 6-simplex and 56 221 facets)
  5. 241, (17280 7-simplex and 240 231 facets)
  6. 251, tessellates Euclidean 8-space (∞ 8-simplex and ∞ 241 facets)
  7. 261, tessellates hyperbolic 9-space (∞ 9-simplex and ∞ 251 facets)

Elements

class="wikitable"

|+

Gosset 2k1 figures

rowspan=2|n

!rowspan=2|2k1

!rowspan=2| Petrie
polygon

projection

!rowspan=2| Name
Coxeter-Dynkin
diagram

!colspan=2|Facets

!colspan=8|Elements

2k-1,1 polytope

!(n-1)-simplex

! Vertices

! Edges

! Faces

! Cells

! 4-faces

! 5-faces

! 6-faces

! 7-faces

align=center

|4

|201

|80px

|5-cell
{{CDD|nodea_1|3a|nodea|3a|branch}}
{32,0,1}

| --

|5
{33}
40px

| 5

| 10

| 10
25px

| 5

align=center

|5

|211

|80px

|pentacross
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea}}
{32,1,1}

|16
{32,0,1}
40px

|16
{34}
40px

| 10

| 40

| 80
25px

| 80
25px

| 32
25px

|  

|  

|  

align=center

|6

|221

|80px

|2 21 polytope
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
{32,2,1}

|27
{32,1,1}
40px

|72
{35}
40px

|27

|216

|720
25px

|1080
25px

|648
25px

|99
25px25px

align=center

|7

|231

|80px

|2 31 polytope
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
{32,3,1}

|56
{32,2,1}
40px

|576
{36}
40px

|126

|2016

|10080
25px

|20160
25px

|16128
25px

|4788
25px25px

|632
25px25px

align=center

|8

|241

|80px

|2 41 polytope
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
{32,4,1}

|240
{32,3,1}
40px

|17280
{37}
40px

|2160

|69120

|483840
40px

|1209600
40px

|1209600
40px

|544320
40px40px

|144960
40px40px

|17520
40px40px

align=center

|9

|251

|

|2 51 honeycomb
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
(8-space tessellation)
{32,5,1}

|∞
{32,4,1}
40px

|∞
{38}
40px

|colspan=8|∞

align=center

|10

|261

|

|2 61 honeycomb
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
(9-space tessellation)
{32,6,1}

|∞
{32,5,1}

|∞
{39}
40px

|colspan=8|∞

See also

References

  • Alicia Boole Stott Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • Stott, A. B. "Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings." Verhandelingen der Koninklijke Akad. Wetenschappen Amsterdam 11, 3-24, 1910.
  • Alicia Boole Stott, "Geometrical deduction of semiregular from regular polytopes and space fillings," Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, (eerste sectie), Vol. 11, No. 1, pp. 1–24 plus 3 plates, 1910.
  • Stott, A. B. 1910. "Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings." Verhandelingen der Koninklijke Akad. Wetenschappen Amsterdam
  • Schoute, P. H., Analytical treatment of the polytopes regularly derived from the regular polytopes, Ver. der Koninklijke Akad. van Wetenschappen te Amsterdam (eerstie sectie), vol 11.5, 1913.
  • H. S. M. Coxeter: Regular and Semi-Regular Polytopes, Part I, Mathematische Zeitschrift, Springer, Berlin, 1940
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part II, Mathematische Zeitschrift, Springer, Berlin, 1985
  • H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part III, Mathematische Zeitschrift, Springer, Berlin, 1988