8-simplex honeycomb

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|8-simplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform 8-honeycomb
bgcolor=#e7dcc3|FamilySimplectic honeycomb
bgcolor=#e7dcc3|Schläfli symbol{3[9]} = 0[9]
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch}}
bgcolor=#e7dcc3|6-face types{37} 30px, t1{37} 30px
t2{37} 30px, t3{37} 30px
bgcolor=#e7dcc3|6-face types{36} 30px, t1{36} 30px
t2{36} 40px, t3{36} 30px
bgcolor=#e7dcc3|6-face types{35} 30px, t1{35} 30px
t2{35} 30px
bgcolor=#e7dcc3|5-face types{34} 30px, t1{34} 30px
t2{34} 30px
bgcolor=#e7dcc3|4-face types{33} 30px, t1{33} 30px
bgcolor=#e7dcc3|Cell types{3,3} 30px, t1{3,3} 30px
bgcolor=#e7dcc3|Face types{3} 30px
bgcolor=#e7dcc3|Vertex figuret0,7{37} 30px
bgcolor=#e7dcc3|Symmetry{\tilde{A}}_8×2, {{Brackets|3{{Bracket|9}}}}
bgcolor=#e7dcc3|Propertiesvertex-transitive

In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

A8 lattice

This vertex arrangement is called the A8 lattice or 8-simplex lattice. The 72 vertices of the expanded 8-simplex vertex figure represent the 72 roots of the {\tilde{A}}_8 Coxeter group.{{Cite web|url=http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A8.html|title = The Lattice A8}} It is the 8-dimensional case of a simplectic honeycomb. Around each vertex figure are 510 facets: 9+9 8-simplex, 36+36 rectified 8-simplex, 84+84 birectified 8-simplex, 126+126 trirectified 8-simplex, with the count distribution from the 10th row of Pascal's triangle.

{\tilde{E}}_8 contains {\tilde{A}}_8 as a subgroup of index 5760.N.W. Johnson: Geometries and Transformations, (2018) Chapter 12: Euclidean symmetry groups, p.294 Both {\tilde{E}}_8 and {\tilde{A}}_8 can be seen as affine extensions of A_8 from different nodes: File:Affine A8 E8 relations.png

The A{{sup sub|3|8}} lattice is the union of three A8 lattices, and also identical to the E8 lattice.Kaleidoscopes: Selected Writings of H. S. M. Coxeter, Paper 18, "Extreme forms" (1950)

: {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_10lr|3ab|branch}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_01lr|3ab|branch}} = {{CDD|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}.

The A{{sup sub|*|8}} lattice (also called A{{sup sub|9|8}}) is the union of nine A8 lattices, and has the vertex arrangement of the dual honeycomb to the omnitruncated 8-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 8-simplex

:

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch}} ∪

{{CDD|node|split1|nodes_10lr|3ab|nodes|3ab|nodes|3ab|branch}} ∪

{{CDD|node|split1|nodes_01lr|3ab|nodes|3ab|nodes|3ab|branch}} ∪

{{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|3ab|branch}} ∪

{{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|3ab|branch}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_10lr|3ab|branch}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_01lr|3ab|branch}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch_10l}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch_01l}} = dual of {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|nodes_11|3ab|branch_11}}.

Related polytopes and honeycombs

{{8-simplex honeycomb family}}

= Projection by folding =

The 8-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

class=wikitable
{\tilde{A}}_8

|{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch}}

{\tilde{C}}_4

|{{CDD|node_1|4|node|3|node|3|node|4|node}}

See also

Notes

{{reflist}}

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:9-polytopes