ARHGAP8
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
Rho GTPase-activating protein 8 is a protein that in humans is encoded by the ARHGAP8 gene.{{cite journal | vauthors = Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP | title = The DNA sequence of human chromosome 22 | journal = Nature | volume = 402 | issue = 6761 | pages = 489–495 | date = Dec 1999 | pmid = 10591208 | doi = 10.1038/990031 | bibcode = 1999Natur.402..489D | doi-access = free }}{{cite web | title = Entrez Gene: ARHGAP8 Rho GTPase activating protein 8| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23779}}
Function
This gene encodes a member of the RHOGAP family. GAP (GTPase-activating) family proteins participate in signaling pathways that regulate cell processes involved in cytoskeletal changes. GAP proteins alternate between an active (GTP-bound) and inactive (GDP-bound) state based on the GTP:GDP ratio in the cell. Rare read-through transcripts, containing exons from the PRR5 gene which is located immediately upstream, led to the original description of this gene as encoding a RHOGAP protein containing the proline-rich domains characteristic of PRR5 proteins. Alternatively spliced variants encoding different isoforms have been described.
References
{{reflist}}
{{Clear}}
External links
- {{UCSC gene info|ARHGAP8}}
Further reading
{{refbegin | 2}}
- {{cite journal | vauthors = Peck J, Douglas G, Wu CH, Burbelo PD | title = Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships | journal = FEBS Lett. | volume = 528 | issue = 1–3 | pages = 27–34 | year = 2002 | pmid = 12297274 | doi = 10.1016/S0014-5793(02)03331-8 | bibcode = 2002FEBSL.528...27P | s2cid = 30443852 }}
- {{cite journal | vauthors = Shan Z, Haaf T, Popescu NC | title = Identification and characterization of a gene encoding a putative mouse Rho GTPase activating protein gene 8, Arhgap8 | journal = Gene | volume = 303 | pages = 55–61 | year = 2003 | pmid = 12559566 | doi = 10.1016/S0378-1119(02)01143-5 }}
- {{cite journal | vauthors = Shang X, Zhou YT, Low BC | title = Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1 | journal = J. Biol. Chem. | volume = 278 | issue = 46 | pages = 45903–45914 | year = 2003 | pmid = 12944407 | doi = 10.1074/jbc.M304514200 | doi-access = free }}
- {{cite journal | vauthors = Lua BL, Low BC | title = BPGAP1 interacts with cortactin and facilitates its translocation to cell periphery for enhanced cell migration | journal = Mol. Biol. Cell | volume = 15 | issue = 6 | pages = 2873–2883 | year = 2004 | pmid = 15064355 | pmc = 420110 | doi = 10.1091/mbc.E04-02-0141 }}
- {{cite journal | vauthors = Johnstone CN, Castellví-Bel S, Chang LM, Bessa X, Nakagawa H, Harada H, Sung RK, Piqué JM, Castells A, Rustgi AK | title = ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers | journal = Gene | volume = 336 | issue = 1 | pages = 59–71 | year = 2004 | pmid = 15225876 | doi = 10.1016/j.gene.2004.01.025 }}
- {{cite journal | vauthors = Lua BL, Low BC | title = Filling the GAPs in cell dynamics control: BPGAP1 promotes cortactin translocation to the cell periphery for enhanced cell migration | journal = Biochem. Soc. Trans. | volume = 32 | issue = Pt 6 | pages = 1110–2 | year = 2005 | pmid = 15506981 | doi = 10.1042/BST0321110 }}
- {{cite journal | vauthors = Lua BL, Low BC | title = Activation of EGF receptor endocytosis and ERK1/2 signaling by BPGAP1 requires direct interaction with EEN/endophilin II and a functional RhoGAP domain | journal = J. Cell Sci. | volume = 118 | issue = Pt 12 | pages = 2707–2721 | year = 2005 | pmid = 15944398 | doi = 10.1242/jcs.02383 | doi-access = free }}
{{refend}}
{{protein-stub}}