Alex Kentsis
{{Short description|Biography of scientist and physician Alex Kentsis MD, PhD}}
Alex Kentsis (born Oleg Emilievich Kentsis, 1975) is an American scientist and physician at the Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, known for his contributions to understanding biological self-organization, cell signaling, cancer biology, and cancer therapeutics.{{Cite web |title=Kentsis Lab |url=https://www.mskcc.org/research/ski/labs/alex-kentsis |access-date=October 15, 2024}}{{Cite web |title=Alex Kentsis, MD, PhD at the Memorial Sloan Kettering Cancer Center |url=https://www.mskcc.org/cancer-care/doctors/alex-kentsis |access-date=October 15, 2024}}{{Cite web |title=Alex Kentsis {{!}} Graduate School of Medical Sciences |url=https://gradschool.weill.cornell.edu/faculty/alex-kentsis |access-date=2024-10-31 |website=gradschool.weill.cornell.edu}}
Personal life
Kentsis was born in 1975 in Chișinău, in the Moldavian SSR of the Soviet Union (now Moldova). Escaping antisemitism, his family emigrated to USA in 1989. He is married to Nina Kentsis (née Shapiro), a researcher and writer,{{Cite web |title=Nina Kentsis |url=https://www.ninakentsis.com/ |access-date=October 14, 2024}} and they have two children.
Education and career
Kentsis received his Bachelor's degree (AB) in Biological Sciences and Master's degree (SM) in Biochemistry from the University of Chicago. He went on to earn his Doctor of Medicine (MD) and Doctor of Philosophy (PhD) in Biophysics from the Mount Sinai School of Medicine of New York University (now Icahn School of Medicine at Mount Sinai). He completed his clinical training in pediatrics at the Boston Children's Hospital and pediatric hematology-oncology at the Dana-Farber Cancer Institute at the Harvard Medical School.
In 2013, he joined the faculty of the Memorial Sloan Kettering Cancer Center, where he is currently Member of the Sloan Kettering Institute and Professor of Pediatrics, Pharmacology, and Physiology & Biophysics, and founding Director of the Tow Center for Developmental Oncology.{{Cite web |title=Tow Center for Developmental Oncology |date=5 February 2024 |url=https://www.mskcc.org/research-programs/developmental-oncology |access-date=October 15, 2024}}
Research
As a student with Tobin Sosnick, Kentsis contributed to understanding protein folding, including effects of hydration now used in molecular design.{{Cite journal |last1=Kentsis |first1=Alex |last2=Sosnick |first2=Tobin R. |date=1998-10-01 |title=Trifluoroethanol Promotes Helix Formation by Destabilizing Backbone Exposure: Desolvation Rather than Native Hydrogen Bonding Defines the Kinetic Pathway of Dimeric Coiled Coil Folding |url=https://pubs.acs.org/doi/10.1021/bi981641y |journal=Biochemistry |language=en |volume=37 |issue=41 |pages=14613–14622 |doi=10.1021/bi981641y |pmid=9772190 |issn=0006-2960}} As a student with Katherine Borden, Kentsis used protein engineering approaches to investigate cellular scaffolds and defined a distinct mechanism of protein self-assembly relevant to various physiological processes.{{Cite journal |last=Kentsis A, Gordon RE, Borden KL |title=Control of biochemical reactions through supramolecular RING domain self-assembly |journal=Proceedings of the National Academy of Sciences |date=2002 |volume=99 |issue=24 |pages=15404–9 |doi=10.1073/pnas.202608799|doi-access=free |pmid=12438698 |pmc=137729 |bibcode=2002PNAS...9915404K }}{{Cite journal |last=Kentsis A, Gordon RE, Borden KL |title=Self-assembly properties of a model RING domain |journal= Proceedings of the National Academy of Sciences|date=2002 |volume=99 |issue=2 |pages=667–72 |doi=10.1073/pnas.012317299|doi-access=free |pmid=11792829 |pmc=117363 }}{{Cite journal |date=2002-12-13 |title=Organization RINGleader |url=https://www.science.org/doi/10.1126/science.298.5601.2095b |journal=Science |language=en |volume=298 |issue=5601 |pages=2095 |doi=10.1126/science.298.5601.2095b |issn=0036-8075}} His work on the promyelocytic leukemia (PML) nuclear body supported the development of ribavirin for cancer therapy.{{Cite journal |last=Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL |title=Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap |journal= Proceedings of the National Academy of Sciences|date=2004 |volume=101 |issue=52 |pages=18105–10 |doi=10.1073/pnas.0406927102|doi-access=free |pmid=15601771 |pmc=539790 |bibcode=2004PNAS..10118105K }}{{Cite journal |last=Borden KLB, Culjkovic-Kraljacic B |date=2010 |title=Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? |journal=Leuk Lymphoma |language=en |volume=51 |issue=10 |pages=1805–1815 |doi=10.3109/10428194.2010.496506 |issn=1042-8194 |pmc=2950216 |pmid=20629523}}
Kentsis has advocated for the use of biological mass spectrometry and proteomics for the discovery of disease biomarkers and therapeutic targets.{{Cite journal |last1=Kentsis |first1=Alex |last2=Monigatti |first2=Flavio |last3=Dorff |first3=Kevin |last4=Campagne |first4=Fabien |last5=Bachur |first5=Richard |last6=Steen |first6=Hanno |date=2009-09-01 |title=Urine proteomics for profiling of human disease using high accuracy mass spectrometry |journal=Proteomics. Clinical Applications |volume=3 |issue=9 |pages=1052–1061 |doi=10.1002/prca.200900008 |issn=1862-8346 |pmc=2994589 |pmid=21127740}}{{Cite journal |last1=Cifani |first1=Paolo |last2=Kentsis |first2=Alex |date=2017 |title=High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer |journal=Molecular & Cellular Proteomics |volume=16 |issue=11 |pages=2006–2016 |doi=10.1074/mcp.RA117.000023 |doi-access=free |issn=1535-9476 |pmc=5672005 |pmid=28821601}}{{Cite journal |last1=Cifani |first1=Paolo |last2=Dhabaria |first2=Avantika |last3=Chen |first3=Zining |last4=Yoshimi |first4=Akihide |last5=Kawaler |first5=Emily |last6=Abdel-Wahab |first6=Omar |last7=Poirier |first7=John T. |last8=Kentsis |first8=Alex |date=2018-11-02 |title=ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching |journal=Journal of Proteome Research |volume=17 |issue=11 |pages=3681–3692 |doi=10.1021/acs.jproteome.8b00295 |issn=1535-3893 |pmc=6727203 |pmid=30295032}}{{Cite journal |last=Cifani P, Kentsis A |title=Quantitative Cell Proteomic Atlas: Pathway-Scale Targeted Mass Spectrometry for High-Resolution Functional Profiling of Cell Signaling |journal=J Proteome Res |date=2022 |volume=21 |issue=10 |pages=2535–2544 |doi=10.1021/acs.jproteome.2c00223|pmid=36154077 |pmc=10494574 }}{{Cite web |title=Analyzing Urine Can Guide the Treatment of Childhood Kidney Tumors |date=8 August 2019 |url=https://www.mskcc.org/news/analyzing-urine-can-guide-treatment-childhood-kidney-tumors |access-date=October 15, 2024}} His work with Thomas Look investigated the mechanisms of autocrine receptor tyrosine kinase signaling in acute myeloid leukemias,{{Cite journal |last1=Kentsis |first1=Alex |last2=Reed |first2=Casie |last3=Rice |first3=Kim L. |last4=Sanda |first4=Takaomi |last5=Rodig |first5=Scott J. |last6=Tholouli |first6=Eleni |last7=Christie |first7=Amanda |last8=Valk |first8=Peter J.M. |last9=Delwel |first9=Ruud |last10=Ngo |first10=Vu |last11=Kutok |first11=Jeffery L. |last12=Dahlberg |first12=Suzanne E. |last13=Moreau |first13=Lisa A. |last14=Byers |first14=Richard J. |last15=Christensen |first15=James G. |date=2012 |title=Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia |journal=Nature Medicine |volume=18 |issue=7 |pages=1118–1122 |doi=10.1038/nm.2819 |issn=1078-8956 |pmc=3438345 |pmid=22683780}} contributing to the general mechanism of adaptive cancer therapy resistance by feedback activation, alongside similar studies by Neal Rosen, Todd Golub, and Jeff Engelman, leading to clinical trials for patients.{{Cite journal |last1=Chen |first1=Evan C. |last2=Gandler |first2=Helen |last3=Tošić |first3=Isidora |last4=Fell |first4=Geoffrey G. |last5=Fiore |first5=Ashlee |last6=Pozdnyakova |first6=Olga |last7=DeAngelo |first7=Daniel J. |last8=Galinsky |first8=Ilene |last9=Luskin |first9=Marlise R. |last10=Wadleigh |first10=Martha |last11=Winer |first11=Eric S. |last12=Leonard |first12=Rebecca |last13=O'Day |first13=Kelsey |last14=de Jonge |first14=Adrienne |last15=Neuberg |first15=Donna |date=2023-03-01 |title=Targeting MET and FGFR in Relapsed or Refractory Acute Myeloid Leukemia: Preclinical and Clinical Findings, and Signal Transduction Correlates |url=https://aacrjournals.org/clincancerres/article/29/5/878/716604/Targeting-MET-and-FGFR-in-Relapsed-or-Refractory |journal=Clinical Cancer Research |language=en |volume=29 |issue=5 |pages=878–887 |doi=10.1158/1078-0432.CCR-22-2540 |issn=1078-0432 |pmc=9992000 |pmid=36534523}}{{Cite journal |last1=Wang |first1=Victoria E. |last2=Blaser |first2=Bradley W. |last3=Patel |first3=Ravi K. |last4=Behbehani |first4=Gregory K. |last5=Rao |first5=Arjun A. |last6=Durbin-Johnson |first6=Blythe |last7=Jiang |first7=Tommy |last8=Logan |first8=Aaron C. |last9=Settles |first9=Matthew |last10=Mannis |first10=Gabriel N. |last11=Olin |first11=Rebecca |last12=Damon |first12=Lloyd E. |last13=Martin |first13=Thomas G. |last14=Sayre |first14=Peter H. |last15=Gaensler |first15=Karin M. |date=2021-09-01 |title=Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis |url=https://aacrjournals.org/bloodcancerdiscov/article/2/5/434/665843/Inhibition-of-MET-Signaling-with-Ficlatuzumab-in |journal=Blood Cancer Discovery |language=en |volume=2 |issue=5 |pages=434–449 |doi=10.1158/2643-3230.BCD-21-0055 |issn=2643-3230 |pmc=8425277 |pmid=34514432}} Subsequently, his laboratory has elucidated genetic and epigenetic mechanisms of chemotherapy resistance and therapies targeting oncogenic transcription factors.{{Cite journal |last1=Brown |first1=Fiona C. |last2=Still |first2=Eric |last3=Koche |first3=Richard P. |last4=Yim |first4=Christina Y. |last5=Takao |first5=Sumiko |last6=Cifani |first6=Paolo |last7=Reed |first7=Casie |last8=Gunasekera |first8=Shehana |last9=Ficarro |first9=Scott B. |last10=Romanienko |first10=Peter |last11=Mark |first11=Willie |last12=McCarthy |first12=Craig |last13=de Stanchina |first13=Elisa |last14=Gonen |first14=Mithat |last15=Seshan |first15=Venkatraman |date=2018 |title=MEF2C phosphorylation is required for chemotherapy resistance in acute myeloid leukemia |journal=Cancer Discovery |volume=8 |issue=4 |pages=478–497 |doi=10.1158/2159-8290.CD-17-1271 |issn=2159-8274 |pmc=5882571 |pmid=29431698}}{{Cite journal |last1=Ramaswamy |first1=Kavitha |last2=Forbes |first2=Lauren |last3=Minuesa |first3=Gerard |last4=Gindin |first4=Tatyana |last5=Brown |first5=Fiona |last6=Kharas |first6=Michael G. |last7=Krivtsov |first7=Andrei V. |last8=Armstrong |first8=Scott A. |last9=Still |first9=Eric |last10=de Stanchina |first10=Elisa |last11=Knoechel |first11=Birgit |last12=Koche |first12=Richard |last13=Kentsis |first13=Alex |date=2018-01-09 |title=Peptidomimetic blockade of MYB in acute myeloid leukemia |journal=Nature Communications |volume=9 |issue=1 |pages=110 |doi=10.1038/s41467-017-02618-6 |issn=2041-1723 |pmc=5760651 |pmid=29317678|bibcode=2018NatCo...9..110R }}{{Cite news |last=Grisham |first=Julie |date=February 18, 2019 |title=Research Uncovers the Genetic Causes of Aggressive Leukemia in Children |url=https://www.mskcc.org/news/research-uncovers-genetic-causes-aggressive-leukemia-children |access-date=October 15, 2024 |work=MSK News}}{{Cite news |last=Stallard |first=Jim |date=February 5, 2021 |title=Research Shows How Common Feature of Blood Cancers Can Be Targeted |url=https://www.mskcc.org/news/research-shows-how-common-feature-blood-cancers-can-be-targeted |access-date=October 15, 2024 |work=MSK News}}
Since 2015, Kentsis' research in childhood cancer biology identified developmental mechanisms of site-specific oncogenic mutations.{{Cite journal |last1=Henssen |first1=Anton G. |last2=Koche |first2=Richard |last3=Zhuang |first3=Jiali |last4=Jiang |first4=Eileen |last5=Reed |first5=Casie |last6=Eisenberg |first6=Amy |last7=Still |first7=Eric |last8=MacArthur |first8=Ian C. |last9=Rodríguez-Fos |first9=Elias |last10=Gonzalez |first10=Santiago |last11=Puiggròs |first11=Montserrat |last12=Blackford |first12=Andrew N. |last13=Mason |first13=Christopher E. |last14=de Stanchina |first14=Elisa |last15=Gönen |first15=Mithat |date=2017 |title=PGBD5 promotes site-specific oncogenic mutations in human tumors |journal=Nature Genetics |volume=49 |issue=7 |pages=1005–1014 |doi=10.1038/ng.3866 |issn=1061-4036 |pmc=5489359 |pmid=28504702}}{{Cite journal |last1=Henssen |first1=Anton G. |last2=Reed |first2=Casie |last3=Jiang |first3=Eileen |last4=Garcia |first4=Heathcliff Dorado |last5=von Stebut |first5=Jennifer |last6=MacArthur |first6=Ian C. |last7=Hundsdoerfer |first7=Patrick |last8=Kim |first8=Jun Hyun |last9=de Stanchina |first9=Elisa |last10=Kuwahara |first10=Yasumichi |last11=Hosoi |first11=Hajime |last12=Ganem |first12=Neil |last13=Cruz |first13=Filemon Dela |last14=Kung |first14=Andrew L. |last15=Schulte |first15=Johannes H. |date=2017-11-01 |title=Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors |journal=Science Translational Medicine |volume=9 |issue=414 |pages=eaam9078 |doi=10.1126/scitranslmed.aam9078 |issn=1946-6234 |pmc=5683417 |pmid=29093183}}{{Cite journal |last1=Yamada |first1=Makiko |last2=Keller |first2=Ross R. |last3=Gutierrez |first3=Rodrigo Lopez |last4=Cameron |first4=Daniel |last5=Suzuki |first5=Hiromichi |last6=Sanghrajka |first6=Reeti |last7=Vaynshteyn |first7=Jake |last8=Gerwin |first8=Jeffrey |last9=Maura |first9=Francesco |last10=Hooper |first10=William |last11=Shah |first11=Minita |last12=Robine |first12=Nicolas |last13=Demarest |first13=Phillip |last14=Bayin |first14=N. Sumru |last15=Zapater |first15=Luz Jubierre |date=2024-03-22 |title=Childhood cancer mutagenesis caused by transposase-derived PGBD5 |journal=Science Advances |language=en |volume=10 |issue=12 |pages=eadn4649 |doi=10.1126/sciadv.adn4649 |issn=2375-2548 |pmc=10959420 |pmid=38517960|bibcode=2024SciA...10N4649Y }} This established the concept of developmental mutators, proposing a unified theory of why specific cancers develop in young people.{{Cite journal |last=Kentsis |first=Alex |date=2020 |title=Why do young people get cancer? |journal=Pediatric Blood & Cancer |language=en |volume=67 |issue=7 |pages=e28335 |doi=10.1002/pbc.28335 |issn=1545-5009 |pmc=7582786 |pmid=32391946}}{{Cite journal |last=Kentsis |first=Alex |date=2024 |title=Toward a Unified Theory of Why Young People Develop Cancer |journal=Cold Spring Harbor Perspectives in Medicine |language=en |volume=14 |issue=10 |pages=a041658 |doi=10.1101/cshperspect.a041658 |issn=2157-1422 |pmc=11444251 |pmid=38692742|pmc-embargo-date=October 1, 2026 }}
His book Developmental Oncology: Principles and Therapy of Cancers of Children and Young Adults with Alejandro Gutierrez advanced the concept of developmental oncology, a framework that redefined cancers of childhood and young adulthood as diseases rooted in distinct developmental cell states and early‑life mutational processes.{{Cite book |last=Alejandro Gutierrez & Alex Kentsis |first= |title=Developmental Oncology: Principles and Therapy of Cancers of Children and Young Adults |publisher=Cold Spring Harbor Laboratory Press |year=2025 |isbn=978-1-621825-05-0}}
As of 2024, Kentsis has authored over 120 publications, with over 8000 citations.{{Cite web |title=Alex Kentsis - Google Scholar |url=https://scholar.google.com/citations?user=1YI2An4AAAAJ |access-date=October 15, 2024}}
Awards and Honors
- Burroughs Wellcome Fund Career Award for Medical Scientists (2013){{Cite web |title=Alex Kentsis - BWF Career Award |url=https://www.bwfund.org/funding-opportunities/biomedical-sciences/career-awards-for-medical-scientists/grant-recipients/}}
- Scholar Award, American Society of Hematology (2014){{Cite web |title=Alex Kentsis - ASH Scholar Award |url=https://www.hematology.org/awards/award-recipients/scholar-award |access-date=October 14, 2024}}
- Scholar Award, Rita Allen Foundation (2016){{Cite web |title=Alex Kentsis - Rita Allen Foundation |url=https://ritaallen.org/all-scholars/alex-kentsis/ |access-date=October 14, 2024}}
- Clinical Investigator Award, Damon Runyon Cancer Research Foundation (2016){{Cite web |title=Alex Kentsis - Damon Runyon Cancer Research Foundation |url=https://www.damonrunyon.org/our-impact/current-projects/scientists/2766 |access-date=October 14, 2024}}
- St. Baldrick's Foundation Robert J. Arceci Innovation Award (2018){{Cite press release |title=PRNewswire: St. Baldrick's Foundation Supports Innovative Childhood Cancer Research Through One-of-a-Kind Grant |url=https://www.prnewswire.com/news-releases/st-baldricks-foundation-supports-innovative-childhood-cancer-research-through-one-of-a-kind-grant-300641417.html |access-date=October 14, 2024}}
- Investigator Award, Society for Pediatric Research (2018){{Cite web |title=Alex Kentsis - Society for Pediatric Research Award |url=https://www.societyforpediatricresearch.org/past-award-recipients/#toggle-id-11 |access-date=October 14, 2024}}
- Elected Member, American Society for Clinical Investigation (2018){{Cite web |title=Alex Kentsis, American Society for Clinical Investigation |url=https://data.the-asci.org/controllers/asci/DirectoryController.php?action=profile&entryId=501533 |access-date=October 14, 2024}}
- Scholar Award, Leukemia and Lymphoma Society (2019){{Cite web |title=Alex Kentsis - Leukemia & Lymphoma Society Scholar |url=https://www.lls.org/award-recipient/alex-kentsis |access-date=October 14, 2024}}
- Pershing Square Sohn Prize (2019){{Cite web |title=Alex Kentsis - Pershing Square Sohn Prize |url=https://psscra.org/winners/alex-kentsis-md-phd/ |access-date=October 14, 2024}}
- Boyer Clinical Research Award (2020){{Cite web |title=Alex Kentsis - Boyer Award |date=29 May 2020 |url=https://www.mskcc.org/news/msk-s-virtual-convocation-and-commencement-honors-graduates-and-award-winners}}
References
{{reflist}}
{{Authority control}}
{{DEFAULTSORT:Kentsis, Alex}}