Barnes G-function#Reflection formula 1.0

{{Short description|Function that is an extension of superfactorials to the complex numbers}}

File:Plot of the Barnes G aka double gamma function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

File:2022-08-09 12 43 26-Barnes-G from -6 to 4.png

In mathematics, the Barnes G-function G(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes.E. W. Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math. 31 (1900), 264–314. It can be written in terms of the double gamma function.

Formally, the Barnes G-function is defined in the following Weierstrass product form:

: G(1+z)=(2\pi)^{z/2} \exp\left(- \frac{z+z^2(1+\gamma)}{2} \right) \, \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)^k \exp\left(\frac{z^2}{2k}-z\right) \right\}

where \, \gamma is the Euler–Mascheroni constant, exp(x) = ex is the exponential function, and Π denotes multiplication (capital pi notation).

The integral representation, which may be deduced from the relation to the double gamma function, is

:

\log G(1+z) = \frac{z}{2}\log(2\pi) +\int_0^\infty\frac{dt}{t}\left[\frac{1-e^{-zt}}{4\sinh^2\frac{t}{2}} +\frac{z^2}{2}e^{-t} -\frac{z}{t}\right]

As an entire function, G is of order two, and of infinite type. This can be deduced from the asymptotic expansion given below.

Functional equation and integer arguments

The Barnes G-function satisfies the functional equation

: G(z+1)=\Gamma(z)\, G(z)

with normalisation G(1) = 1. Note the similarity between the functional equation of the Barnes G-function and that of the Euler gamma function:

: \Gamma(z+1)=z \, \Gamma(z) .

The functional equation implies that G takes the following values at integer arguments:

:G(n)=\begin{cases} 0&\text{if }n=0,-1,-2,\dots\\ \prod_{i=0}^{n-2} i!&\text{if }n=1,2,\dots\end{cases}

(in particular, \,G(0)=0, G(1)=1)

and thus

:G(n)=\frac{(\Gamma(n))^{n-1}}{K(n)}

where \,\Gamma(x) denotes the gamma function and K denotes the K-function. The functional equation uniquely defines the Barnes G-function if the convexity condition,

:(\forall x \geq 1) \, \frac{\mathrm{d}^3}{\mathrm{d}x^3}\log(G(x))\geq 0

is added.M. F. Vignéras, L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL(2,\mathbb{Z}), Astérisque 61, 235–249 (1979). Additionally, the Barnes G-function satisfies the duplication formula,{{cite journal | url=https://koreascience.kr/article/JAKO199611919482150.page | title=A duplication formula for the double gamma function $Gamma_2$ | journal=Bulletin of the Korean Mathematical Society | year=1996 | volume=33 | issue=2 | pages=289–294 | last1=Park | first1=Junesang }}

:G(x)G\left(x+\frac{1}{2}\right)^{2}G(x+1)=e^{\frac{1}{4}}A^{-3}2^{-2x^{2}+3x-\frac{11}{12}}\pi^{x-\frac{1}{2}}G\left(2x\right),

where A is the Glaisher–Kinkelin constant.

Characterisation

Similar to the Bohr–Mollerup theorem for the gamma function, for a constant c>0, we have for f(x)=cG(x){{Cite book |last=Marichal |first=Jean Luc |title=A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions |publisher=Springer |url=https://orbi.uliege.be/bitstream/2268/294009/1/Marichal-Zena%C3%AFdi2022_Book_AGeneralizationOfBohr-Mollerup.pdf |pages=218}}

f(x+1)=\Gamma(x)f(x)

and for x>0

f(x+n)\sim \Gamma(x)^nn^{{x\choose 2}}f(n)

as n\to\infty.

Reflection formula

The difference equation for the G-function, in conjunction with the functional equation for the gamma function, can be used to obtain the following reflection formula for the Barnes G-function (originally proved by Hermann Kinkelin):

: \log G(1-z) = \log G(1+z)-z\log 2\pi+ \int_0^z \pi x \cot \pi x \, dx.

The log-tangent integral on the right-hand side can be evaluated in terms of the Clausen function (of order 2), as is shown below:

:2\pi \log\left( \frac{G(1-z)}{G(1+z)} \right)= 2\pi z\log\left(\frac{\sin\pi z}{\pi} \right) + \operatorname{Cl}_2(2\pi z)

The proof of this result hinges on the following evaluation of the cotangent integral: introducing the notation \operatorname{Lc}(z) for the log-cotangent integral, and using the fact that \,(d/dx) \log(\sin\pi x)=\pi\cot\pi x, an integration by parts gives

:\begin{align}

\operatorname{Lc}(z) &= \int_0^z\pi x\cot \pi x\,dx \\

&= z\log(\sin \pi z)-\int_0^z\log(\sin \pi x)\,dx \\

&= z\log(\sin \pi z)-\int_0^z\Bigg[\log(2\sin \pi x)-\log 2\Bigg]\,dx \\

&= z\log(2\sin \pi z)-\int_0^z\log(2\sin \pi x)\,dx .

\end{align}

Performing the integral substitution \, y=2\pi x \Rightarrow dx=dy/(2\pi) gives

:z\log(2\sin \pi z)-\frac{1}{2\pi}\int_0^{2\pi z}\log\left(2\sin \frac{y}{2} \right)\,dy.

The Clausen function – of second order – has the integral representation

:\operatorname{Cl}_2(\theta) = -\int_0^{\theta}\log\Bigg|2\sin \frac{x}{2} \Bigg|\,dx.

However, within the interval \, 0 < \theta < 2\pi , the absolute value sign within the integrand can be omitted, since within the range the 'half-sine' function in the integral is strictly positive, and strictly non-zero. Comparing this definition with the result above for the logtangent integral, the following relation clearly holds:

:\operatorname{Lc}(z)=z\log(2\sin \pi z)+\frac{1}{2\pi} \operatorname{Cl}_2(2\pi z).

Thus, after a slight rearrangement of terms, the proof is complete:

:2\pi \log\left( \frac{G(1-z)}{G(1+z)} \right)= 2\pi z\log\left(\frac{\sin\pi z}{\pi} \right)+\operatorname{Cl}_2(2\pi z)\, . \, \Box

Using the relation \, G(1+z)=\Gamma(z)\, G(z) and dividing the reflection formula by a factor of \, 2\pi gives the equivalent form:

: \log\left( \frac{G(1-z)}{G(z)} \right)= z\log\left(\frac{\sin\pi z}{\pi}

\right)+\log\Gamma(z)+\frac{1}{2\pi}\operatorname{Cl}_2(2\pi z)

Adamchik (2003) has given an equivalent form of the reflection formula, but with a different proof.{{cite arXiv|last=Adamchik|first=Viktor S.|title=Contributions to the Theory of the Barnes function|year=2003|eprint=math/0308086}}

Replacing z with {{Sfrac|1|2}} − z in the previous reflection formula gives, after some simplification, the equivalent formula shown below (involving Bernoulli polynomials):

:\log\left( \frac{ G\left(\frac{1}{2}+z\right) }{ G\left(\frac{1}{2}-z\right) } \right) = \log \Gamma \left(\frac{1}{2}-z \right) + B_1(z) \log 2\pi+\frac{1}{2}\log 2+\pi \int_0^z B_1(x) \tan \pi x \,dx

Taylor series expansion

By Taylor's theorem, and considering the logarithmic derivatives of the Barnes function, the following series expansion can be obtained:

:\log G(1+z) = \frac{z}{2}\log 2\pi -\left( \frac{z+(1+\gamma)z^2}{2} \right) + \sum_{k=2}^{\infty}(-1)^k\frac{\zeta(k)}{k+1}z^{k+1}.

It is valid for \, 0 < z < 1 . Here, \, \zeta(x) is the Riemann zeta function:

: \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.

Exponentiating both sides of the Taylor expansion gives:

:\begin{align} G(1+z) &= \exp \left[ \frac{z}{2}\log 2\pi -\left( \frac{z+(1+\gamma)z^2}{2} \right) + \sum_{k=2}^{\infty}(-1)^k\frac{\zeta(k)}{k+1}z^{k+1} \right] \\

&=(2\pi)^{z/2}\exp\left[ -\frac{z+(1+\gamma)z^2}{2} \right] \exp \left[\sum_{k=2}^{\infty}(-1)^k\frac{\zeta(k)}{k+1}z^{k+1} \right].\end{align}

Comparing this with the Weierstrass product form of the Barnes function gives the following relation:

:\exp \left[\sum_{k=2}^\infty (-1)^k\frac{\zeta(k)}{k+1}z^{k+1} \right] = \prod_{k=1}^{\infty} \left\{ \left(1+\frac{z}{k}\right)^k \exp \left(\frac{z^2}{2k}-z\right) \right\}

Multiplication formula

Like the gamma function, the G-function also has a multiplication formula:I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal. 19, 493–507 (1988).

:

G(nz)= K(n) n^{n^{2}z^{2}/2-nz} (2\pi)^{-\frac{n^2-n}{2}z}\prod_{i=0}^{n-1}\prod_{j=0}^{n-1}G\left(z+\frac{i+j}{n}\right)

where K(n) is a constant given by:

: K(n)= e^{-(n^2-1)\zeta^\prime(-1)} \cdot

n^{\frac{5}{12}}\cdot(2\pi)^{(n-1)/2}\,=\,

(Ae^{-\frac{1}{12}})^{n^2-1}\cdot n^{\frac{5}{12}}\cdot (2\pi)^{(n-1)/2}.

Here \zeta^\prime is the derivative of the Riemann zeta function and A is the Glaisher–Kinkelin constant.

Absolute value

It holds true that G(\overline z)=\overline{G(z)}, thus |G(z)|^2=G(z)G(\overline z). From this relation and by the above presented Weierstrass product form one can show that

:

|G(x+iy)|=|G(x)|\exp\left(y^2\frac{1+\gamma}{2}\right)\sqrt{1+\frac{y^2}{x^2}}\sqrt{\prod_{k=1}^\infty\left(1+\frac{y^2}{(x+k)^2}\right)^{k+1}\exp\left(-\frac{y^2}{k}\right)}.

This relation is valid for arbitrary x\in\mathbb{R}\setminus\{0,-1,-2,\dots\}, and y\in\mathbb{R}. If x=0, then the below formula is valid instead:

:

|G(iy)|=y\exp\left(y^2\frac{1+\gamma}{2}\right)\sqrt{\prod_{k=1}^\infty\left(1+\frac{y^2}{k^2}\right)^{k+1}\exp\left(-\frac{y^2}{k}\right)}

for arbitrary real y.

Asymptotic expansion

The logarithm of G(z + 1) has the following asymptotic expansion, as established by Barnes:

:\begin{align}

\log G(z+1) = {} & \frac{z^2}{2} \log z - \frac{3z^2}{4} + \frac{z}{2}\log 2\pi -\frac{1}{12} \log z \\

& {} + \left(\frac{1}{12}-\log A \right)

+\sum_{k=1}^N \frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right).

\end{align}

Here the B_k are the Bernoulli numbers and A is the Glaisher–Kinkelin constant. (Note that somewhat confusingly at the time of Barnes E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis", CUP. the Bernoulli number B_{2k} would have been written as (-1)^{k+1} B_k , but this convention is no longer current.) This expansion is valid for z in any sector not containing the negative real axis with |z| large.

Relation to the log-gamma integral

The parametric log-gamma can be evaluated in terms of the Barnes G-function:

: \int_0^z \log \Gamma(x)\,dx=\frac{z(1-z)}{2}+\frac{z}{2}\log 2\pi +z\log\Gamma(z) -\log G(1+z)

{{Collapse top|title=A proof of the formula}}

The proof is somewhat indirect, and involves first considering the logarithmic difference of the gamma function and Barnes G-function:

:z\log \Gamma(z)-\log G(1+z)

where

:\frac{1}{\Gamma(z)}= z e^{\gamma z} \prod_{k=1}^\infty \left\{ \left(1+\frac{z}{k}\right)e^{-z/k} \right\}

and \,\gamma is the Euler–Mascheroni constant.

Taking the logarithm of the Weierstrass product forms of the Barnes G-function and gamma function gives:

:

\begin{align}

& z\log \Gamma(z)-\log G(1+z)=-z \log\left(\frac{1}{\Gamma (z)}\right)-\log G(1+z) \\[5pt]

= {} & {-z} \left[ \log z+\gamma z +\sum_{k=1}^\infty \Bigg\{ \log\left(1+\frac{z}{k} \right) -\frac{z}{k} \Bigg\} \right] \\[5pt]

& {} -\left[ \frac{z}{2}\log 2\pi -\frac{z}{2}-\frac{z^2}{2} -\frac{z^2 \gamma}{2} + \sum_{k=1}^\infty \Bigg\{k\log\left(1+\frac{z}{k}\right) +\frac{z^2}{2k} -z \Bigg\} \right]

\end{align}

A little simplification and re-ordering of terms gives the series expansion:

:

\begin{align}

& \sum_{k=1}^\infty \Bigg\{ (k+z)\log \left(1+\frac{z}{k}\right)-\frac{z^2}{2k}-z \Bigg\} \\[5pt]

= {} & {-z}\log z-\frac{z}{2}\log 2\pi +\frac{z}{2} +\frac{z^2}{2}- \frac{z^2 \gamma}{2}- z\log\Gamma(z) +\log G(1+z)

\end{align}

Finally, take the logarithm of the Weierstrass product form of the gamma function, and integrate over the interval \, [0,\,z] to obtain:

:

\begin{align}

& \int_0^z\log\Gamma(x)\,dx=-\int_0^z \log\left(\frac{1}{\Gamma(x)}\right)\,dx \\[5pt]

= {} & {-(z\log z-z)}-\frac{z^2 \gamma}{2}- \sum_{k=1}^\infty \Bigg\{ (k+z)\log \left(1+\frac{z}{k}\right)-\frac{z^2}{2k}-z \Bigg\}

\end{align}

Equating the two evaluations completes the proof:

: \int_0^z \log \Gamma(x)\,dx=\frac{z(1-z)}{2}+\frac{z}{2}\log 2\pi +z\log\Gamma(z) -\log G(1+z)

And since \, G(1+z)=\Gamma(z)\, G(z) then,

: \int_0^z \log \Gamma(x)\,dx=\frac{z(1-z)}{2}+\frac{z}{2}\log 2\pi -(1-z)\log\Gamma(z) -\log G(z)\, .

{{Collapse bottom}}

References

  • {{dlmf|first=R.A. |last=Askey|first2=R.|last2=Roy|id=5.17}}

{{DEFAULTSORT:Barnes G-Function}}

Category:Number theory

Category:Special functions

Category:Gamma and related functions