Cantellated 7-cubes#Bicantellated 7-cube
class=wikitable align=right |
align=center
|150px |150px |150px |150px |
align=center
|150px |150px |150px |150px |
align=center
|150px |150px |150px |150px |
colspan=4|Orthogonal projections in B6 Coxeter plane |
---|
In seven-dimensional geometry, a cantellated 7-cube is a convex uniform 7-polytope, being a cantellation of the regular 7-cube.
There are 10 degrees of cantellation for the 7-cube, including truncations. 4 are most simply constructible from the dual 7-orthoplex.
{{TOC_left}}
{{-}}
Cantellated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | rr{4,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 16128 |
bgcolor=#e7dcc3|Vertices | 2688 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B7, [4,3,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Small rhombated hepteract (acronym: sersa) (Jonathan Bowers)Klitizing, (x3o3x3o3o3o4o - sersa)
= Images =
{{B7 Coxeter plane graphs|t02|150}}
Bicantellated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantellated 7-cube | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r2r{4,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter diagrams | {{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node|3|node}} {{CDD|nodes_11|split2|node|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 40320 |
style="background:#e7dcc3;"|Vertices | 6720 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small birhombated hepteract (acronym: sibrosa) (Jonathan Bowers)Klitizing, (o3x3o3x3o3o4o - sibrosa)
= Images =
{{B7 Coxeter plane graphs|t13|150}}
Tricantellated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Tricantellated 7-cube | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r3r{4,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter diagrams | {{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node|3|node}} {{CDD|nodes|split2|node_1|3|node|3|node_1|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 47040 |
style="background:#e7dcc3;"|Vertices | 6720 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small trirhombihepteractihecatonicosoctaexon (acronym: strasaz) (Jonathan Bowers)Klitizing, (o3o3x3o3x3o4o - strasaz)
= Images =
{{B7 Coxeter plane graphs|t24|150}}
Cantitruncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Cantitruncated 7-cube | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | tr{4,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter diagrams | {{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 18816 |
style="background:#e7dcc3;"|Vertices | 5376 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Great rhombated hepteract (acronym: gersa) (Jonathan Bowers)Klitizing, (x3x3x3o3o3o4o - gersa)
= Images =
{{B7 Coxeter plane graphs|t012|150}}
It is fifth in a series of cantitruncated hypercubes:
{{Cantitruncated hypercube polytopes}}
Bicantitruncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantitruncated 7-cube | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r2r{4,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter diagrams | {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|nodes_11|split2|node_1|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 47040 |
style="background:#e7dcc3;"|Vertices | 13440 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Great birhombated hepteract (acronym: gibrosa) (Jonathan Bowers)Klitizing, (o3x3x3x3o3o4o - gibrosa)
= Images =
{{B7 Coxeter plane graphs|t123|150}}
Tricantitruncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Tricantitruncated 7-cube | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t3r{4,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter diagrams | {{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} {{CDD|nodes|split2|node_1|3|node_1|3|node_1|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 53760 |
style="background:#e7dcc3;"|Vertices | 13440 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Great trirhombihepteractihecatonicosoctaexon (acronym: gotrasaz) (Jonathan Bowers)Klitizing, (o3o3x3x3x3o4o - gotrasaz)
= Images =
{{B7 Coxeter plane graphs|t234|150|NOB7A6}}
Related polytopes
These polytopes are from a family of 127 uniform 7-polytopes with B7 symmetry.
See also
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D| uniform polytopes (polyexa)}} x3o3x3o3o3o4o- sersa, o3x3o3x3o3o4o - sibrosa, o3o3x3o3x3o4o - strasaz, x3x3x3o3o3o4o - gersa, o3x3x3x3o3o4o - gibrosa, o3o3x3x3x3o4o - gotrasaz
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}