Cerro Blanco (volcano)
{{Short description|Caldera in Catamarca Province, Argentina}}
{{Featured article}}
{{Use British English|date=January 2023}}{{Use dmy dates|date=January 2023}}
{{Infobox mountain
| name= Cerro Blanco
| photo = Cerro Blanco volcano (AVA Granule L1B 20000916145757).jpg
| photo_alt = Optical satellite image of Cerro Blanco caldera and the Piedra Pomez ignimbrite
| photo_caption = Satellite image of Cerro Blanco volcano. The black area on the upper edge is Carachipampa volcano. Cerro Blanco caldera is located slightly left and below the centre of the image and is the grey-yellow area. Top of image is to the north-northeast.
| location = Catamarca Province, Argentina
| range = Andes
| map = Argentina |relief=1
| range_coordinates =
| map_size = 175
| map_caption = Location in Argentina
| label_position = right
|coordinates = {{coord|26|45|37|S|67|44|29|W|type:mountain_region:AR_scale:100000|format=dms|display=inline,title}}
| elevation_m = 4670
| elevation_ft = 15318
| map_alt = Cerro Blanco is located in northwestern Argentina
| map_relief =
| listing = List of volcanoes in Argentina
| translation = White Hill
| language = Spanish
| type = Caldera
| age = Holocene
| volcanic_belt = Central Volcanic Zone
| last_eruption = 2,300 ± 160 BCE
}}
Cerro Blanco ({{IPA|es|ˈsero ˈβlaŋko|lang}}, "White Hill") is a caldera in the Andes of the Catamarca Province in Argentina. Part of the Central Volcanic Zone of the Andes, it is a volcano collapse structure located at an altitude of {{convert|4670|m}} in a depression. The caldera is associated with a less well-defined caldera to the south and several lava domes.
The caldera has been active for the last eight million years, and eruptions have created several ignimbrites.{{efn|Ignimbrites are volcanic deposits that consist of pumice embedded in ash and crystals, and which are deposited by pyroclastic flows.{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=461}}}} An eruption occurred 73,000 years ago and formed the Campo de la Piedra Pómez ignimbrite layer. About 2,300 ± 160 BCE, the largest known volcanic eruption of the Central Andes, with a VEI-7, occurred at Cerro Blanco, forming the most recent caldera as well as thick ignimbrite layers. About {{convert|170|km3}} of tephra{{efn|Tephra is fragmented rock that is produced by volcanic eruptions. Such fallout is termed "lapilli" when it has a thickness of {{convert|2|-|64|mm}} and "ash" with less than {{convert|2|mm}} thickness.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=2}}}} were erupted then. The volcano has been dormant since then with some deformation and geothermal activity. A major future eruption would put nearby communities to the south at risk.
The volcano is also known for giant ripple marks that have formed on its ignimbrite fields. Persistent wind action on the ground has shifted gravel and sand, forming wave-like structures. These ripple marks have heights up to {{convert|2.3|m}} and are separated by distances up to {{convert|43|m}}. These ripple marks are among the largest on Earth and have been compared to Martian ripple marks by geologists.
Geography and geomorphology
The volcano lies at the southern margin of the Argentine Puna,{{efn|The Altiplano-Puna is the second-largest high plateau on Earth after the Tibetan Plateau and consists of a number of mountain ranges separated by valleys with closed drainage.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=138}} }}{{sfn|Kay|Coira|Mpodozis|2006|p=499}} on the border between the Antofagasta de la Sierra Department and the Tinogasta Department{{sfn|Ratto|Rodríguez González|Basile|Pérez Torrado|2018|p=76}} in the Catamarca Province of Argentina.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=3}} Trails run through the area,{{sfn|Milana|2009|p=343}} and there are abandoned mining operations.{{sfn|Milana|2009|p=344}} Provincial Route 34 (Catamarca) between Fiambalá and Antofagasta de la Sierra runs past Cerro Blanco.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=140}} The volcano is sometimes known as Cerro Blanco, meaning "white hill" in Spanish, and sometimes as Robledo;{{sfn|Pritchard|Simons|2004|p=10}} the Smithsonian Institution uses the latter name.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=279}}
= Calderas and lava domes =
Cerro Blanco lies at an elevation of {{convert|3500|-|4700|m}} and consists of four nested calderas{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|pp=4–5}} with discontinuous borders,{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=27}} fallout deposits, lava domes{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=281}} and pyroclastic deposits.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} The two inconspicuous El Niño and Pie de San Buenaventura calderas are nested in the northern part of the complex{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|pp=4–5}} and form a {{convert|15|km|adj=mid}} wide depression;{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=140}} El Niño is sometimes referred to as a scarp.{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=2}} Only their northern margins are recognisable in satellite images; their southern parts are filled with block-and-ash flows from the southern calderas. The southern calderas are the Robledo and Cerro Blanco calderas, which form a southeast-northwest trending pair.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|pp=4–5}} Alternative interpretations consider the Pie de San Buenaventura, Robledo and Cerro Blanco calderas as one {{convert|13|x|10|km|adj=mid}} caldera,{{sfn|Coira|Cisterna|2021|p=30}}{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Litosoma 2: Caldera del Cerro Blanco}} that the Robledo and Cerro Blanco calderas are one system{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=285}} or envisage the existence of only three calderas.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=27}}
The Cerro Blanco caldera is about {{convert|4|to|6|km}} wide and its walls are up to {{convert|300|m}} high.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=3}} They are formed by ignimbrite breccia, ignimbrites and lava domes cut by the caldera margins.{{sfn|Kay|Coira|Mpodozis|2008|p=154}} The caldera floor is almost entirely covered by block-and-ash flows, apart from an area where hydrothermal activity has left white sinter deposits.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} A slight circular uplift on the caldera floor may be a cryptodome.{{efn|A cryptodome is a magma body that rises into a volcano but does not reach the surface, and can create a bulge or protrusion on the volcano.}}{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=31}}
The caldera has an almost perfectly circular outline with the exception of the southwestern margin{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=27}} which is cut by a {{convert|2.7|x|1.4|km|adj=mid}} wide lava dome.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=14}} This dome is also known as Cerro Blanco{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Complejo Volcánico Cerro Blanco}} or Cerro Blanco del Robledo and reaches a height of {{convert|4697|m}} above sea level.{{sfn|Fernandez-Turiel|2019|p=6}} Three additional lava domes surround this dome, and an explosion crater lies to its southwest. West of this crater{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=226}} there are three pinkish lava domes{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=14}} lined up in west-southwest direction away from the main dome;{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=5}} these are surrounded by pyroclastic cones{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=226}} and depressions.{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Complejo Volcánico Cerro Blanco}}
Owing to erosion, the Robledo caldera{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=28}} is less well defined than the Cerro Blanco caldera.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Litosoma 2: Caldera del Cerro Blanco}} A site southeast of the Robledo caldera is known as Robledo.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=270}} South of the Robledo caldera lies the Portezuelo de Robledo mountain pass,{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Complejo Volcánico Cerro Blanco}} the south-eastward trending El Médano plain{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} and the Robledo valley.{{sfn|Bustos|Báez|Norini|Arnosio|2019|p=122}}
About {{convert|8|km}} northeast of Cerro Blanco lies a {{convert|1.2|km|adj=mid}} wide and {{convert|20|m|adj=mid}} deep vent known as El Escondido{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Complejo Volcánico Cerro Blanco}} or El Oculto.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} It does not have a strong topographic expression but is conspicuous on satellite images as a semi-circular patch of darker material.{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Complejo Volcánico Cerro Blanco}} Gravimetric analysis has found a number of gravity anomalies around the caldera.{{sfn|Di Filippo|Di Nezza|Colombi|Viramonte|2008|p=204}}
= Surrounding terrain =
The terrain northeast-east from Cerro Blanco is covered by its ignimbrites and by Plinian fallout deposits{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=224}} which radiate away from the calderas.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=27}} Cerro Blanco lies at the southwestern end of the Carachipampa valley,{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} a volcano-tectonic depression flanked by normal faults which extends to Carachipampa. This depression appears to have formed in response to north-south tectonic extension of the Puna{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Litosoma 1: Depresión volcano-tectónica Campo de la Piedra Pómez}} and is covered by volcanic deposits from Cerro Blanco.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} These volcanic deposits form the "Campo de Pedra Pomez"{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|loc=Mapa}} and extend {{convert|50|km}} away from the volcano.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=142}} To the north, the El Niño scarp{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=12}} of the El Niño caldera{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=14}} separates the Cerro Blanco caldera from the Purulla valley.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=12}}
Other valleys are the Purulla valley northwest from Cerro Blanco and Incahuasi due north; all three contain both volcanic deposits from Cerro Blanco and salt flats{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} or lakes.{{sfn|Kay|Coira|Mpodozis|2008|p=163}} In the Incahuasi valley an ignimbrite also known as the "white ignimbrite" reaches a distance of over {{convert|25|km}}.{{sfn|Kay|Coira|Mpodozis|2008|p=154}} Wind has carved {{convert|20|to|25|m|adj=mid}} deep channels into the ignimbrites.{{sfn|Milana|Forman|Kröhling|2010|p=219}}
= Aeolian landscapes =
One of the most spectacular aeolian{{efn|"Aeolian" is a scientific term for structures or landforms generated by wind.}} landscapes is found at Cerro Blanco,{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} where large wind-formed ripple marks occur.{{sfn|Milana|2009|p=343}} These ripples cover Cerro Blanco ignimbrites{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|pp=9–10}} and reach heights of {{convert|2.3|m}} and wavelengths of {{convert|43|m}}, making them the largest ripples known on Earth and comparable to similar ripple fields on Mars.{{sfn|Milana|2009|p=343}}{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=137}} Wind-driven erosion of ignimbrites{{efn|The source rocks for the ripples include both older volcanic rocks and rocks erupted by Cerro Blanco, with different main components in different areas.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1913}} Alluvial fans contribute additional sediments in some places.{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=4}}}} has generated the ripples, which consist of gravel, pebbles and sand{{sfn|Milana|2009|p=344}} and are covered with gravel.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1912}} Smaller gravelly ripples lie atop the larger ripples and troughs{{sfn|Milana|2009|p=343}} and there are intermediate sized forms ({{convert|0.6|-|0.8|m}} high); they may be precursors to the large ripples and make up most of the ripples in the fields.{{sfn|Milana|2009|p=344}} Their wind-driven movement is fast enough that trails abandoned four years before are already partly covered with them.{{sfn|Milana|2009|p=344}}
The ripple marks cover areas of about {{convert|150|km2}} or {{convert|600|km2}} in the Carachipampa and {{convert|80|km2}} or {{convert|127|km2}} in the Purulla{{efn|The Purulla valley{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} appears to be the same valley as the Puruya valley.{{sfn|Milana|2009|p=343}}}} valley. A field of large ripples covers an area of {{convert|8|km2}} in the Purulla valley{{sfn|Milana|2009|p=343}}{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1913}} and is accompanied by yardangs; this field is also the place where the largest ripples occur.{{sfn|Milana|2009|p=344}}
Various wind-dependent mechanisms have been proposed to explain their large size, including the presence of roll vortexes, Helmholtz instability-like phenomena, atmospheric gravity waves{{sfn|Milana|2009|p=346}} or creep-like movement when pumice fragments and sand are lifted from the ground by wind and fall back.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1919}} The latter view envisages that undulating terrain triggers the development of ripples through the accumulation of gravel and sand at such undulations.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1926}} Their formation appears to be influenced by whether the rock material available can be moved by wind{{sfn|Milana|2009|p=345}} while a role of the bedrock structure or the size of the material is controversial.{{sfn|Milana|Forman|Kröhling|2010|p=220}}
File:Campo de Piedra Pómez, Catamarca, Argentina.jpgs|alt=Photo of white wave-like rocks]]
Wind has also formed demoiselles{{efn|Demoiselles are landforms originating from soft volcanic deposits, when rock fragments or large boulders prevent the erosion of the deposits underneath, leaving columns or pillars behind.}} and yardangs in the ignimbrites.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1913}} These are particularly well expressed in the Campo de Piedra Pomez area{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=449}}{{efn|Also known as Mar de Piedra Pomez.}} southeast of the Carachipampa valley,{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=448}} a {{convert|25|x|5|km|adj=mid}} area where yardangs, hoodoos and wind-exposed cliffs create a majestic landscape. The structures reach widths of {{convert|2|-|20|m}}{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=449}} and heights of {{convert|10|m}}{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=460}} and form an array-like assembly.{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=468}} They have fluted surfaces.{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=460}} The yardangs appear to form beginning from either a pre-existing topographic elevation{{sfn|Favaro|Hugenholtz|Barchyn|2021|p=12}} or a fumarolic vent where the rock has been hardened, and eventually develop through a series of early, intermediate and late yardang forms{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=466}} as wind and wind-transported particles erode the rocks.{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=469}} Their layout may be influenced by regional tectonics, pre-existent topography and the patterns formed by the ignimbrite deposits.{{sfn|Favaro|Hugenholtz|Barchyn|2021|p=10}} Exposed rocks are often covered with brown, orange or beige desert varnish{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=450}} and sometimes are oversteepened and collapse.{{sfn|Favaro|Hugenholtz|Barchyn|2021|p=4}}
Bedrock ridges are cut into ignimbrites of the Incahuasi valley.{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=136}} This terrain gradually leads over into the megaripple-covered surface through an increased gravel cover. The development of these megaripples appears to have been influenced by the underlying bedrock ridges{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=138}} which move along with the overlying ripples. These bedrock ridges are formed through erosion by wind and by wind-transported particles,{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=141}} it is not clear how they are then exposed from the ripples.{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=143}} Additional aeolian landforms in the region are known and include ventifacts and so-called "aeolian rat tails";{{sfn|Favaro|Hugenholtz|Barchyn|2017|p=92}} these are small structures which form when erosion-resistant rock fragments slow wind erosion in their lee, thus leaving a tail-like area where less rock is eroded.{{sfn|Favaro|Hugenholtz|Barchyn|2017|p=93}} Wind streaks occur in groups.{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=11}}
The Campo de Piedra Pómez makes up the {{ill|Campo de Piedra Pómez Natural Protected Area|es|Área natural protegida Campo de Piedra Pómez}}, a protected area of Catamarca Province. It was among the finalists in the "Seven Wonders of Argentina" contest but was not selected when the results were announced in 2019. The area is also part of the {{ill|Lagunas altoandinas y puneñas de Catamarca|es}} Ramsar site.{{sfn|Elissondo|Farías|2024|p=51}}
= Regional =
Cerro Blanco is located south of the southern end of the Filo Colorado{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=280}}/Los Colorados mountain range{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} and at the eastern end of the {{Interlanguage link|Cordillera San Buenaventura|lt=Cordillera de San Buenaventura|es||WD=}}.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}} The Cordillera de San Buenaventura marks the southern margin of the Puna{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Introducción}} and extends west-southwestwards from Cerro Blanco to the volcanoes San Francisco and Falso Azufre{{sfn|Kay|Coira|Mpodozis|2008|p=163}} and the Paso de San Francisco.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|loc=Mapa}} It marks the boundary between the steep subduction to the north from the shallower subduction to the south.{{sfn|Bustos|Báez|Norini|Arnosio|2019|p=123}}
A series of andesitic to dacitic stratovolcanoes ranging in age from 1 to 6 million years old make up the Cordillera de San Buenaventura,{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=39}}{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=225}} and Quaternary basaltic volcanoes are dispersed over the wider region.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} In the surroundings of Cerro Blanco lies the Cueros de Purulla volcano {{convert|25|km}} north and the Nevado Tres Cruces-El Solo-Ojos del Salado complex farther west.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}}
Geology
Subduction of the Nazca Plate beneath the South America Plate occurs in the Peru-Chile Trench at a rate of {{convert|6.7|cm/year|in/year}}. It is responsible for the volcanism in the Andes, which is localised in three volcanic zones known as the Northern Volcanic Zone, Central Volcanic Zone and Southern Volcanic Zone.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} Cerro Blanco is part of the Andean Central Volcanic Zone (CVZ), and one of its southernmost volcanoes.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=3}} The CVZ is sparsely inhabited and recent volcanic activity is only poorly recorded;{{sfn|Pritchard|Simons|2004|p=2}} Lascar is the only regularly active volcano there.
The CVZ extends over the Altiplano-Puna{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=3}} where calc-alkaline volcanism has been ongoing since the Miocene.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}} Characteristic for the CVZ are the large fields of ignimbritic volcanism and associated calderas, chiefly in the Altiplano-Puna volcanic complex. In the southern part of the CVZ such volcanic systems are usually small and are poorly studied.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Introducción}} During the Neogene, volcanism commenced in the Maricunga belt and eventually shifted to its present-day location in the Western Cordillera.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=3}} Volcanic activity occurred in bouts, named "flare-ups".{{sfn|Bardelli|Zhang|Bustos|Arnosio|2025|p=2}} The subduction of submarine ridges influences volcanism in the overlying crust; Cerro Blanco appears to overlie the subducted portion of the Copiapo Ridge. Tectonic processes also took place, such as two phases of east-west compression; the first was in the middle Miocene and the second began 7 million years ago.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Marco Geológico}}
Volcanism in the southern Puna region initiated about 8 million years ago and took place in several stages, which were characterised by the emplacement of lava domes and of ignimbrites such as the 4.0–3.7 million year old Laguna Amarga-Laguna Verde ignimbrites. Some of the domes are located close to the border with Chile in the Ojos del Salado and Nevado Tres Cruces area. Later there also were mafic eruptions, which generated lava flows in the Carachipampa and Laguna de Purulla area.{{sfn|Kay|Coira|Mpodozis|2006|p=500}} The late mafic eruption products and the Cerro Blanco volcanics are geologically classified as making up the "Purulla Supersynthem".{{sfn|Bustos|Báez|Norini|Arnosio|2019|p=136}} From the Miocene to the Pliocene the La Hoyada volcanic complex was active{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}} southwest of Cerro Blanco{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Figura 2}} in the form of several stratovolcanoes{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=2}} that produced the Cordillera de San Buenaventura;{{sfn|Báez|de Silva|Chiodi|Bustos|2020|p=2}} afterwards came a two-million year long hiatus.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Resultados: Estratigrafía del CVCB}} Cerro Blanco overlies this volcanic complex{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}} and outcrops of La Hoyada are found inside{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=18}} and around the calderas;{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=19}} sometimes it is considered part of La Hoyada{{sfn|de Silva|Roberge|Bardelli|Báez|2022|p=398}}{{sfn|Barcelona|Chiodi|Yagupsky|Peri|2023|p=3}} or of a wider Cordillera de San Buenaventura volcanic system.{{sfn|Bardelli|Zhang|Bustos|Arnosio|2025|p=2}}
The basement is formed by metamorphic, sedimentary and volcanic rocks of Neoproterozoic to Paleogene age.{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=2}} The former are particularly represented east of Cerro Blanco and go back in part to the Precambrian, the latter occur mainly west and consist of Ordovician volcano-sedimentary units. Both are intruded by granitoids and mafic and ultramafic rocks. Permian sediments and Paleogene rocks complete the nonvolcanic geology.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Marco geológico}} The crust is {{convert|50|-|55|km}} thick.{{sfn|Lucci|Miri|Bustos|Arnosio|2025|p=4}} Local tectonic structures{{sfn|Kay|Coira|Mpodozis|2006|p=501}} such as borders between crustal domains{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=183}} and northeast-southwest trending faults might control the position of volcanic vents.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Época eruptiva Campo de la Piedra Pómez}} Tectonic processes may also be responsible for the elliptic shape of the Cerro Blanco caldera.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Litosoma 2: Caldera del Cerro Blanco}} There is evidence of intense earthquakes during the Quaternary{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Época eruptiva Campo de la Piedra Pómez}} and some faults - such as these north of the volcano{{sfn|Elissondo|Farías|2024|p=55}} and the El Peñón Fault - have been recently active.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Cortaderas}}
= Composition =
Most of the volcanic rocks found at Cerro Blanco are rhyolites{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=186}}{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Elementos mayoritarios}} and define two suites of calc-alkaline rocks.{{sfn|de Silva|Roberge|Bardelli|Báez|2022|p=399}} Minerals encountered in the volcanic rocks include biotite, feldspar, ilmenite, magnetite quartz, less commonly amphibole, clinopyroxene, orthopyroxene, and rarely apatite, allanite-epidote, muscovite, titanite and zircon.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=7}} Fumarolic alteration on the caldera ground has produced alunite, boehmite and kaolinite and deposited opal, quartz and silica.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=3}}
Magma temperatures have been estimated to range between {{convert|600|and|820|C}}. The rhyolites erupted at Cerro Blanco appear to form from andesite magmas, through processes such as fractional crystallisation, the absorption of crustal materials{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=3}}{{sfn|de Silva|Roberge|Bardelli|Báez|2022|p=419}} and the entry and mixing of new magmas.{{sfn|Lucci|Miri|Bustos|Arnosio|2025|p=4}} The magmatic system spans the entire thickness of the crust;{{sfn|Bardelli|Zhang|Bustos|Arnosio|2025|p=2}} the rhyolites are stored in a magma chamber at about {{convert|2.5|km}} depth.{{sfn|Barcelona|Chiodi|Yagupsky|Peri|2023|p=9}} Magma composition has changed over time, initially becoming more mafic{{efn|A volcanic rock relatively rich in iron and magnesium, relative to silicium.}} before returning to felsic{{efn|Volcanic rocks enriched in elements that are not easily included into a crystal, such as aluminium, potassium, silicium and sodium.}} magmas.{{sfn|Bardelli|Zhang|Bustos|Arnosio|2025|p=10}}
Climate and vegetation
Mean temperatures in the region are below {{convert|0|C}} but daily temperature fluctuations can reach {{convert|30|C-change}} and insolation is intense.{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=449}} Vegetation in the region is classified as a high desert vegetation.{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=449}} It is bushy and relatively sparse, with thicker plant growth found at hot springs{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=4}} and in the craters where humid soils occur, perhaps wetted by ascending vapour.{{sfn|Conde Serra|2016|p=4}}
Annual precipitation is less than {{convert|200|mm/year|in/year}} and moisture in the region comes from the Amazon in the east.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=24}} This aridity is a consequence of the region being within the Andean Arid Diagonal, which separates the northern monsoon precipitation regime from the southern westerlies precipitation regime,{{sfn|Mors|Astini|Gomez|2019|p=201}} and the rain shadow of the Andes, which prevents eastern moisture from reaching the area.{{sfn|Favaro|Hugenholtz|Barchyn|2021|p=2}} The climate of the region has been arid since the Miocene but fluctuations in humidity occurred especially during the last glacial{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=138}} and between 9,000–5,000 years ago when climate was wetter.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=151}} The aridity results in a good preservation of volcanic products.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=14}}
Strong winds blow at Cerro Blanco.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1913}} Average windspeeds are unknown{{sfn|Milana|2009|p=344}} owing to the lack of measurements in the thinly populated region{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=4}} and there are contrasting reports on wind speed extremes{{sfn|Hugenholtz|Barchyn|Favaro|2015|p=136}} but gusts of {{convert|20|-|30|m/s}} have been recorded in July and wind speeds in early December 2010 regularly exceeded {{convert|33|km/h|m/s|order=flip}}.{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1916}} Winds blow mainly from the northwest,{{sfn|de Silva|Spagnuolo|Bridges|Zimbelman|2013|p=1913}} and have been stable in that orientation for the past 2 million years. This favoured the development of extensive aeolian landforms{{sfn|Aulinas|Garcia-Valles|Fernandez-Turiel|Gimeno|2015|p=455}} although winds coming from other directions also play a role.{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=14}} Thermal winds are generated by differential heating of surfaces in the region,{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=6}} and diurnal winds are controlled by the day-night cycle.{{sfn|Favaro|Hugenholtz|Barchyn|2021|p=3}} Winds kick up pyroclastic material, generating dust storms{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} which remove dust and sand from the area. Some of the dust is carried out into the Pampa, where it forms loess deposits,{{sfn|Milana|2009|p=343}} and dust deposition at Cerro Blanco can quickly obscure vehicle tracks.{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=17}} Dust devils have been observed.
Eruption history
The Cerro Blanco volcanic system has been active during the Pleistocene and Holocene.{{sfn|Conde Serra|2016|p=3}} The oldest{{efn|The 6.3 ± 0.2 million years old Rosada Ignimbrite may have originated in the area of Cerro Blanco.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=23}} It has been hypothesized that the Aguada Alumbrera Ignimbrite, which crops out south of Cerro Blanco, might also have originated there.{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Discusión}} In 2025, two additional ignimbrites north and south of Cerro Blanco - the 8.1-7.1 million years old Rincón north and the 9.2-8.4 million years old Agua Negra ignimbrite south of Cerro Blanco - were associated with the Cerro Blanco system.{{sfn|Lucci|Miri|Bustos|Arnosio|2025|p=2}}}} volcanic rock formation related to Cerro Blanco is the over 750,000 years old so-called "Cortaderas Synthem". Its outcrops are limited to the Laguna Carachipampa area. It consists of two ignimbrites, the Barranca Blanca Ignimbrite and the Carachi Ignimbrite, which erupted a long time apart. The former is a massive, white, unwelded ignimbrite, the latter is massive, rose-coloured and weakly welded. They contain pumice and fragments of extraneous rock{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Cortaderas}} and consist of rhyodacite unlike later units.{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=225}} These ignimbrites, whose chronological relation to each other is unknown, were probably produced by "boil-over" of a volcanic vent rather than by an eruption column.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Época eruptiva Cortaderas}} Their exact source vent is unknown.{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=225}}
The Campo de la Piedra Pómez{{efn|"Field of pumice stone"{{sfn|Favaro|Hugenholtz|Barchyn|Gough|2020|p=3}}}} Ignimbrite covers an area of about {{convert|250|km2}} north of Cerro Blanco and has a volume of about {{convert|17|km3}}. It was emplaced in two units a short time from each other. They both contain pumice and fragments of country rock, similar to the Cortaderas Synthem. The most reliable radiometrically obtained dates for this ignimbrite indicate an age of 73,000 years;{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Campo de la Piedra Pómez (SCPP)}} previous estimates of their age were 560,000 ± 110,000 and 440,000 ± 10,000 years before present.{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=186}} The 73,000 age is considered to be more reliable{{sfn|Coira|Cisterna|2021|p=33}} but in 2022 an age of 54,600 ± 600 years was proposed for this eruption.{{sfn|de Silva|Roberge|Bardelli|Báez|2022|p=395}}{{sfn|Báez|Bardelli|Sampietro-Vattuone|Peña Monné|2024|p=10}} The eruption reached level 6 on the Volcanic Explosivity Index{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Índice de explosividad volcánica de las erupciones del CVCB}} and is also known as the first cycle ignimbrite.{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=176}} The eruption has been described as the largest caldera collapse at Cerro Blanco{{sfn|Báez|de Silva|Chiodi|Bustos|2020|p=2}} but the source vent for this eruption has not been found, and there is no agreement whether the Robledo Caldera is the source. The volcano-tectonic depression northeast of Cerro Blanco{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Litosoma 1: Depresión volcano-tectónica Campo de la Piedra Pómez}} or the Pie de San Buenaventura and El Niño scarps have been proposed as a source.{{sfn|de Silva|Roberge|Bardelli|Báez|2022|p=398}}{{sfn|Barcelona|Chiodi|Yagupsky|Peri|2023|p=3}} As with the Cortaderas Synthem, this ignimbrite was produced by a boiling-over vent and the pyroclastic flows{{efn|Pyroclastic flows are ground-hugging flows of hot ash and gas which move at high speed.{{sfn|de Silva|Bailey|Mandt|Viramonte|2010|p=461}}}} lacked the intensity to override local topography. It is possible that the eruption proceeded in two phases, with a magmatic reinvigoration of the system between the two.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Época eruptiva Campo de la Piedra Pómez}} After the ignimbrite cooled and solidified, cracks formed in the rocks and were later eroded by wind.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Campo de la Piedra Pómez (SCPP)}} The Campo de la Piedra Pómez Ignimbrite crops out mainly on the southeastern and northwestern sides of the Carachipampa valley, as between these two outcrops it was buried by the later Cerro Blanco ignimbrite; other outcrops lie in the Incahuasi and Purulla valleys.{{sfn|Báez|de Silva|Chiodi|Bustos|2020|p=3}} The Robledo and Pie de San Buenaventura calderas were formed during the early activity.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=28}}{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=141}}
Several tephra layers identified in various sites of northwestern Argentina may come from Cerro Blanco: The 54,000 years old "Tuff B"/"Cerro Paranilla"/VP ash (which may be a product of the Campo de la Piedra Pómez eruption{{sfn|Báez|Bardelli|Sampietro-Vattuone|Peña Monné|2024|p=10}}), a 22,700–20,900 years old tephra deposit in a lake of northwestern Argentina and the 10,000 years old "El Paso"/V0 ash.{{sfn|Báez|Bardelli|Sampietro-Vattuone|Peña Monné|2024|p=4}} The volcano appears to have erupted repeatedly during the Holocene.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=151}}{{sfn|Ratto|Montero|Hongn|2013|p=62}} Explosive eruptions took place between 8,830 ± 60 and 5,480 ± 40 years before present and deposited tephra{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=4}} and ignimbrites south of Cerro Blanco.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=147}} Two tephra deposits in the Calchaquí valley have been attributed to Cerro Blanco; one of these is probably linked to the 4.2 ka eruption. Sulfur oxide gases from recent activity at Cerro Blanco may have degraded rock paintings in the Salamanca cave, {{convert|70|km}} south of the volcano.
= 4.2 ka eruption =
A large eruption occurred approximately 4,200 years ago. Block-and-ash flow deposits (classified as "CB{{sub|1}}"{{efn|CB{{sub|1}} is considered to be pre-caldera, CB{{sub|2}} as syn-caldera and CB{{sub|3}} as post-caldera.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=21}}}}) found around the caldera have been interpreted as indicating that a lava dome was erupted prior to the caldera collapse at Cerro Blanco, although it is not clear by how much this eruption predates the main eruption.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} Deposits from this lava dome-forming episode consist of blocks which sometimes exceed sizes of {{convert|1|m}} embedded within ash and lapilli.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=6}}
A vent opened up, presumably on the southwestern side of the future caldera, and generated a 27 km (17 mi)-high eruption column.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} Fissure vents may have opened as well.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=13}} After an initial, unstable phase during which alternating layers of lapilli and volcanic ash (unit "CB{{sub|2}}1") fell out{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} and covered the previous topography,{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=6}} a more steady column deposited thicker rhyolitic tephra layers (unit "CB{{sub|2}}2").{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} At this time, a change in rock composition occurred, perhaps due to new magma entering the magma chamber.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}}
Windy conditions dispersed most of the tephra to the east-southeast,{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=21}} covering a surface of about {{convert|500000|km2}} with about {{convert|170|km3}} of tephra.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=26}} The thickness of the tephra decreases{{efn|A thicker region is found at Tafí del Valle{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=13}} {{convert|200|km}} away from Cerro Blanco, where tephra reaches thicknesses of over {{convert|3|m}};{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=6}} climatological factors may have induced a thicker fallout there.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=24}}}} eastwards away from Cerro Blanco{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=13}} and reaches a thickness of about {{convert|20|cm}}{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=6}} {{convert|370|km}} away from Cerro Blanco in Santiago del Estero.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=7}} The tephra deposits in the Valles Calchaquies and Tafi del Valle area are known as mid-Holocene ash, Ash C, Buey Muerto ash, and V1 ash layer,{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=22}} and it has been found northeast of Antofagasta de la Sierra. The tephra from the 4.2 ka eruption has been used as a chronological marker in the region.{{sfn|Ratto|Rodríguez González|Basile|Pérez Torrado|2018|p=82}} Modelling suggests the tephra might have reached Brazil and Paraguay farther east.{{sfn|Fernandez-Turiel|2019|p=27}} Close to the vent, tephra fallout was emplaced on the Cordillera de San Buenaventura.{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=144}} Some of the tephra deposits close to the caldera have been buried by sediments, or soil development has set in.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=6}} Wind removed the volcanic ash, leaving block and lapilli sized pebbles that cover most of the deposits; in some places dunes have formed from pebbles.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Cerro Blanco (SCB)}}
Pyroclastic flows also formed, perhaps through instability of the eruption column (unit "CB{{sub|2}}3"),{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} and spread away from the volcano through surrounding valleys. They reached distances of {{convert|35|km}} from Cerro Blanco{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=8}} and while many of their up to {{convert|30|m|adj=on}} thick deposits are heavily eroded well-exposed outcrops occur south of the volcano at Las Papas. They consist of pumice fragments of varying sizes embedded within ash,{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=9}} as well as country rock that was torn up and embedded in the flows.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=22}} In the south, pyroclastic flows descending valleys partially overflowed their margins to flood adjacent valleys{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|pp=14–15}} and reached the {{Interlanguage link|Bolsón de Fiambalá|lt=|es||WD=}}.{{sfn|Seggiaro|Hongn|Castillo|Pereyra|2006|p=29}} North-westward and north-eastward flowing ignimbrites generated ignimbrite fans in the Purulla and Carachipampa valleys, respectively.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|pp=9–10}}
The deposits from this event are also known as Cerro Blanco Ignimbrite, as Ignimbrite of the second cycle or El Médano or Purulla Ignimbrite.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Cerro Blanco (SCB)}} Formerly these were dated to be 12,000 and 22,000 years old, respectively, and related to the Cerro Blanco and (potentially) Robledo calderas.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=281}} Cerro Blanco is considered to be the youngest caldera of the Central Andes.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=279}}
With a volume of {{convert|110|km3}} of tephra,{{efn|A dense rock equivalent of {{convert|83|km3}} has been estimated.{{sfn|Vélez|Bustos|Euillades|Blanco|2020|p=3}}}} the 4.2 ka eruption has been tentatively{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=16}} classified as 7 on the Volcanic Explosivity Index,{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} making it comparable to the largest known Holocene volcanic eruptions.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=26}} It is the largest known Holocene eruption in the Central Andes and of the Central Volcanic Zone, larger than the 1600 Huaynaputina eruption, the largest historical eruption of the Central Volcanic Zone.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=26}} Most of the erupted volume was ejected by the eruption column, while only about {{convert|8.5|km3}} ended up in pyroclastic flows.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=4}} Caldera collapse occurred during the course of the eruption, generating the unusually small (for the size of the eruption) Cerro Blanco caldera{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=15}} through a probably irregular collapse.{{sfn|Di Filippo|Di Nezza|Colombi|Viramonte|2008|p=203}}
Some authors have postulated that mid-Holocene eruptions of Cerro Blanco impacted human communities in the region.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Introducción}} Tephra deposits in the Formative Period archaeological site of Palo Blanco in the Bolsón de Fimabalá have been attributed to Cerro Blanco,{{sfn|Montero López|Hongn|Seggiaro|Marrett|2009|p=138}} as is a tephra layer in an archaeological site close to Antofagasta de la Sierra.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} At Cueva Abra del Toro in northeastern Catamarca Province,{{sfn|Carbonelli|Winocur|Medina|Carminatti|2021|p=125}} rodents disappeared after the eruption and there was a change in human activity.{{sfn|Carbonelli|Winocur|Medina|Carminatti|2021|p=134}} The eruptions of Cerro Blanco may – together with more local seismic activity – be responsible for the low population density of the Fiambalá region, Chaschuil valley and western Tinogasta Department during the Archaic period between 10,000 and 3,000 years ago.{{sfn|Ratto|Montero|Hongn|2013|p=58–60}} The eruption is not recorded in the known oral tradition of the region. The 4.2 kiloyear climatic event occurred at the same time; it may be in some way related to the Cerro Blanco eruption.{{sfn|Fernandez-Turiel|2019|p=44}}
= Post–4.2 ka activity =
After the caldera-forming eruption, renewed effusive eruptions generated the lava domes southwest of and on the margin of the Cerro Blanco caldera{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=14}} and phreatic/phreatomagmatic activity occurred.{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=225}} The current topography of Cerro Blanco is formed by the deposits from this stage,{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Sintema Cerro Blanco (SCB)}} whose activity was influenced by intersecting fault systems{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=281}} including a northeast-southwest trending fault that controls the position of lava domes outside and fumarolic vents within the caldera.{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=3}}
It's not clear how long after the 4.2 ka eruption this activity occurred, but it has been grouped as the "CB{{sub|3}}" unit (the domes are classified as "CB{{sub|3}}1"). This activity also generated block-and-ash deposits (unit "CB{{sub|3}}2") on the caldera floor.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} The domes are of rhyolitic composition, the block-and-ash deposits consist of ash and lapilli{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=14}} and appear to have formed when domes collapsed.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=22}} As lava domes grow, they tend to become unstable as their vertical extent increases until they collapse. Additionally, internally generated explosions appear to have occurred at Cerro Blanco as lava domes grew and sometimes completely destroyed the domes.{{sfn|Báez|Chiodi|Bustos|Arnosio|2016|p=234}} The 3.5 ka "Alemanía" ash in northwestern Argentina may be a product of post-4.2 ka eruptions of Cerro Blanco.{{sfn|Báez|Bardelli|Sampietro-Vattuone|Peña Monné|2024|p=4}}
Present-day status
No{{efn|{{Interlanguage link|Ferdinand von Wolff|lt=|de||WD=}} linked an 1883 flood in the Bolsón de Fiambalá to an explosion at a volcano he named "Cerro Blanco".}} historical eruptions have been observed or recorded at Cerro Blanco,{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Introducción}} but various indicators imply that it is still active.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Implicaciones para la peligrosidad del CVCB}} In 2007–2009, seismic swarms were recorded at less than {{convert|15|km}} depth.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Introducción}}
Geothermal activity occurs at Cerro Blanco, and manifests itself on the caldera floor through hot ground, fumaroles,{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=3}} diffuse degassing of {{chem|C|O|2|link=Carbon dioxide}}{{sfn|Vélez|Bustos|Euillades|Blanco|2020|p=2}} at a rate of {{convert|180|kg/day|g/s}}, and reportedly hot springs{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} and mud volcanoes;{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=285}} phreatic eruptions may have occurred in the past.{{sfn|Vélez|Bustos|Euillades|Blanco|2020|p=2}} Fumaroles release mainly carbon dioxide and water vapour with smaller amounts of hydrogen, hydrogen sulfide and methane;{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=4}} they reach temperatures of {{convert|93.7|C}} while temperatures of {{convert|92|C}} have been reported for the hot ground. Past intense hydrothermal activity appears to have emplaced silicic material{{efn|Amorphous silica, opal and quartz{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=3}}}} up to {{convert|40|cm}} thick,{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=3}} and steam explosions took place within the caldera.{{sfn|Conde Serra|2016|p=4}} Active fumaroles and clay cones formed by fumarolic activity are also found in the phreatic crater.{{sfn|Conde Serra|2016|p=5}} The geothermal system appears to consist of an aquifer hosted within pre-volcano rocks and heated by a magma chamber from below, with the Cerro Blanco ignimbrites acting as an effective seal.{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=4}} Supporting the effectiveness of the seal, total emissions of carbon dioxide exceed {{convert|180|kg/day|g/s}} but are considerably lower than at other active geothermal systems of the Andes.{{sfn|Lamberti|Chiodi|Agusto|Filipovich|2020|p=10}} It has been prospected for possible geothermal power generation.{{sfn|Conde Serra|2016|p=2}}{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=13}}
A second geothermal field related to Cerro Blanco is located south of the volcano and is known as Los Hornitos{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=2}} or Terma Los Hornos,{{sfn|Mors|Astini|Gomez|2019|p=201}} in the area of the Los Hornos and Las Vizcachas creeks.{{sfn|Mors|Gomez|Astini|Celestian|2022|p=1253}} It is located in a ravine and consists of three clusters of bubbling pools, hot springs, up to {{convert|2|m}} high travertine domes that discharge water and extinct geyser cones;{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=3}} these cones give the field its name and some of them were active until 2000.{{sfn|Mors|Astini|Gomez|2019|p=201}} Water temperatures range between {{convert|32|-|67.4|C|adj=on}},{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=3}} the vents are settled by extremophilic organisms.{{sfn|Mors|Astini|Gomez|2019|p=203}} The springs deposit travertine,{{efn|Travertines are non-marine carbonates deposited by ascending deep waters, when carbon dioxide degasses and the pH of the water increases, prompting carbonate precipitation.{{sfn|Iturra|Mors|Astini|Gómez|2020|pp=3,4}}}}{{sfn|Mors|Astini|Gomez|2019|p=201}} forming cascades, dams, pools and terraces of varying size,{{sfn|Mors|Astini|Gomez|2019|p=203}} as well as pebbles.{{sfn|Mors|Gomez|Astini|Celestian|2022|p=1258}} Fossil travertine deposits are also found and form a carbonate rock plateau{{sfn|Mors|Astini|Gomez|2019|p=205}} generated by waters rising from a fissure.{{sfn|Iturra|Mors|Astini|Gómez|2020|p=22}} The Los Hornos system has been interpreted as a leak from the Cerro Blanco geothermal system,{{sfn|Iturra|Mors|Astini|Gómez|2020|p=7}} and south-westward trending fault systems might connect it to the Cerro Blanco magmatic system.{{sfn|Chiodi|Tassi|Báez|Filipovich|2019|p=12}}
= Deformation and hazards =
Subsidence at a rate of {{convert|1|-|3|cm/year|in/year}} has been noted at the caldera since 1992{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=25}} in InSAR images. The rate of subsidence was originally believed to have decreased from over {{convert|2.5|cm/year|in/year}} between 1992 and 1997 to less than {{convert|1.8|cm/year|in/year}} between 1996 and 2000{{sfn|Pritchard|Simons|2004|p=26}} and ceased after 2000.{{sfn|Kay|Coira|Mpodozis|2008|p=154}} Later measurements found that the subsidence rate instead had been steady between 1992 and 2011 with {{convert|1|cm/year|in/year}}, but with a faster phase between 1992 and 1997 and a slower phase between 2014 and 2020 of {{convert|0.7|cm/year|in/year}},{{sfn|Vélez|Bustos|Euillades|Blanco|2020|p=11}} and the location the subsidence is centred on has changed over time.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=283}} The subsidence occurs at {{convert|9|-|14|km}} depth{{sfn|Pritchard|Simons|2004|p=34}} and has been related to either a cooling magmatic system, changes in the hydrothermal system{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=281}}{{sfn|Vélez|Bustos|Euillades|Blanco|2020|p=11}} or to subsidence that followed the 4.2 ka eruption and is still ongoing. Uplift in the area surrounding the caldera has also been identified.{{sfn|Brunori|Bignami|Stramondo|Bustos|2013|p=286}}
The Argentinian Mining and Geological Service has ranked Cerro Blanco eight in its scale of hazardous volcanoes in Argentina.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}} Rhyolitic caldera systems like Cerro Blanco can produce large eruptions separated by short time intervals. Future activity might involve either a "boiling-over" of pyroclastic flows or Plinian eruptions. Given that the region is sparsely inhabited, the primary effects of a new eruption at Cerro Blanco would come from the eruption column, which could spread tephra eastwards and impact air traffic there. Also, pyroclastic flows could through narrow valleys reach the Bolsón de Fiambalá valley {{convert|50|km}} south of Cerro Blanco, where many people live.{{sfn|Báez|Arnosio|Chiodi|Ortiz-Yañes|2015|loc=Implicaciones para la peligrosidad del CVCB}} {{As of|2024}}, the volcano is unmonitored.{{sfn|Elissondo|Farías|2024|p=53}}
Research history
Research in the region commenced in the 19th century and was mainly concentrated on mining.{{sfn|Montero López|Hongn|Affonso Brod|Seggiaro|2010|loc=Introducción}} Cerro Blanco received attention from scientists after satellite images in the early 21st century observed deflation of the caldera.{{sfn|Kay|Coira|Mpodozis|2006|p=499}} A number of Holocene tephra layers have been identified in the region, but linking these to specific eruptions has been difficult{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=2}} until 2008–2010 when some of these were linked to the Cerro Blanco vent.{{sfn|Fernandez-Turiel|Perez–Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=4}} Scientific interest rose in the 2010s due to the discovery of the large 4.2 ka eruption.{{sfn|Báez|Bustos|Chiodi|Reckziegel|2020|p=2}}
See also
{{Portal|Volcanoes}}
Notes
{{notelist}}
References
= Sources =
{{refbegin}}
- {{Cite journal|last1=Aulinas|first1=M.|last2=Garcia-Valles|first2=M.|last3=Fernandez-Turiel|first3=J. L.|last4=Gimeno|first4=D.|last5=Saavedra|first5=J.|last6=Gisbert|first6=G.|date=30 March 2015|title=Insights into the formation of rock varnish in prevailing dusty regions: Rock Varnish in Dusty Environments|journal=Earth Surface Processes and Landforms|language=en|volume=40|issue=4|pages=447–458|doi=10.1002/esp.3644|hdl=10261/123527|s2cid=140580739 |hdl-access=free|issn=1096-9837}}
- {{cite journal |last1=Báez |first1=Walter |last2=Arnosio |first2=Marcelo |last3=Chiodi |first3=Agostina |last4=Ortiz-Yañes |first4=Agustín |last5=Viramonte |first5=José Germán |last6=Bustos |first6=Emilce |last7=Giordano |first7=Guido |last8=López |first8=José Francisco |title=Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina |trans-title=Stratigraphy and evolution of the Cerro Blanco Volcanic Complex, Puna Austral, Argentina |language=Spanish |journal=Revista Mexicana de Ciencias Geológicas |year=2015 |volume=32 |issue=1 |pages=29–49 |url=http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1026-87742015000100004|issn=2007-2902 }}
- {{Cite journal|last1=Báez|first1=Walter Ariel|last2=Chiodi|first2=Agostina|last3=Bustos|first3=Emilce|last4=Arnosio|first4=Marcelo|last5=Viramonte|first5=José German|last6=Giordano|first6=Guido|last7=Alfaro ortega|first7=Blanca|date=10 May 2016|title=Mecanismos de emplazamiento y destrucción de los domos lávicos asociados a la caldera del Cerro Blanco, Puna Austral|url=http://ppct.caicyt.gov.ar/index.php/raga/article/view/7942|journal=Revista de la Asociación Geológica Argentina|language=es|volume=74|issue=2|pages=223–238|issn=1851-8249}}
- {{cite journal |last1=Báez |first1=W. |last2=Bustos |first2=E. |last3=Chiodi |first3=A. |last4=Reckziegel |first4=F. |last5=Arnosio |first5=M. |last6=de Silva |first6=S. |last7=Giordano |first7=G. |last8=Viramonte |first8=J.G. |last9=Sampietro-Vattuone |first9=M.M. |last10=Peña-Monné |first10=J.L. |title=Eruptive style and flow dynamics of the pyroclastic density currents related to the Holocene Cerro Blanco eruption (Southern Puna plateau, Argentina) |journal=Journal of South American Earth Sciences |date=March 2020 |volume=98 |pages=102482 |doi=10.1016/j.jsames.2019.102482 |bibcode=2020JSAES..9802482B |s2cid=212955749|issn=0895-9811 }}
- {{cite journal |last1=Báez |first1=Walter |last2=de Silva |first2=Shanaka |last3=Chiodi |first3=Agostina |last4=Bustos |first4=Emilce |last5=Giordano |first5=Guido |last6=Arnosio |first6=Marcelo |last7=Suzaño |first7=Nestor |last8=Viramonte |first8=José Germán |last9=Norini |first9=Gianluca |last10=Groppelli |first10=Gianluca |title=Pulsating flow dynamics of sustained, forced pyroclastic density currents: insights from a facies analysis of the Campo de la Piedra Pómez ignimbrite, southern Puna, Argentina |journal=Bulletin of Volcanology |date=9 June 2020 |volume=82 |issue=7 |pages=53 |doi=10.1007/s00445-020-01385-5 |bibcode=2020BVol...82...53B |s2cid=219544119|issn=1432-0819 }}
- {{cite journal |last1=Báez |first1=W. |last2=Bardelli |first2=L. |last3=Sampietro-Vattuone |first3=M.M. |last4=Peña Monné |first4=J.L. |last5=Bertea |first5=E. |last6=Cirer |first6=M. |title=Revisiting the Holocene tephrochronology of northwestern Argentina: Insights from geochemical characterization of the tephras from the Tafí valley |journal=Journal of South American Earth Sciences |date=February 2024 |volume=134 |pages=104745 |doi=10.1016/j.jsames.2023.104745}}
- {{cite journal |last1=Barcelona |first1=Hernan |last2=Chiodi |first2=Agostina |last3=Yagupsky |first3=Daniel |last4=Peri |first4=Gisel |last5=Winocur |first5=Diego |last6=Kleiman |first6=Pedro |title=Resource assessment of the Cerro Blanco geothermal system |journal=Journal of South American Earth Sciences |date=March 2023 |volume=123 |pages=104247 |doi=10.1016/j.jsames.2023.104247 |bibcode=2023JSAES.12304247B |s2cid=256719900 |url=https://www.sciencedirect.com/science/article/pii/S0895981123000585 |language=en}}
- {{cite journal |last1=Bardelli |first1=L. |last2=Zhang |first2=C. |last3=Bustos |first3=E. |last4=Arnosio |first4=M. |last5=Becchio |first5=R. |last6=Filipovich |first6=R. |last7=Viramonte |first7=J. |last8=Lucci |first8=F. |title=Thermobarometry applied to the long-lived Cordillera de San Buenaventura volcanic complex in Central Andes. Part II: The effect of “liquid” in inverse modelling |journal=Journal of South American Earth Sciences |date=February 2025 |volume=152 |pages=105318 |doi=10.1016/j.jsames.2024.105318}}
- {{cite journal |last1=Brunori |first1=C.A. |last2=Bignami |first2=C. |last3=Stramondo |first3=S. |last4=Bustos |first4=E. |title=20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniques |journal=International Journal of Applied Earth Observation and Geoinformation |date=August 2013 |volume=23 |pages=279–287 |doi=10.1016/j.jag.2012.10.003 |bibcode=2013IJAEO..23..279B|issn=0303-2434 |hdl=11336/2610 |hdl-access=free }}
- {{cite journal |last1=Bustos |first1=E. |last2=Báez |first2=W. |last3=Norini |first3=G. |last4=Arnosio |first4=M. |last5=de Silva |first5=S.L. |title=The geological and structural evolution of the long-lived Miocene-Pleistocene La Hoyada Volcanic Complex in the geodynamic framework of the Central Andes, Argentina |journal=Journal of Volcanology and Geothermal Research |date=November 2019 |volume=385 |pages=120–142 |doi=10.1016/j.jvolgeores.2018.07.010 |bibcode=2019JVGR..385..120B |s2cid=134738248|issn=0377-0273 |hdl=11336/87828 |hdl-access=free }}
- {{cite journal |last1=Carbonelli |first1=Juan Pablo |last2=Winocur |first2=Diego |last3=Medina |first3=Carlos Beloti López de |last4=Carminatti |first4=Nicolás |last5=Peisker |first5=Verónica |title=Cueva Abra del Toro, registro de la ocupación más antigua para el Valle de Yocavil, Catamarca y de la erupción de mayor intensidad conocida para el Holoceno en la Zona Volcánica Central de los Andes |journal=Revista del Museo de Antropología |date=29 April 2021 |pages=123–138 |doi=10.31048/1852.4826.v14.n1.29889 |s2cid=235578116 |url=https://revistas.unc.edu.ar/index.php/antropologia/article/view/29889 |language=es |issn=1852-4826|doi-access=free |hdl=11336/137710 |hdl-access=free }}
- {{cite journal |last1=Chiodi |first1=A. |last2=Tassi |first2=F. |last3=Báez |first3=W. |last4=Filipovich |first4=R. |last5=Bustos |first5=E. |last6=Glok Galli |first6=M. |last7=Suzaño |first7=N. |last8=Ahumada |first8=Ma. F. |last9=Viramonte |first9=J.G. |last10=Giordano |first10=G. |last11=Pecoraino |first11=G. |last12=Vaselli |first12=O. |title=Preliminary conceptual model of the Cerro Blanco caldera-hosted geothermal system (Southern Puna, Argentina): Inferences from geochemical investigations |journal=Journal of South American Earth Sciences |date=October 2019 |volume=94 |pages=102213 |doi=10.1016/j.jsames.2019.102213 |bibcode=2019JSAES..9402213C |hdl=2158/1161012 |s2cid=181498057 |hdl-access=free|issn=0895-9811 }}
- {{cite book |last1=Coira |first1=Beatriz L.L. |last2=Cisterna |first2=Clara Eugenia |title=Textures, Structures and Processes of Volcanic Successions |series=Springer Earth System Sciences |date=2021 |doi=10.1007/978-3-030-52010-6 |isbn=978-3030520090 |s2cid=221767857 |url=https://link.springer.com/book/10.1007/978-3-030-52010-6 |language=en-gb}}
- {{Cite report|last=Conde Serra|first=Alejandro|year=2016|title=Misión de Enfoque y Validación Geotérmica Caldera Cerro Blanco y Caldera Cerro Galán, Dpto. de Antofagasta de la Sierra, Catamarca|url=https://repositorio.segemar.gov.ar//handle/308849217/967|archive-url=https://web.archive.org/web/20200406190658/https://repositorio.segemar.gov.ar/bitstream/handle/308849217/967/PROYECTO%20GEOTERMICO%20NOA%20I.%20REPORTE%20MISION%20DE%20ENFOQUE%20%20(revisionado).pdf?sequence=1&isAllowed=y|archive-date=6 April 2020|publisher=SEGEMAR}}
- {{cite journal |last1=de Silva |first1=S. L. |last2=Bailey |first2=J. E. |last3=Mandt |first3=K. E. |last4=Viramonte |first4=J. M. |title=Yardangs in terrestrial ignimbrites: Synergistic remote and field observations on Earth with applications to Mars |journal=Planetary and Space Science |date=1 March 2010 |volume=58 |issue=4 |pages=459–471 |doi=10.1016/j.pss.2009.10.002 |bibcode=2010P&SS...58..459D|issn=0032-0633 |hdl=11336/14545 |hdl-access=free }}
- {{cite journal |last1=de Silva |first1=S. L. |last2=Spagnuolo |first2=M. G. |last3=Bridges |first3=N. T. |last4=Zimbelman |first4=J. R. |title=Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars |journal=Geological Society of America Bulletin |date=1 November 2013 |volume=125 |issue=11–12 |pages=1912–1929 |doi=10.1130/B30916.1 |bibcode=2013GSAB..125.1912D |s2cid=59495833|issn=1943-2674 }}
- {{Cite journal |last1=de Silva |first1=S.L. |last2=Roberge |first2=J. |last3=Bardelli |first3=L. |last4=Báez |first4=W. |last5=Ortiz |first5=A. |last6=Viramonte |first6=J.G. |last7=Arnosio |first7=J.M. |last8=Becchio |first8=R. |date=1 April 2022 |title=Magmatic evolution and architecture of an arc-related, rhyolitic caldera complex: The late Pleistocene to Holocene Cerro Blanco volcanic complex, southern Puna, Argentina |journal=Geosphere |language=en |volume=18 |issue=2 |pages=394–423 |doi=10.1130/GES02294.1 |bibcode=2022Geosp..18..394D |issn=1553-040X|doi-access=free }}
- {{cite conference|isbn=978-9872240318|hdl=2122/11241|title=Estructura gravimetrica preliminar del Complejo volcanico Cerro Blanco, Puna Austral, Argentina|conference=XVII Congreso Geològico Argentino|pages=203–204|last1=Di Filippo|first1=Michele|last2=Di Nezza|first2=Maria|last3=Colombi|first3=Antonio|last4=Viramonte|first4=José G.|last5=Toro|first5=Beniamino|editor1-last=Zappettini|editor1-first=E.|editor2-last=Crosta|editor2-first=S.|editor3-last=Gonzalez|editor3-first=M. A.|editor4-last=Segal|editor4-first=S.|url=https://www.earth-prints.org/handle/2122/11241|language=es|year=2008}}
- {{cite report|language=es|url=https://repositorio.segemar.gob.ar/handle/308849217/4417|last1=Elissondo|first1=M.|last2=Farías|first2=C.|year=2024|title=Riesgo Volcánico Relativo en Territorio Argentino|publisher=Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino|series=Contribuciones Técnicas Peligrosidad Geológica|volume=28|pages=99|location=Buenos Aires}}
- {{cite journal |last1=Favaro |first1=Elena A. |last2=Hugenholtz |first2=Christopher H. |last3=Barchyn |first3=Thomas E. |title=Evolution and diagnostic utility of aeolian rat-tails: A new type of abrasion feature on Earth and Mars |journal=Aeolian Research |date=October 2017 |volume=28 |pages=91–98 |doi=10.1016/j.aeolia.2017.08.004 |bibcode=2017AeoRe..28...91F|issn=1875-9637 }}
- {{cite journal |last1=Favaro |first1=Elena A. |last2=Hugenholtz |first2=Christopher H. |last3=Barchyn |first3=Thomas E. |last4=Gough |first4=Tyler R. |title=Wind regime, sediment transport, and landscape dynamics at a Mars analogue site in the Andes Mountains of Northwestern Argentina |journal=Icarus |date=1 August 2020 |volume=346 |pages=113765 |doi=10.1016/j.icarus.2020.113765 |bibcode=2020Icar..34613765F |s2cid=219023070|issn=0019-1035 }}
- {{cite journal |last1=Favaro |first1=Elena A. |last2=Hugenholtz |first2=Chris H. |last3=Barchyn |first3=Thomas E. |title=Antecedent controls on the spatial organization of yardangs on the Puna Plateau, north-western Argentina |journal=Earth Surface Processes and Landforms |doi=10.1002/esp.5212 |url=https://onlinelibrary.wiley.com/doi/full/10.1002/esp.5212 |language=en |issn=1096-9837|year=2021|volume=46 |issue=15 |pages=3063–3077 |bibcode=2021ESPL...46.3063F |s2cid=238767500 }}
- {{cite journal |last1=Fernandez-Turiel |first1=J. L. |last2=Perez–Torrado |first2=F. J. |last3=Rodriguez-Gonzalez |first3=A. |last4=Saavedra |first4=J. |last5=Carracedo |first5=J. C. |last6=Rejas |first6=M. |last7=Lobo |first7=A. |last8=Osterrieth |first8=M. |last9=Carrizo |first9=J. I. |last10=Esteban |first10=G. |last11=Gallardo |first11=J. |last12=Ratto |first12=N. |title=La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes |journal=Estudios Geológicos |date=8 May 2019 |volume=75 |issue=1 |pages=088 |doi=10.3989/egeol.43438.515 |doi-access=free|issn=1988-3250 |hdl=10553/69940 |hdl-access=free }}
- {{cite conference|title=La gran erupción de hace 4200 años en Cerro Blanco, Provincia de Catamarca|url=https://digital.csic.es/handle/10261/192088|language=es|last=Fernandez-Turiel|first=J. L.|date=12 September 2019 |hdl=10261/192088|conference=Conferencia Invitada en el Museo de La Plata sobre La gran erupción de hace 4200 años en Cerro Blanco, Provincia de Catamarca|location=La Plata, Argentina}}
- {{cite journal |last1=Guzmán |first1=Silvina |last2=Grosse |first2=Pablo |last3=Montero-López |first3=Carolina |last4=Hongn |first4=Fernando |last5=Pilger |first5=Rex |last6=Petrinovic |first6=Ivan |last7=Seggiaro |first7=Raúl |last8=Aramayo |first8=Alejandro |title=Spatial–temporal distribution of explosive volcanism in the 25–28°S segment of the Andean Central Volcanic Zone |journal=Tectonophysics |date=December 2014 |volume=636 |pages=170–189 |doi=10.1016/j.tecto.2014.08.013 |bibcode=2014Tectp.636..170G|issn=0040-1951 |hdl=11336/32061 |hdl-access=free }}
- {{cite journal |last1=Hugenholtz |first1=Chris H. |last2=Barchyn |first2=Thomas E. |last3=Favaro |first3=Elena A. |title=Formation of periodic bedrock ridges on Earth |journal=Aeolian Research |date=September 2015 |volume=18 |pages=135–144 |doi=10.1016/j.aeolia.2015.07.002|issn=1875-9637 }}
- {{cite journal |last1=Iturra |first1=Anabel Jorgelina Piersigilli |last2=Mors |first2=Agustin |last3=Astini |first3=Ricardo A. |last4=Gómez |first4=Fernando J. |title=Travertinos fósiles de la terma Los Hornos, Puna Austral de Catamarca |journal=Revista de la Asociación Geológica Argentina |date=1 October 2020 |volume=77 |issue=4 |url=https://revista.geologica.org.ar/raga/article/view/229 |language=es |issn=1851-8249}}
- {{cite conference|conference=XI Congreso Geologico Chileno|date=August 2006|title=Late Neogene Volcanism in the Cerro Blanco Region of the Puna Austral Argentina (~26.5°S, ~67.5°W)|first1=Suzanne Mahlburg|last1=Kay|first2=Beatriz|last2=Coira|first3=Constantino |last3=Mpodozis |url=https://biblioteca.sernageomin.cl/opac/datafiles/11769v2pp499_502.pdf |archive-url=https://web.archive.org/web/20200727200538/https://biblioteca.sernageomin.cl/opac/datafiles/11769v2pp499_502.pdf |url-status=dead |archive-date=27 July 2020 }}
- {{cite book |doi=10.1130/2008.0013(05) |chapter=Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone |title=GSA Field Guide 13: Field Trip Guides to the Backbone of the Americas in the Southern and Central Andes: Ridge Collision, Shallow Subduction, and Plateau Uplift |year=2008 |last1=Kay |first1=Suzanne Mahlburg |last2=Coira |first2=Beatriz |last3=Mpodozis |first3=Constantino |volume=13 |pages=117–181 |isbn=978-0813700137 }}
- {{cite journal |last1=Lamberti |first1=M. C. |last2=Chiodi |first2=A. |last3=Agusto |first3=M. |last4=Filipovich |first4=R. |last5=Massenzio |first5=A. |last6=Báez |first6=W. |last7=Tassi |first7=F. |last8=Vaselli |first8=O. |title=Carbon dioxide diffuse degassing as a tool for computing the thermal energy release at Cerro Blanco Geothermal System, Southern Puna (NW Argentina) |journal=Journal of South American Earth Sciences |date=1 September 2020 |volume=105 |pages=102833 |doi=10.1016/j.jsames.2020.102833 |s2cid=225336689|issn=0895-9811 |hdl=2158/1331295 |hdl-access=free }}
- {{cite journal |last1=Lucci |first1=Federico |last2=Miri |first2=Mirmohammad |last3=Bustos |first3=Emilce |last4=Arnosio |first4=Marcelo |last5=Becchio |first5=Raul |last6=White |first6=John Charles |last7=Viramonte |first7=Josè |last8=Bardelli |first8=Lorenzo |title=Thermobarometry applied to the long-lived Cordillera de San Buenaventura volcanic complex in Central Andes. Part I: Supra-solidus phase equilibria modelling |journal=Journal of South American Earth Sciences |date=February 2025 |volume=152 |pages=105317 |doi=10.1016/j.jsames.2024.105317|doi-access=free }}
- {{cite journal |last1=Milana |first1=Juan Pablo |title=Largest wind ripples on Earth? |journal=Geology |date=April 2009 |volume=37 |issue=4 |pages=343–346 |doi=10.1130/G25382A.1 |bibcode=2009Geo....37..343M|issn=1943-2682 }}
- {{cite journal |last1=Milana |first1=J. P. |last2=Forman |first2=S. |last3=Kröhling |first3=D. |title=The largest wind ripples on earth: REPLY |journal=Geology |date=1 September 2010 |volume=38 |issue=9 |pages=e219–e220 |doi=10.1130/G31354Y.1 |bibcode=2010Geo....38E.219M |doi-access=free|issn=1943-2682 |hdl=11336/97708 |hdl-access=free }}
- {{Cite report|url=http://proyectopacha.com.ar/montero-lopez-m-c-f-hongn-r-seggiaro-r-marrett-y-n-ratto-2009-relacion-entre-el-volcanismo-y-los-registros-arqueologicos-en-el-bolson-de-fiambala-departamento-tinogasta-catamarca-pp-131/|last1=Montero López|first1=M.C.|first2=F.|last2=Hongn|first3=R.|last3=Seggiaro|first4=R.|last4=Marrett|first5=N.|last5=Ratto|language=es|year=2009|title=Relación entre el volcanismo y los registros arqueológicos en el bolsón de Fiambalá (Departamento Tinogasta, Catamarca)|pages=131–158|publisher=EUDEBA}}
- {{cite journal |last1=Montero López |first1=María Carolina |last2=Hongn |first2=Fernando |last3=Affonso Brod |first3=José |last4=Seggiaro |first4=Raúl |last5=Marrett |first5=Randall |last6=Sudo |first6=Masafumi |title=Magmatismo ácido del mioceno superior-cuaternario en el área de Cerro Blanco-La Hoyada, Puna Austral |trans-title=Upper Miocene-Quaternary acid magmatism in the Cerro Blanco-La Hoyada area, Puna Austral |language=Spanish |journal=Revista de la Asociación Geológica Argentina |date=November 2010 |volume=67 |issue=3 |pages=329–348 |url=http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S0004-48222010000600003 |issn=1851-8249}}
- {{cite journal |last1=Mors |first1=R. Agustin |last2=Astini |first2=Ricardo A. |last3=Gomez |first3=Fernando J. |title=Coexisting active travertines and tufas in the southeastern border of the Puna plateau |journal=Sedimentary Geology |date=July 2019 |volume=389 |pages=200–217 |doi=10.1016/j.sedgeo.2019.06.009 |bibcode=2019SedG..389..200M |s2cid=198396710|issn=0037-0738 }}
- {{cite journal |last1=Mors |first1=R. Agustin |last2=Gomez |first2=Fernando J. |last3=Astini |first3=Ricardo A. |last4=Celestian |first4=Aaron J. |last5=Corsetti |first5=Frank A. |title=Assessing the origin of pisoids within a travertine system in the border of Puna Plateau, Argentina |journal=Sedimentology |date=April 2022 |volume=69 |issue=3 |pages=1252–1275 |doi=10.1111/sed.12946|s2cid=240511297 }}
- {{cite journal |last1=Pritchard |first1=M. E. |last2=Simons |first2=M. |title=An InSAR-based survey of volcanic deformation in the central Andes |journal=Geochemistry, Geophysics, Geosystems |date=February 2004 |volume=5 |issue=2 |pages=n/a |doi=10.1029/2003GC000610 |bibcode=2004GGG.....5.2002P |s2cid=18453316 |url=https://resolver.caltech.edu/CaltechAUTHORS:PRIggg04 }}
- {{cite journal |last1=Ratto |first1=Norma |last2=Montero |first2=Carolina |last3=Hongn |first3=Fernando |title=Environmental instability in western Tinogasta (Catamarca) during the Mid-Holocene and its relation to the regional cultural development |journal=Quaternary International |date=September 2013 |volume=307 |pages=58–65 |doi=10.1016/j.quaint.2012.09.014 |bibcode=2013QuInt.307...58R|issn=1040-6182 |hdl=11336/183246 |hdl-access=free }}
- {{cite journal |last1=Ratto |first1=Norma |last2=Rodríguez González |first2=Alejandro |last3=Basile |first3=Mara |last4=Pérez Torrado |first4=Francisco J. |last5=Fernández Turiel |first5=José L. |title=Arte rupestre y vulcanología: aporte para una cronología relativa de los grabados de Las Papas (dpto. Tinogasta, Catamarca) |trans-title=Rock art and volcanology: contribution to a relative chronology of the Las Papas engravings (department Tinogasta, Catamarca) |language=Spanish |journal=Revista del Museo de Antropología |date=1 July 2018 |volume=11 |issue=1 |pages=75 |doi=10.31048/1852.4826.v11.n1.17060 |doi-access=free |issn=1852-4826|hdl=11336/86664 |hdl-access=free }}
- {{Cite book|last1=Seggiaro|first1=Raúl E.|url=https://repositorio.segemar.gov.ar//handle/308849217/167|title=Hoja Geológica 2769-II Paso San Francisco|last2=Hongn|first2=Fernando D.|last3=Castillo|first3=Alfredo|last4=Pereyra|first4=Fernando Xavier|last5=Villegas|first5=Daniela|last6=Martínez|first6=Liliana|last7=González|first7=Osvaldo Edgar|date=2006|publisher=Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales|archive-url=https://web.archive.org/web/20200406111418/https://repositorio.segemar.gov.ar/bitstream/handle/308849217/167/04hoja%20Paso%20SFrancisco.pdf?sequence=6&isAllowed=y|archive-date=6 April 2020}}
- {{cite journal |last1=Vélez |first1=M. L |last2=Bustos |first2=E. |last3=Euillades |first3=L. |last4=Blanco |first4=M. |last5=López |first5=J. F. S. |last6=Barbero |first6=I. |last7=Berrocoso |first7=M. |last8=Gil Martinez |first8=A. |last9=Viramonte |first9=J. G. |title=Ground deformation at the Cerro Blanco caldera: A case of subsidence at the Central Andes BackArc |journal=Journal of South American Earth Sciences |date=13 October 2020 |volume=106 |pages=102941 |doi=10.1016/j.jsames.2020.102941 |s2cid=225126253|issn=0895-9811 |doi-access=free }}
{{refend}}
External links
{{Commons category}}
- [https://digital.csic.es/handle/10261/161859 Estilo eruptivo y dinámica de flujo de las corrientes de densidad piroclásticas asociadas a la gran erupción del Cerro Blanco (4200 AP), Puna Austral]
- [https://repositorio.segemar.gob.ar/handle/308849217/1150 Informe Geológico Correspondiente a la Mina La Hoyada, Departamento Tinogasta, Provincia de Catamarca]
- [https://www.portal.catamarca.gov.ar/noticias/el-campo-de-piedra-pomez-con-tarifa-actualizada-6824/ Travel information of the Provincial government of Catamarca (in Spanish)]
- {{cite web|title=Robledo ASTER Imagery|url=http://ava.jpl.nasa.gov/ASTER_data.php?id=1505-21-|website=Aster Volcano Archive|publisher=NASA|access-date=15 September 2015|url-status=dead|archive-url=https://web.archive.org/web/20150910092945/http://ava.jpl.nasa.gov/volcano.php?id=1505-21-|archive-date=10 September 2015}}