Coropuna
{{featured article}}{{Short description|Volcano in Peru}}
{{EngvarB|date=December 2019}}
{{Use dmy dates|date=December 2019}}
{{Infobox mountain
| name = Coropuna
| other_name = Nevado Coropuna
| etymology = Etymology
| native_name = {{native name|qu|Qhuru Puna}}
| translation = "Golden mountain", "cold, snowy" or "cut off at the top"
| pronunciation =
| photo = Coropuna Volcano.jpg
| photo_alt = A snow-covered mountain with two hump-like summits rising above an unvegetated landscape with a lake
| photo_caption =
| map = Peru
| map_alt = A topographic map of Peru within South America
| map_image =
| map_caption =
| map_relief =
| map_size =
| coordinates = {{Coord|15|33|S|72|39|W|type:mountain_region:PE-ARE|display=title,inline}}
| coordinates_ref = {{sfn|Campos|2015|p=2}}
| elevation_m = 6377
| location =
| label =
| label_position =
| prominence =
| prominence_m =
| prominence_ref =
| isolation =
| isolation_km =
| isolation_mi =
| isolation_ref =
| parent_peak =
| listing =
| range = Cordillera Occidental, Peruvian Andes
| type = Stratovolcano complex
| age = {{ubl|Early Pliocene – Holocene|{{circa|5 Ma}} – 1 ka}}
| geology = Geology
| volcanic_belt = Andean Volcanic Belt
| volcanic_arc = Central Volcanic Zone
| volcanic_field =
| last_eruption = 1,100 ± 100 or 700 ± 200 years ago
| first_ascent = possibly prehistoric
| easiest_route =
| normal_route =
| access =
}}
Coropuna is a dormant compound volcano located in the Andes mountains of southeast-central Peru. The upper reaches of Coropuna consist of several perennially snowbound conical summits, lending it the name Nevado Coropuna in Spanish. The complex extends over an area of {{convert|240|km2}} and its highest summit reaches an altitude of {{convert|6377|m}} above sea level. This makes the Coropuna complex the third-highest of Peru. Its thick ice cap is the most extensive in Earth's tropical zone, with several outlet glaciers stretching out to lower altitudes. Below an elevation of {{convert|5000|m}}, there are various vegetation belts which include trees, peat bogs, grasses and also agricultural areas and pastures.
The Coropuna complex consists of several stratovolcanoes. These are composed chiefly of ignimbrites{{efn|Ash flows{{sfn|Herrmann|Bucksch|2014|p=1513}}}} and lava flows on a basement formed by Middle Miocene ignimbrites and lava flows. The Coropuna complex has been active for at least five million years, with the bulk of the current cone having been formed during the Quaternary.{{efn|The age of man, including Pleistocene and Holocene.{{sfn|Herrmann|Bucksch|2014|p=2296}}}} Coropuna has had two or three Holocene eruptions {{nowrap|2,100 ± 200}} and either {{nowrap|1,100 ± 100}} or {{nowrap|700 ± 200 years}} ago which generated lava flows, plus an additional eruption which may have taken place some 6,000 years ago. Current activity occurs exclusively in the form of hot springs.
Coropuna is located {{convert|150|km}} northwest of the city of Arequipa. People have lived on the slopes of Coropuna for millennia. The mountain was regarded as sacred by the Inca, and several archaeological sites have been discovered there, including the Inca sites of Maucallacta and Acchaymarca. The mountain was considered one of the most important Inca religious sites in their realm; human sacrifices were performed on its slopes, Coropuna forms part of many local legends and the mountain is worshiped to the present day.
The ice cap of Coropuna, which during the Last Glacial Maximum (LGM) had expanded to over {{cvt|500|km2}}, has been in retreat since at least 1850. Estimates published in 2018 imply that the ice cap will persist until about 2120. The retreat of the Coropuna glaciers threatens the water supply of tens of thousands of people relying upon its watershed, and interaction between volcanic activity and glacial effects has generated mudflows that could be hazardous to surrounding populations. Because of this, the Peruvian geological agency, INGEMMET, monitors Coropuna and has published a hazard map for the volcano.
Name and etymology
In Quechua, {{lang|qu|puna}} means "plateau", and {{lang|qu|coro}} is a common component of toponyms such as with Coro Coro, Bolivia, though its etymology is unclear. The name may mean {{lang|qu|Qoripuna}}, "Puna of Gold", "golden mountain", "cold, snowy" or "cut off at the top". {{ill|Ernst Wilhelm Middendorf|de}} believed it was originally the name of the high plateau around the mountain. The name is also spelled {{lang|qu|Qhuru Puna}}. The mountain is also called Nevado Coropuna; "Nevado" is the Spanish word for "snowy".{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=305}} There is another volcano in the Andahua volcanic field which has the same name, but is completely separate.{{sfn|Cuber|Panajew|Gałaś|2015|p=66}}
Geography and geomorphology
Coropuna lies in the Andes of Peru,{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}} on the border between the Castilla and Condesuyos Provinces{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=176}} of the Arequipa Department.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=176}}{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=16}} Towns around the volcano belong to the Chuquibamba, Machaguay, Pampacolca and Viraco Districts.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} The volcano can be reached on paved roads through the town of Andahua, either from Arequipa or through Aplao from the Pan-American Highway.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=4}} Roads also pass along the northern and western sides of the volcano.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}}
= Regional =
The Andes stretch along the western coast of South America from Tierra del Fuego northwards to Venezuela, forming the longest mountain chain in the world.{{sfn|Cuber|Panajew|Gałaś|2015|p=61}} More regionally, the volcano is in the {{interlanguage link|Cordillera Ampato|es}}, a mountain range which lies at an average of {{convert|100|km}} from the Pacific coastline,{{sfn|Schotterer|Delachaux|Ledru|Angelis|2009|p=28}} and contains nearly one hundred glaciers.{{sfn|Racoviteanu|Manley|Arnaud|Williams|2007|p=111}}
Coropuna is in the Central Volcanic Zone of the Andes,{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}{{sfn|de Silva|Francis|1990|p=287}} which contains 44 stratovolcanoes{{sfn|Cuber|Panajew|Gałaś|2015|p=63}}{{Spaced en dash}}including many of the world's highest{{sfn|de Silva|Francis|1990|p=287}}{{Spaced en dash}}and several glaciated volcanoes.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=3}} Besides Coropuna, some of the latter are Sara Sara, Solimana, Mismi, Ampato, Hualca Hualca, Sabancaya, Chachani, Misti, Ubinas, Huaynaputina, Tutupaca, Yucamane and Casiri.{{sfn|Cuber|Panajew|Gałaś|2015|p=62}}{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=247}} Also found nearby are Neogene-age calderas.{{sfn|Cuber|Panajew|Gałaś|2015|p=62}} Sixteen volcanoes in Peru are active or potentially active.{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|p=4}}
There is no habitation on Coropuna above {{convert|5200|m}},{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=7}} but numerous villages dot the lower slopes.{{efn|Villages on the lower slopes of Corpuna include: Ocororuro, Arma, Maucallacta, Purhua Purhua, Chaupipuna, Utchu-Amayani, Torilla, Patilla, Pallca, Alco Llacta, Viques, Campanayo, Pecoy, Tagre, Pillcull, Chupacca, Chipcama, Cabra Grande, Pampacolca, Huncor, Huanjo, Santa Maria, Toma de Hayllaura and Huayllaura.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}}}} Agriculture and animal husbandry are the most common economic activities;{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=61}} there are copper and gold mines as well.{{sfn|Núñez Juárez|Steinmüller|1998|p=52}} The city of Arequipa lies {{convert|150|km|abbr=on}} to the southeast.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}
= Local =
== General outline ==
File:CoropunaSouthViewUSGS.jpg
Seen from above, Coropuna has a pear-shaped outline{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} and is a {{convert|20|km|abbr=on}} east{{en dash}}west ridge{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=16}} that features four summits that are separated by broad saddles.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} In addition, there is another summit north of the east{{en dash}}west trend. A {{convert|5558|m|abbr=on}} high subsidiary peak named Cerro Cuncaicha lies east of Coropuna;{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=105}} it is an extinct{{sfn|Aguilar|2024|p=4}} stratovolcano. Coropuna covers a surface area of {{convert|240|km2}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}} and its various main summits rise about {{convert|3|km|spell=in}} above the surrounding plateau.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=3}}
The volcano is formed from alternating layers of ignimbrite and lava,{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} and consists of coalesced stratovolcanoes{{sfn|Úbeda Palenque|2013|p=124}} and seven separate coulees.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}} Ice cover makes discerning its structure difficult,{{sfn|de Silva|Francis|1990|p=292}} but about{{sfn|de Silva|Francis|1990|p=292}} six separate peaks{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}}{{sfn|Bullard|1962|p=444}} as well as six not readily recognisable summit craters have been counted.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}}{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} Additional lava domes form a southeastward trending line on the southwestern side of the volcano{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} and dikes crop out close to Lake Pallarcocha.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} Coropuna overlies the margin of a buried caldera.
The higher elevations of Coropuna consist of an ice cap and glaciated terrain{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}} but old lava flows with gentle slopes{{sfn|Racoviteanu|Manley|Arnaud|Williams|2007|p=112}} and blocky lava crop out from underneath the ice.{{sfn|Cuber|Panajew|Gałaś|2015|p=63}} Regions of hydrothermally altered rocks, lava flows, pyroclastic flows and areas covered by volcanic ash occur all around the mountain.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} Glacial activity has eroded these volcanic rocks, carving valleys into them or removing them altogether.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=104}} This process created U-shaped valleys such as Buenavista, Cospanja and Tuilaqui on the southern flank, and glacial valleys such as Chaque, Mapa Mayo, Río Blanco, Torcom and Ullulo on the northern slopes.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=12}} Glacial valleys of Coropuna are up to {{convert|300|m|abbr=on}} deep and {{convert|7|km|abbr=on|spell=in}} long.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=19}}
There are several collapse scarps on the mountain, especially around its central sector. A sector collapse took place on the southwestern flank and formed a landslide deposit as well as a horseshoe-shaped valley that was later filled by glaciers.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=19}} Also on the southern side, mud-water flow deposits have been found in the Capiza River valley and appear to relate to Coropuna;{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} at least eight such debris flows have been identified.{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=120}} Lahars (mudflows) have reached the Colca River valley.{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=118}} Lahars are dangerous phenomena owing to their high speed and density, causing large scale destruction and fatalities,{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} and can be generated both by volcanic and meteorological processes.{{sfn|Rivera|Del Carpio Calienes|Tavera|Cruz Igme|2021|p=18}} Such lahars occurred in 2016 and 2023, causing damage to agricultural land and irrigation infrastructure.{{sfn|Aguilar|2024|pp=15,17}}
== Lakes, rivers and groundwater ==
File:COROPUNA LAKE - panoramio.jpg
Lakes lie on the flanks of the volcano.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=5}} These include Lake Pallarcocha on the southwestern flank on formerly glaciated terrain,{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|pp=3–4}} Laguna Pucaylla on Coropuna's northeastern side and Laguna Caracara on the southeastern side. A number of streams and rivers originate on the mountain. Clockwise around Coropuna, these include Quebrada Chauqui-Huayco, Rio Amayani on the northern side, Quebrada Chinchina/Infernillo, Quebrada Jollpa, Quebrada Caspanja with the lake Laguna Caracara, Quebrada Buena Vista, Quebrada Tuallqui, Rio Testane on the southern flank, Rio de Huayllaura on the southwestern flank, Quebrada del Apacheta,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}} Quebrada Sigue Chico{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2515}} and Quebrada Sepulturayoc on the western flank.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}} The Rio Blanco and Rio Amayani eventually form the Rio Arma,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=21}} while the Rio Capiza discharges water from Coropuna to the Colca River.{{sfn|Caldas Vidal|1993|p=10}} During the winter dry season,{{sfn|Campos|2015|p=2}} most of these rivers do not carry substantial discharge.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}}
The volcano is situated on a drainage divide. Most of Coropuna drains to the Rio Arma west of the volcano,{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1114}} a tributary of the Ocoña River, while to the east, the Colca River is part of the Majes River watershed.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=104}} An endorheic area that receives meltwater from the volcano also exists northeast from Coropuna, on Pampa Pucaylla{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}} where the lake of the same name lies.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}}
Glacial meltwater seldom forms streams. The Quebrada Ullulo on the northern side is the largest such meltwater stream.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} Glacial input is more significant to groundwater; especially on the northern flank glacial meltwater makes up a large fraction of local river discharge.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1124}} The andesites of Coropuna and its glacial sediments host aquifers that convey glacial meltwater to springs and rivers. Some aquifers on the eastern side are influenced by sulfur-containing rocks.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1125}}
== Surrounding terrain ==
Coropuna rises {{convert|2|km|abbr=on|spell=in}} above the surrounding terrain{{sfn|Campos|2015|p=2}}{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} from a base elevation of {{convert|4500|m|abbr=on}},{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=16}} and about {{convert|3.5|km|abbr=on}} on the southern side where the Rio Llacllaja has incised the underlying basement{{sfn|Campos|2015|p=2}}{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} almost to the foot of the volcano, forming sharp, amphitheatre-like valleys.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}} In general, many deep valleys cut into the flanks of the volcano{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|p=9}} and give the mountain an "impressive topographic relief".
The region is characterised by high plateaus separated by deep canyons, including some of the world's deepest gorges{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2515}} that reach depths of {{convert|600|-|3000|m|abbr=on}}.{{sfn|Thouret|Gunnell|Jicha|Paquette|2017|p=2}} Apart from river erosion, giant landslides have affected the Altiplano below Coropuna,{{sfn|Gómez|Macías|Arce|Sánchez-Nuñez|2012|p=1025}} such as the Chuquibamba landslide, which took place over the last 120,000{{nbsp;}}years in the form of multiple collapse events within a fault-controlled basin.{{sfn|Thouret|Gunnell|Jicha|Paquette|2017|p=14}}
Geomorphologically, Coropuna lies at the edge of the Altiplano high plateau on the Western Cordillera mountain range;{{sfn|Kuentz|Mera|Ledru|Thouret|2007|p=1764}} in the Central Andes this mountain chain is split into two ranges{{Spaced en dash}}the western and the eastern Cordillera{{Spaced en dash}}separated by the Altiplano.{{sfn|Bullard|1962|p=443}} The Pucuncho Basin{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=305}} and Firura volcano lie north of Coropuna, while Solimana volcano is northwest from Coropuna.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}} Sara Sara is another volcano in the area.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}} A large lava dome lies northwest of Coropuna{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}} while Cerro Pumaranra, a {{convert|5089|m|abbr=on}}{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=105}} eroded volcano, is to the northeast.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} {{convert|19|km|abbr=on}} west-southwest from Coropuna lies the {{convert|4855|m|abbr=on}} high Antapuna,{{sfn|Dornbusch|2002|p=116}} while the Andahua "Valley of the Volcanoes" is {{convert|20|km|abbr=on}} east-northeast of Coropuna.{{sfn|de Silva|Francis|1990|p=298}}
= Elevation and size =
File:Coropuna Este (30293366316).jpg
Coropuna is the largest{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=214}} and highest volcano in Peru, the highest peak of the Cordillera Ampato{{sfn|Campos|2015|p=2}} and the third-highest mountain in Peru. The highest point of Coropuna is the northwestern dome{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}} named Coropuna Casulla,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} with {{convert|6377|m}} elevation. Mountaineering sources also cite an elevation of {{convert|6425|m|abbr=on}} for the El Toro summit, which would make Coropuna the 22nd highest mountain in the Andes.{{sfn|Cuber|Panajew|Gałaś|2015|p=63}}{{efn|Other estimates of its height are {{convert|6380|m|abbr=on}};{{sfn|Kuentz|Ledru|Thouret|2011b|p=1216}}{{sfn|Thouret|Juvigne|Mariño|Moscol|2002|p=3}} {{convert|6426|m|abbr=on}}{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}}{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}}{{sfn|Campos|2015|p=2}} on the western summit;{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}} {{convert|6446|m|abbr=on}};{{sfn|Silverio|Herold|Peduzzi|2010|p=314}} and {{convert|6450|m|abbr=on}}.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=305}}}}
Estimates on the height of Coropuna have changed over time. In the 19th century, it was one of the candidates for "highest mountain in Peru", with the Mapa del Perú (Map of Peru) of Antonio Raimondi giving an estimated height of {{convert|6949|m|abbr=on}}; other candidates were peaks in the Cordillera Blanca.{{sfn|Wise|2004|p=97}} In 1910 it was believed that the volcano was over {{convert|23000|ft|m|order=flip|abbr=on}} high and thus the highest mountain in South America, ahead of Aconcagua, although a North American expedition during the preceding year had determined that Coropuna was not the highest, as they only found an elevation of {{convert|6615|m|abbr=on}}, and Huascaran is higher than this.{{sfn|Wise|2004|p=98}} Varying snow elevations might also lead to varying height estimates.
Coropuna has several summits (up to ten overall according to one count){{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} which exceed {{convert|6000|m|abbr=on}} elevation,{{sfn|Silverio|Jaquet|2012|p=5878}} plus a {{convert|5623|m|abbr=on}} northern summit.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} Those with individual names are the northwestern Coropuna Casulla at {{convert|6377|m|abbr=on}},{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=35}} El Toro, the western Nevado Pallacocha at {{convert|6171|m|abbr=on}}, the central Coropuna Central II at {{convert|6161|m|abbr=on}}, Escalera at {{convert|6171|m|abbr=on}} in the western sector of the volcano, Paiche at {{convert|6330|m|abbr=on}} in the central sector,{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=16}} and Coropuna Este{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=308}} and Yana Ranra at {{convert|6305|m|abbr=on}} in the eastern sector.{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=16}}
Ice cap
File:Nevado Coropuna, Peru.JPG
Coropuna features the largest ice cap of the tropics.{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} As of 2014 it was {{convert|8.5|km|abbr=on}} wide and {{convert|11|km|abbr=on|spell=in}} long.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}} It is larger than the Quelccaya Ice Cap {{convert|250|km|abbr=on}} farther northeast, which was considered to be the largest,{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}}{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=101}} but has since shrunk to a size less than Coropuna's. A subsidiary peak named Cerro Cuncaicha, east of Coropuna, has a small ice cap as well.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}} In general, Peruvian glaciers form the bulk of the world's tropical glaciers.{{sfn|Silverio|Jaquet|2012|p=5876}} The ice cap consists of three ice domes and many glaciers.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}} Perennial snow fields are present on Coropuna, sometimes making it hard to measure the true extent of glaciation or glacier retreat.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}}
On average, the ice cap of Coropuna is about {{convert|80.8|m|abbr=on}} thick,{{sfn|Silverio|Herold|Peduzzi|2010|p=320}} with maximum thicknesses exceeding {{convert|180|m|abbr=on}}.{{sfn|Silverio|Herold|Peduzzi|2010|p=321}} In 2003{{en dash}}2004 the ice cap had a volume of about {{convert|3.69|km3}} snow water equivalents.{{sfn|Silverio|2018|p=49}} Ice cores have been taken from the Coropuna ice cap{{sfn|Weide|Fritz|Brinson|Thompson|2017|p=3}} and from a summit crater; one of these ice cores covers a timespan beginning from 20,000{{nbsp;}}years ago.{{sfn|Engel|Skrzypek|Chuman|Šefrna|2014|p=63}}
Penitentes{{sfn|Schotterer|Delachaux|Ledru|Angelis|2009|p=28}} reaching heights of {{convert|2|m|abbr=on|spell=in}}{{sfn|Cuber|Panajew|Gałaś|2015|p=67}} and seracs (blocks of ice in glaciers delimited by cracks) occur on the glaciers,{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} while debris cover is rare.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=178}} The ice of Coropuna's ice cap is mostly temperate.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1115}} Mudflows (lahars) originated from the ice cap{{sfn|Campos|2015|p=2}} and left deposits at the bottom of valleys.{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|p=9}} A lahar took place on the southeastern flank on 22 December 2016, causing damage to water infrastructure{{sfn|Rivera|Del Carpio Calienes|Tavera|Cruz Igme|2021|p=16}} and pastures below the volcano.{{sfn|Rivera|Del Carpio Calienes|Tavera|Cruz Igme|2021|p=60}}
= Glaciers and periglacial phenomena =
A number of glaciers flow down from the ice cap,{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} their number variously estimated to be 15,{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1114}} 17{{sfn|Silverio|2018|p=45}}{{sfn|Silverio|Jaquet|2012|p=5878}} and 23.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}} Some glaciers have been named; on the southwestern flank two glaciers are known as {{lang|es|Azufrioc}} 1 and 2, three {{lang|es|Rio Blanco}} 1 through 3 and six {{lang|es|Tuialqui}} 1 through 6.{{sfn|Campos|2015|p=7}} Eighteen separate accumulation areas have been found as well.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=24}} There are no substantive valley glaciers presently on Coropuna{{sfn|de Silva|Francis|1990|p=292}} and some glaciers, especially in the eastern side, emanate from cirques.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} The ongoing downward movement of the ice on Coropuna produces icequakes.{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=32}}
Glaciers descend to elevations of about {{convert|5100|to|5300|m|abbr=on}} on the southern flank, and to about {{convert|5500|to|5800|m|abbr=on}} on the northern flank.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}}{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}} This is higher than the freezing level, owing to the dry climate;{{sfn|Campos|2015|p=2}} the freezing level at Coropuna lies at about {{convert|4900|m|abbr=on}} elevation.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} In 2001, the ice limits were located at elevations of {{convert|5300|m|abbr=on}} on the southern and at {{convert|5600|m|abbr=on}} on the northern flank.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=9}}
Moraines are mostly found on Coropuna's northern and southern side{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=10}} and reach lengths of {{convert|3|to|8|km|abbr=on|spell=in}}, with longer moraines on the northern flank.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=12}} In general, moraines on Coropuna are steep and have prominent crests as they are little eroded.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}} Grey-coloured, fresh moraines up to {{convert|500|m|abbr=on}} from the ice cap may reflect the position of the glaciers before the onset of glacier retreat which has left small mounds that often contain ice between these moraines and the ice cap{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}} and small, discontinuous moraines.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=310}}
Apart from normal glaciers, 78 rock glaciers have been counted on Coropuna, but only 11 of them are considered to be active.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=28}} Permafrost occurs at elevations exceeding {{convert|5100|m}} on the southern and {{convert|5750|m}} on the northern flank.{{sfn|Yoshikawa|Úbeda|Masías|Pari|2020|p=608}} Cryoturbation,{{sfn|Galán|Linares Perea|2012|p=15}} gelifluction, patterned grounds,{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} solifluction{{sfn|Galán|Linares Perea|2012|p=48}} and other periglacial landforms are noticeable{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} at over {{convert|4500|m|abbr=on}} elevation.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}}
== Recent area and retreat ==
File:Coropuna ice cap extent 1950-2015.svg
Measuring the surface area of Coropuna's ice cap is difficult as seasonal snow can be mistaken for ice,{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=180}} and different studies come to various conclusions about the retreat rate, due to the use of different time periods and methodological practices. However, all studies conclude that the net retreat trend is obvious and that the ice cap is diminishing. Retreat rates shortly before 2009 reached 13{{nbsp;}}per cent in only 21{{nbsp;}}years.{{sfn|Campos|2015|p=12}} Between 1980 and 2014 the ice cap shrank at a rate of {{convert|0.409|km2/year|mi2/year|abbr=on}}{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=179}} with a 2015 estimate amounting to {{convert|0.5|km2/year|mi2/year|abbr=on}}, and a brief slowdown observed during the late 1990s and early 2000s.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=181}} Total shrinkage has been estimated to amount to 26{{nbsp;}}per cent between 1962 and 2000, and by 18{{nbsp;}}per cent between 1955 and 2007.{{sfn|Campos|2015|p=2}} Retreat is faster on the northern side of the mountain. If retreat continues at the current rate, the ice cap will disappear in 2120.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1126}}
The Coropuna ice cap retreat follows the pattern recorded elsewhere in Peru such as in the Cordillera Blanca, Cordillera Vilcanota and the mountains Ampato, Quelccaya and Sabancaya.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=31}} All of this retreat is attributed to global warming,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=9}} and tends to increase during El Niño years owing to a drier climate. The glaciers lose mass through both sublimation and melting.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} Ablation occurs year-round and is diurnal.{{sfn|Yoshikawa|Úbeda|Masías|Pari|2020|p=600}} Recently deglaciated terrain is covered by rock debris.{{sfn|Medina Allcca|Gomez Velásquez|Santos Romero|Moreno Herrera|2021|p=62}}
File:Coropuna glacier areas.png|alt=The ice area has been steadily decreasing since 1950 and may completely disappear in the future.|Glacier trends and extrapolation
File:Coropuna ice profile.png|alt=Radar display of a transect through the ice cap|Ice profile
File:Ice loss Coropuna-2.png|alt=The thickest ice lies in the western portion, while marginal ice is thinner.|Ice thickness
File:Radar profile and glacier evolution Coropuna.png|alt=A number of transects across the ice cap have been made, with the ice cap retreating at its margins.|Ice schematics
= Glacial history =
Before the first human settlement of the area,{{sfn|Sandweiss|Álvarez|Reid|Leach|2014|p=468}}{{sfn|Sandweiss|Álvarez|Reid|Leach|2014|pp=466–467}} the ice cap on Coropuna was much larger than today, with its surface exceeding {{convert|500|km2|abbr=on}}{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=102}} and its glaciers descending to much lower elevations.{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2515}} Additionally, glaciers also expanded from the mountains Pumaranra, Pucaylla and Cuncaicha to the east of Coropuna.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=107}} They covered the Pampa Pucaylla northeast from Coropuna and descended the Jellojello valley and other valleys to the east.{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=3}} Glacial valleys radiate from Coropuna,{{sfn|de Silva|Francis|1990|p=292}} and glaciofluvial landforms are associated with moraines.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}}
Regional climate oscillations are recorded in the ice masses of Coropuna.{{sfn|Úbeda Palenque|2013|p=24}} The glacial history of the volcano has been reconstructed with tephrochronology (using dated tephra layers such as those from the 1600 Huaynaputina eruption), radiocarbon dating{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}} and surface exposure dating using helium-3.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} Three separate moraine generations and about five separate glacial stages have been recorded on the volcano. Glacial advances on Coropuna appear to be synchronous to advances of the ice sheets in the Northern Hemisphere.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=30}} Glaciers developed on other mountains in the region as well.{{sfn|Dornbusch|2002|p=123}}
== Last glacial maximum ==
During the Last Glacial Maximum (LGM) 25,000{{en dash}}20,000{{nbsp;}}years ago,{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=308}} valley glaciers on Coropuna were considerably longer than today.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}} The longest glacier, at {{convert|12|km|abbr=on}}, was in the Quebrada Ullulo.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=308}} The glaciers had a cover of boulders and gravel and formed tall moraines, and both lateral and terminal moraines where outlet glaciers ended. At the crest, these moraines were as much as {{convert|100|m|abbr=on}} high, {{convert|8|km|abbr=on|spell=in}} long, and {{convert|5|-|10|m|abbr=on|spell=in}} wide.{{sfn|Bromley|Hall|Rademaker|Todd|2011|pp=307–308}} On the northern flank, moraine systems have been observed in the Santiago, Ullulo,{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=39}} Keaña, Queñua Ranra, Cuncaicha, Pommulca and Huajra Huire valleys,{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}} while the southeastern flank was covered by glaciers in the Yanaorco, Viques, Cospanja, Buena Vista Este, Buena Vista Oeste and Huasi valleys.{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=3}} Rock bars occur in some glacial valleys on the southern and southwestern side of the volcano.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} There are large cirques around Cerro Cuncaicha.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}}{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}}
The LGM ice cap had an area of at least {{convert|365|km2|abbr=on}}, with glaciers descending to {{convert|3780|-|4540|m|abbr=on}} elevation. Glacier ends were lower on the northern{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=308}} and western sides, probably due to airflow-mediated variations in sublimation.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=312}} The growth of the ice cap has been explained by a decrease of the equilibrium line altitude of about {{convert|750|m|abbr=on|adj=on}}. Assuming constant precipitation, temperatures may have decreased by {{convert|4.5|-|5.5|C-change|abbr=on}}.{{sfn|Heine|2019|p=264}} The glaciers began to retreat between 12,000 and 11,000{{nbsp;}}years ago.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=118}}
== Other glacial periods ==
Ice has been present on Coropuna for at least 80,000{{nbsp;}}years. At least two pre-LGM advances spread beyond the area that was covered with ice during the LGM,{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=38}} with an expansion occurring in particular in the eastern sector of the volcano.{{sfn|Heine|2019|p=269}} Moraines older than marine isotope stage 2 are widespread.{{sfn|Heine|2019|p=262}} Those close to the village of Viraco may date back 40,000{{en dash}}45,000{{nbsp;}}years and thus be part of an earlier glaciation,{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=22}} and old dates of 47,000{{en dash}}31,000 and 61,000{{en dash}}37,000{{nbsp;}}years ago in the Huayllaura and Sigue Chico valleys could reflect even larger glacier expansions during marine isotope stage 3 or 4.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=113}}
Glaciers retreated after the end of the last glacial maximum 20,000{{en dash}}18,000{{nbsp;}}years ago and then re-expanded. During the Late Glacial, a group of moraines formed between the position of the LGM moraines and the position of the recent moraines,{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}} with one lateglacial advance dated to either 13,400{{en dash}}10,000 or 13,900{{en dash}}11,900{{nbsp;}}years ago.{{sfn|Heine|2019|p=263}} Full glacial conditions lasted until 10,000{{en dash}}9,000{{nbsp;}}years ago; minor advances took place about {{nowrap|13,000{{en dash}}9,000 years}} ago, and again some 6,000 years ago.{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=5}} The late glacial advances coincide with similar glacier expansions worldwide{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2520}} and some of them may correlate with the Younger Dryas cold period or the Antarctic Cold Reversal.{{sfn|Bromley|Hall|Schaefer|Winckler|2011b|p=42}} During the Little Ice Age, glaciers on Coropuna did not expand much, although some rock glaciers might have formed during that time. The glaciers descended to {{convert|4900|m|abbr=on}} elevation.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=30}}
= Importance as a source of water =
Glaciers in Peru are important sources of water for local communities and for hydropower generation, especially during the dry season; their shrinkage is thus of concern.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=175}} A 2003 study by Bryan G. Mark and Geoffrey O. Seltzer estimated that about 30{{nbsp;}}per cent of the dry season runoff in the Cordillera Blanca comes from glaciers.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=183}} Meltwater from the glaciers on Coropuna sustains the baseflow of the rivers{{sfn|Silverio|2018|p=44}} during dry periods;{{sfn|Silverio|2018|p=45}} Coropuna is an important source of water for the valleys of the surrounding areas and for the desert-like piedmont,{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=31}} with more than 60,000 people depending directly or indirectly on water originating from it.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1126}} This water supply is threatened by the retreat of the glaciers{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=31}} and would require costly mitigation measures to compensate for its reduction. The Peruvian government is making preparations for Coropuna ceasing to be a contributor to the local water supply by 2025; a 2018 study and re-evaluation of past data concluded that the ice cap should persist until about 2120, and recommends that greater in situ monitoring of Coropuna's glaciers is needed to aid future planning and mitigation.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=182}} Glacial meltwater has a low content of regulated metals{{sfn|Ccanccapa-Cartagena|Paredes|Vera|Chavez-Gonzales|2021|p=11}} while springs sometimes have very high concentrations.{{sfn|Ccanccapa-Cartagena|Paredes|Vera|Chavez-Gonzales|2021|p=10}}
Geology
= Regional setting =
File:South American plates.png around South America|alt=South America has been a stable continent since the Paleozoic, but the whole Pacific coast is geologically very active.]]
Off the coast of Peru, the Nazca Plate subducts beneath the South American Plate at a rate of {{convert|5|-|7|cm/year|in/year|spell=in}}{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=12}} or {{convert|9|cm/year|in/year|spell=in}}.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=59}} This subduction process, along with the subduction of the Antarctic Plate also underneath the South American Plate, is responsible for the volcanism in the Andes and the uplift of the mountain chain. In the Cordillera Occidental (Western Cordillera) uplift commenced about 50{{nbsp;}}million years ago in the Eocene, paused until 25 million{{nbsp;}}years ago in the Oligocene, and increased substantially after about 10{{nbsp;}}million years ago in the Miocene.{{sfn|Thouret|Gunnell|Jicha|Paquette|2017|p=3}} Andean uplift in the area of Coropuna is ongoing.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}}
Coropuna is part of the volcanic arc of southern Peru{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} and is considered to be a member of the Barroso volcanic arc.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=9}} There are over six hundred volcanoes in southern Peru,{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=213}} and the entire Cordillera Occidental from southern Peru to northern Chile is covered with volcanic rocks, although present-day volcanic activity is scarce.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}} Many of the older volcanoes are deeply eroded by glaciation, while younger volcanoes often still resemble cones.{{sfn|Bullard|1962|p=443}}
Volcanic activity in the Andes occurred during three eras. The first was between 195 and 190{{nbsp;}}million years ago in the Early Jurassic, and generated the Chocolate Formation. The second between 78 and 50{{nbsp;}}million years ago (Late Cretaceous to Early Eocene) generated the Toquepala Formation and the Andean batholiths.{{sfn|Thouret|Gunnell|Jicha|Paquette|2017|p=3}} Volcanic activity in southern Peru commenced about 13{{nbsp;}}million years ago in the Miocene.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=57}} One volcanic unit{{Spaced en dash}}after being folded and eroded{{Spaced en dash}}was covered by a second lava and tuff unit, which in turn was followed by the emplacement of large volcanoes.{{sfn|Bullard|1962|p=443}} Ignimbrites and stratovolcano activity, at times subdivided into a "rhyolitic" and an "andesitic" formation, alternated.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}}
= Basement =
Coropuna is constructed atop of 14{{nbsp;}}million year old ignimbrites{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=214}} and lava flows of Neogene age.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=16}} Individual ignimbrites crop out mainly in valleys; on the highlands they are buried beneath more recent volcanic products.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=246}} The volcanic basement includes the Miocene to Plio-Pleistocene Tacaza, Huaylillas, Sencca and Barroso Formations; the latter formation includes Coropuna itself. Below these formations lie the sedimentary Murco and Socosani formations and the Yura Group, which are sediments of Jurassic-Cretaceous age with intruded plutons of the same age; finally there is a Basal Complex of Precambrian age.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=37}}
= Faults and lineaments =
The basement is cut by faults and lineaments such as the Viraco-San Antonio Fault that crosses the edifice,{{sfn|Medina Allcca|Gomez Velásquez|Santos Romero|Moreno Herrera|2021|p=133}} Pampacolca Fault on the southern side of the volcano and the Pumaranra and Cerro Casulla lineaments,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=57}} which trend southeast{{en dash}}northwest and northeast{{en dash}}southwest, respectively. One east–west lineament may have influenced the recent volcanism;{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=58}} the alignment of Coropuna with Sara Sara, Solimana and El Misti may indicate a tectonic control on the volcano in general.{{sfn|Caldas Vidal|1993|p=35}} On the southern flank, Holocene normal faults have offset lava flows and streams.{{sfn|de Silva|Francis|1990|p=292}}
= Composition =
The rocks released by Coropuna are dark brown to black and porphyritic.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=248}} They consist of andesite,{{sfn|Campos|2015|p=2}} dacite,{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=104}} rhyodacite,{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=251}} rhyolite,{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=215}} trachy-basaltic andesite, trachyandesite and trachydacite.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} The more recent lava flows have been dacitic{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=49}} or trachydacitic.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} Phenocryst phases include amphibole, biotite, plagioclase, pyroxene and titanomagnetite.{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=214}} Aside from the volcanic rocks, deposits of salts, sulfur and travertine produced by hot springs are found on the southern flank.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=26}}
The volcanic rocks define a calc-alkaline{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=215}} potassium-rich suite which resembles that of{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} Chilean{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=250}} and Peruvian volcanoes such as Tutupaca.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} They contain large amounts of rubidium, strontium and barium.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} Complicated processes{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=225}} of crystallisation and interaction with Earth's crust appear to have produced the magma.{{sfn|Venturelli|Fragipane|Weibel|Antiga|1978|p=226}}
Eruption history
The beginning of Coropuna's growth has variously been placed over 5{{nbsp;}}million years ago,{{sfn|Tosdal|Farrar|Clark|1981|p=168}} during the Pliocene{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=43}} or late Miocene, but most of its structure developed during the Quaternary.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}} Volcanic activity has been subdivided into two stages: explosive eruptions during the now mostly eroded Coropuna I stage produced volcanic ash, pyroclastic flows and pumice but also lava flows, while Coropuna II above {{convert|6000|m|abbr=on}} elevation erupted lava flows from the now snow-covered vents.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=44}} The existence of a Coropuna III sequence has been proposed.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=49}} The most recent eruption products have been described as the "Andahua Group".{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=87}} About 5.3{{nbsp;}}million years ago, the Sunjillpa volcano was active southwest from Coropuna, while Cunciacha east of Coropuna is of lower Pleistocene{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=16}} and Pumaranra of Pliocene to Quaternary age.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}}
A major ignimbrite eruption took place about 2{{nbsp;}}million years ago at Coropuna; its deposits have been identified west of the volcano{{sfn|Tosdal|Farrar|Clark|1981|p=169}}{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=104}} and it led to the destruction of the edifice, which later re-formed on the remains of the old volcano.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}} The occurrence of explosive eruptions during a mostly effusive activity has been found at Chachani and Sara Sara as well.{{sfn|Weibel|Frangipane-Gysel|Hunziker|1978|p=245}}
In addition, the Upper Sencca Ignimbrite, the Lower Sencca Ignimbrite and the Chuquibamba (Huaylillas{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=11}}) Ignimbrite{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=17}} may have originated here as well;{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=21}} the latter was produced by a volcanic explosivity index 7 class "super-eruption"{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=19}} between 14.3 and 13.2{{nbsp;}}million years ago in the Middle Miocene.{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=20}} The Upper Sencca Ignimbrites are a {{nowrap|2.09–1.76 million}} years old{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=17}} composite ignimbrite{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=15}} which form a {{convert|10|-|30|m|abbr=on}} thick apron around Coropuna and other regional volcanoes; Coropuna appears to have formed on top of one of the Upper Sencca Ignimbrite vents.{{sfn|Cubukcu|Paquette|Jicha|Thouret|2016|p=17}}
After a hiatus,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=55}} volcanic activity continued into the Pleistocene.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=104}} Several lava flows on the western and central sides of Coropuna have been dated, yielding ages ranging from {{nowrap|410,000 ± 9,000}} to {{nowrap|62,600 ± 4,300 years}} ago. During the last glacial maximum, Coropuna was inactive{{sfn|Thouret|Juvigne|Mariño|Moscol|2002|p=3}} and moraines buried its lava flows.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=3}} However, one{{sfn|Thouret|Juvigne|Mariño|Moscol|2002|p=3}} or two tephra layers on a moraine close to the village of Viraco on the southern side have been dated to be about 41,000 and 30,000{{Spaced en dash}}31,000{{nbsp;}}years old. These ages correspond to radiocarbon ages of {{nowrap|37,370 ± 1,160}} and {{nowrap|27,200 ± 300 years}}. These tephras may have originated in fissure eruptions associated with the three recent lava flows.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=22}} In postglacial times lava bombs, lapilli and volcanic ash were deposited on previously glaciated terrain.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}} Pumice deposits may have formed during the Holocene.{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|p=9}}
= Holocene =
No eruptions of Coropuna during historical or modern times are known,{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=175}} and the volcano was considered to be long-extinct.{{sfn|Bullard|1962|p=444}} However, young-looking{{sfn|de Silva|Francis|1990|p=292}} ʻaʻā lava{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=15}} or block lava{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=3}} flows erupted during the Holocene and in part overlie late-glacial moraines.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=49}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=15}} Their vents are now hidden beneath glacier ice,{{sfn|Cuber|Panajew|Gałaś|2015|p=63}} and the flows have been affected by later glacial advances.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=8-9}} These lava flows are found on the west{{en dash}}northwest, south{{en dash}}southeast and northeast side of the mountain:{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}}
- A northwesterly lava flow – Coropuna's longest{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=49}} at {{convert|8.5|km|abbr=on}} – occupies the Cerro Sepulturayoc valley.{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=3}} It has been dated to about 6,000{{nbsp;}}years ago,{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=3}} but research published in 2019 has suggested it may have erupted somewhat earlier, during the Late Glacial period.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=12}}
- A southeasterly flow lies in the Cospanja valley and is either {{nowrap|1,100 ± 100}}{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=4}} or {{nowrap|700 ± 200 years}} old, the latter age being derived from cosmogenic isotope dating.{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} It was probably formed during a single eruption and is {{convert|4|km|spell=in}} long.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=6}}
- A dark, young-looking lava flow runs northeasterly{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=105}} in the Queñua Ranra valley{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=108}} and is {{convert|5|km|spell=in}} long.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=8}} The eruption took place about {{nowrap|2,100 ± 200 years}} ago{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=109}} according to cosmogenic isotope dating.{{sfn|García Zúñiga|Mariño Salazar|Valdivia Humerez|2018|p=117}} Its deposition was preceded by the eruption of lava bombs that cover the valley and by the production of a lahar that advanced {{convert|14|km|abbr=on}} from its source. Whether a secondary lava flow in the same valley occurred at the same time or later is not clear, as that flow has not yet been dated.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=109}}
The ages of the flows indicate an eastward shift in activity. The southeasterly and northeasterly flows may have been erupted within 500 years from the same fissure,{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=12}} while the eruption of the northwesterly flow might be a consequence of the retreat of the ice cap.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|pp=2, 13}} These lava flows are the most recent manifestation of volcanic activity{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} and they imply that Coropuna is still active;{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=175}} it is thus considered to be a dormant volcano, rather than an extinct one.{{sfn|Thouret|Juvigne|Mariño|Moscol|2002|p=2}} There is no evidence of Holocene tephras in peat bog drill cores{{sfn|Thouret|Juvigne|Mariño|Moscol|2002|p=3}} and volcanism at Coropuna since the last ice age has been primarily effusive.{{sfn|Bromley|Thouret|Schimmelpfennig|Mariño|2019|p=12}}
= Present day status =
File:Steam vents on Coropuna Este (30293366136).jpg
The volcano is still hydrothermally active.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=3}} Six hot springs are found on Coropuna, mostly on the southeastern foot,{{sfn|INGEMMET|2015|p=12}} such as at Acopallpa, Antaura/Antauro, Viques, Ccollpa/Collpa, Buena Vista and Aguas Calientes and, on its northern flank, at Huamaní Loma. Their water temperatures range between {{convert|18|and|51|C}}.{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=19}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=25}} With the exception of the last two, which are situated in glacial terrain, these hot springs rise within valleys via rock fractures.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=26}} Geochemical analyses of the water from these springs published in 2015 show no major variations in composition, implying a stable volcanic system.{{sfn|INGEMMET|2015|p=18}} Whether solfataric or fumarolic activity occurs at Coropuna is unclear{{efn|Pits in the ice with thermal anomalies were reported in 2002.}},{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=6}}{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=25}} and the thick glaciation indicates that the summit craters have no thermal activity.{{sfn|de Silva|Francis|1990|p=292}}
Some of the hot springs on Coropuna are used for bathing.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=26}} The volcano had been considered a potential site for geothermal power production, but research published in 1998 concluded that the available energy of the Coropuna area was insufficient.{{sfn|Núñez Juárez|Steinmüller|1998|p=42}}
The first volcano activity report published in 2018 noted ongoing seismic activity involving volcano-tectonic earthquakes. Seismic swarms were observed at Coropuna after the 2001 southern Peru earthquake{{sfn|Lohman|Pritchard|Holtkamp|2011|p=139}} and were possibly triggered by that earthquake.{{sfn|Lohman|Pritchard|Holtkamp|2011|p=144}} Observations of deformation of the volcanic edifice have shown that gravitational instability and soil water absorption result in movements of part of the volcano but, as a whole, Coropuna shows no evidence of volcanic deformation.{{sfn|INGEMMET|2015|pp=27–28}}
= Hazards and monitoring =
The Peruvian Instituto Geológico Minero y Metalúrgico (INGEMMET) monitors Coropuna for activity. It uses data such as the composition of hot spring waters{{sfn|INGEMMET|2015|p=11}} and the shape of the volcano as estimated by satellite images,{{sfn|INGEMMET|2015|p=25}} GPS and geodesy,{{sfn|INGEMMET|2015|p=27}} as well as information from five seismic stations. Seismic monitoring of the volcano began in 2008-2010 and was supplemented with geophysical monitoring in 2018.{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=7}} A volcanic hazard map{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=75}} and scenarios of lahar generation have been published,{{sfn|Rivera|Del Carpio Calienes|Tavera|Cruz Igme|2021|p=18}} the Peruvian government publishes regular status reports. The Peruvian Geophysical Institute considers Coropuna a "high risk" volcano;{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=9}} about 90,000 people live in risk areas, and the sites most in danger are towns in the steep southern valleys.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}}
Together with El Misti, Sabancaya and Ubinas, Coropuna is considered to be one of Peru's most dangerous volcanoes.{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|p=28}} The presence of a large ice cap,{{sfn|Rivera|Del Carpio Calienes|Tavera|Cruz Igme|2021|p=3}} and therefore the risk of incandescent volcanic rocks melting that ice, creates a hazard of lahars, or mudflows, such as those that in 1985 killed over 23,000 people at Nevado del Ruiz volcano in Colombia.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=61}}{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=175}} The risk to life is further increased by Coropuna's steep slopes and by the concentration of people in nearby valleys.{{sfn|Úbeda|Palacios|Vázquez-Selem|2012|p=1}} The terrain around the volcano has one of the greatest topographic reliefs in the world and a number of towns lie on the floor of the Majes valley, right down to the Pacific Ocean where the district capital Camaná{{sfn|de Silva|Francis|1990|p=292}} with 20,000 inhabitants is situated. Although there is no evidence of past mudflows of such size, lahars could reach as far as the coast,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=69}} affecting a number of towns{{sfn|Vela|Cáceres|Calderón|Chijcheapaza|2016|loc=Anexo No.4}} and infrastructure such as roads, antennas and small hydropower plants{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=61}} in the provinces Condesuyos, Castilla and Camaná.{{sfn|Torres Aguilar|Del Carpio Calienes|Rivera|2020|p=6}} According to the 2007 census, 110,481 people lived in the provinces that span Coropuna and lie downstream of it.{{sfn|Marinque|Marino|Enderlin|Edwards|2018|p=175}}
Lava flows are also a potential danger at Coropuna.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} Other hazards with lesser probabilities are directed volcanic blasts, lava dome collapses,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} fast-moving massive pyroclastic flows{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=73}} and flows of pumice and volcanic ash,{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=88}} lava bombs{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=70}} and shock waves from volcanic explosions.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=76}}
Climate
= Precipitation =
Coropuna lies between the semi-humid Altiplano and the arid western slope of the Andes.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=236}} Its climate is semi-arid, with precipitation at {{convert|6080|m|abbr=on}} elevation reaching {{convert|390|mm/year|in/year}}{{efn|Other reported precipitation values range between {{convert|700|mm/year|in/year|abbr=on}}{{sfn|Weide|Fritz|Brinson|Thompson|2017|p=2}} and {{convert|1000|mm/year|in/year|abbr=on}},{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2515}} the latter referring to the summit of Coropuna.{{sfn|Olson|Welp|Frisbee|Zúñiga Medina|2024|p=1118}}}}.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}} Lower down the mountain, at altitudes between at {{convert|3000|and|4000|m|abbr=on}}, annual precipitation levels increase to between {{convert|226|and|560|mm/year|in/year|abbr=on}} (semi-humid). Even further down, at altitudes around {{convert|2000|-|3000|m|abbr=on}}, they decrease again to {{convert|98|-|227|mm/year|in/year|abbr=on}} (desert).{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=7}} Cold water brought from Antarctica along the Pacific Ocean by the Humboldt Current,{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=99}} the presence of a stable anticyclone {{sfn|Úbeda Palenque|2013|p=25}} and of a temperature inversion over the Pacific, and the Andean rainshadow are all responsible for this dryness.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}}
Most precipitation falls as hail or snow.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=7}} This happens mostly during the summer{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=306}} wet season, between December and March,{{sfn|Bromley|Schaefer|Winckler|Hall|2009|p=2515}} when the ITCZ moves south{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=98}} and a summer monsoon is active over South America.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=99}} Most precipitation is brought by easterly winds coming from the Amazon and the Atlantic Ocean, whereas the westerly winds that dominate during the dry season do not carry much moisture.{{sfn|Campos|2015|p=2}} Thus, humidity generally decreases in a westward direction.{{sfn|Úbeda Palenque|2013|p=25}}
The amount of precipitation is modulated by the El Niño Southern Oscillation. During phases of El Niño, the weather is drier, snow cover smaller and glacier retreat increases.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=31}} Over longer timespans, precipitation in the region increases whenever iceberg discharge and cooling occur in the North Atlantic. This was the case during the Heinrich events and the Younger Dryas when lakes formed on the Bolivian Altiplano: The Sajsi formed about 25,000–19,000{{nbsp;}}years ago, Tauca about 18,000–14,000 and Coipasa 13,000–11,000{{nbsp;}}years ago.{{sfn|Palenque|Niño de Guzmán|Choque|Álvarez|2018|p=99}} Cold periods in the Southern Hemisphere such as the Antarctic Cold Reversal between 14,500 and 12,900{{nbsp;}}years ago may have pushed the polar front north and increased precipitation as well.{{sfn|Úbeda Palenque|2013|p=25}} That increased precipitation may have delayed the retreat of Coropuna's glaciers after the end of the last glacial maximum.{{sfn|Úbeda Palenque|2013|p=27}} Coropuna experienced moist conditions during the early Holocene, whereas the late Holocene beginning 5,200{{nbsp;}}years ago was drier there,{{sfn|Kuentz|Ledru|Thouret|2011b|p=1224}} with a pronounced dry period lasting from 5,200 to 3,000{{nbsp;}}years ago.
= Temperature =
Temperatures decrease with altitude gain, and at lower elevations around {{convert|2000|-|3000|m|abbr=on}} they average {{convert|12|-|17|C|abbr=on}}. Between {{convert|3000|and|4000|m|abbr=on}} they average {{convert|7.8|C|abbr=on}} and at {{convert|4000|-|5200|m|abbr=on}} elevation they average {{convert|0|-|6|C|abbr=on}}. At altitudes above {{convert|5200|m|abbr=on}} they remain below freezing.{{sfn|Valenzuela Ortiz|Núñez Juárez|2001|p=7}} Temperatures fluctuate more over daily timescales than over seasonal ones when measured close to the glaciers.{{sfn|Silverio|Jaquet|2012|p=5878}} Southerly cold waves can sometimes reach Coropuna, leaving traces in ice cores in the form of southern pollen.{{sfn|Schotterer|Delachaux|Ledru|Angelis|2009|pp=32–33}} During the Little Ice Age, at {{convert|5000|-|5200|m|abbr=on}} elevation temperatures decreased to {{convert|-5|to|-7|C|abbr=on}}.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=30}} Warm fluctuations between about 2,200 and 900{{nbsp;}}years ago, plus a cold fluctuation between around 970 to 1010 AD, are also recorded.{{sfn|Engel|Skrzypek|Chuman|Šefrna|2014|p=73}}
Vegetation, fauna and agriculture
Most of the region is covered by puna grassland, with the exception of isolated Polylepis woods to the southwest of the volcano, plus other different vegetation types to the west and southeast.{{sfn|Kuentz|Mera|Ledru|Thouret|2007|p=1765}} Peat bogs are present on the southern and southwestern sides of Coropuna, and some of these have been drilled to obtain sediment cores.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}}{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=17}} There are several private conservation areas around the volcano.{{sfn|Medina Allcca|Gomez Velásquez|Santos Romero|Moreno Herrera|2021|p=31}} Elsewhere, agriculture is widespread around Coropuna.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} Insects such as beetles and hymenopterans, birds such as the Andean condor,{{sfn|Cuber|Panajew|Gałaś|2015|p=67}} fish, and mammals such as the alpaca, llama{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=242}} and vicuña occur in the region.{{sfn|Cuber|Panajew|Gałaś|2015|p=67}} Several new species of butterfly have been discovered there.
The mountain has several distinct vegetation belts:
- Between {{convert|800|and|2500|m|abbr=on}} lies steppe vegetation with Ambrosia shrubs and cacti. Irrigation permits the cultivation of garlic, olive, onion, potato, rice, sugar cane and wheat. Pastures are also present.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|pp=241–242}}
- The steppe vegetation is also present between {{convert|2500|and|3500|m|abbr=on}} in the "pre-Puna", but it is denser here{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=242}} and includes shrubs of the family Asteraceae, such as Ambrosia, Diplostephium and Senecio.{{sfn|Kuentz|Ledru|Thouret|2011b|p=1216}} Crops grown here include alfalfa, but there is also some dairy farming and the planting of eucalyptus and pine trees as a wood supply for the local population.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=242}}
- Between {{convert|3000|and|4000|m|abbr=on}} lies a so-called "supra-tropical facies" on soils overlying lava flows. It includes shrubs and thorny vegetation in very wet and very dry areas, respectively. Agriculture is practised here, including the growing of kiwicha, maize, quinoa and vegetables on anthropogenic soils{{sfn|Kuentz|Mera|Ledru|Thouret|2007|pp=1767–1768}} and terraced fields.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=242}} Dominant natural plants between {{convert|3500|and|4000|m|abbr=on}} include herbaceous plants of the families Fabaceae and Solanaceae, as well as shrubs of the Asteraceae.{{sfn|Kuentz|Ledru|Thouret|2011b|p=1216}}
- Between {{convert|4000|and|4800|m|abbr=on}} vegetation is found in marshes and peat bogs where sufficient water is available, in the form of relic Polylepis woodlands as well as herbaceous puna vegetation{{sfn|Kuentz|Mera|Ledru|Thouret|2007|pp=1768–1769}} which is particularly prolific during the wet season. These areas are used for pasture of alpacas and llamas, and for fishing in wetlands and Polylepis woods; hamlets are found close to wetlands and forests.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=242}} Plant genera found here include Baccharis, Calamagrostis, Chuquiraga, Festuca, Parastrephia, Senecio and Stipa.{{sfn|Kuentz|Ledru|Thouret|2011b|p=1216}}
- Above {{convert|4800|m|abbr=on}} lies the so-called "Puna brava", with herbs and deep-rooted plants that have all adapted to withstand permafrost conditions.{{sfn|Kuentz|Mera|Ledru|Thouret|2007|p=1769}} The cushion plant, yareta, which is used as a fuel source, is the dominant plant in this belt.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=243}} Other plants from the Apiaceae and Asteraceae also occur.{{sfn|Weide|Fritz|Brinson|Thompson|2017|p=3}} Vegetation, including ichu grass and yareta, exist up to about {{convert|5|km|abbr=on|spell=in}} elevation; higher elevations are unvegetated.{{sfn|Bromley|Hall|Rademaker|Todd|2011|p=307}}
Archaeology and religious importance
Numerous archaeological sites lie on Coropuna, especially at the southern and northern bases of the volcano and on its western slope.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} Among these are funerary towers known as chullpas. Some of these western sites are on the ice cap.{{sfn|Forget|Thouret|Kuentz|Fontugne|2008|p=18}} Proposals have been made to make the area of Coropuna including these archaeological sites into a protected area.
The coastal regions of Peru were first occupied 11,000 and 9,000{{nbsp;}}years BC.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=243}} Evidence of the presence of hunter-gatherers near Coropuna first appear in the archaeological record in the caves of Cavalca and Pintasayoc, respectively north and south of the volcano. In the latter cave, rock paintings interpreted as dating to 7,000{{Spaced en dash}}3,000{{nbsp;}}years BC have been found.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=246}} The first human activity at Coropuna in the Cuncaicha cave north of the volcano began 12,300{{Spaced en dash}}11,100 years ago, shortly after the final retreat of glaciers from the mountain.{{sfn|Sandweiss|Álvarez|Reid|Leach|2014|p=469}} The region around the volcano was settled over the last 4,000{{nbsp;}}years.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=236}}
= Inca times =
A larger number of archaeological sites go back to the 2nd Intermediate Period{{sfn|Kuentz|Thouret|Ledru|Forget|2011|pp=246–248}} and during the Inca era. The Inca expanded preexisting irrigation and terrace systems which are in part still existing today.{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=248}} These include the highest irrigation system in the world, which was possibly constructed on Coropuna to allow the cultivation of bitter potatoes. Inca sites are often found at higher elevations than the sites left by preceding civilisations; the highest one is located at {{convert|5700|m|abbr=on}} elevation,{{sfn|Kuentz|Thouret|Ledru|Forget|2011|p=249}} and there is evidence of Inca presence to {{convert|6200|m|abbr=on}} elevation. In addition, an important branch of the Inca road system passes by the western foot of Coropuna. The region was densely populated; the close location of the mountains and favourable climatic conditions facilitated its settlement.{{sfn|Baca|Molak|Sobczyk|Węgleński|2014|p=3}}
As noted by Spanish chroniclers such as Pedro Cieza de León,{{sfn|Urton|Hagen|2015|p=105}} Coropuna played an important role in Inca religion, and an important temple was situated there,{{sfn|Ziółkowski|2008|p=131}} possibly at Maucallacta.{{sfn|Ziółkowski|2008|p=145}} Pedro Cieza de León considered Coropuna to be the fifth most important holy site of the Inca empire.{{sfn|Urton|Hagen|2015|p=105}} One archaeological site on the volcano may have been a stopover for religious ceremonies to its summit.{{sfn|Ziółkowski|2008|p=138}} South of Coropuna, the archaeological site of Illomas and its petroglyphs may bear a relationship to the volcano. Capacocha, a form of human sacrifice, were offered to the mountain; reportedly, in 1965, a mummy was found there.
== Maucallacta and Acchaymarca ==
Among the archaeological sites at Coropuna is the important Inca site of Maucallacta, on the southwestern flank of the mountain.{{sfn|Sobczyk|2012|p=215}} Some of the structures there were built to evoke the appearance of the mountain.{{sfn|Sobczyk|2012|p=219}} A royal residence, an oracle and a political unit were associated with Maucallacta,{{sfn|Ziółkowski|2008|pp=131–132}} and the oracle of Coropuna would have answered the rulers' queries all year round.{{sfn|Urton|Hagen|2015|p=211}} The Maucallacta site was probably the most important one at Coropuna; the western summit today known as "La Niña" was apparently also significant.{{sfn|Ziółkowski|2008|p=154}}
Another important site associated with Coropuna is Acchaymarca, to the west of the mountain,{{sfn|Baca|Molak|Sobczyk|Węgleński|2014|p=2}} where about 280 Inca stone structures have been found.{{sfn|Baca|Molak|Sobczyk|Węgleński|2014|p=3}} It is likely that many pilgrims came there for ceremonies honouring the apus of Coropuna and Solimana.{{sfn|Baca|Molak|Sobczyk|Węgleński|2014|p=8}}
Mythology, religion and legends
In the Inca Empire, Coropuna was a sacred mountain,{{sfn|Sobczyk|2012|p=215}} especially for the people of Cotahuasi. It was regarded as the apu of the southern region, and the second-most important in the cosmology of the Andes. The mountain was considered to be an abode of the dead{{sfn|Fourtané|2001|p=16}} – a large village where holy people received the souls of the departed, who lived there in the afterlife,{{sfn|Fourtané|2001|p=17}} and that could be accessed through caves. On the way on to the mountain, the souls are judged for their treatment of domestic animals and kitchen utensils. In Huaquira District mythology, the exhalations of the souls yield underground lakes, which return water to the living. In different mythologies Coropuna is instead the starting point for the deceased on a journey to Surimana.{{sfn|Fourtané|2001|p=17}} Coropuna and Solimana are often paired. Sometimes Coropuna is seen as a male entity while Solimana volcano is seen as a female one. The mountain is still worshipped today, and local people continue to observe the ancient mortuary rites.
An enduring Franciscan influence from a colonial-era Cusco friary, the "pious among today's Peruvian peasantry" revere a "Flying" St Francis of Assisi, who is believed to await the souls of the dead on top of Coropuna. Other poorly recorded legends are associated with Coropuna.{{sfn|Ziółkowski|2008|p=143}} One story narrates how a brother tried to deceive Coropuna and other mountains, and was turned into a deer. Another legend tells of a conflict between Coropuna and other local mountains against an interloping Inca. A third story states that a troupe was transporting precious metals for Coropuna and Solimana when the animal leading it was shot by a hunter; the mountains then castrated the hunter.
Climbing
The archaeological findings made on Coropuna indicate that the Inca may have reached the summit. Annie Peck and Hiram Bingham III each reached a summit of Coropuna in 1911; Peck raised a banner saying "Votes for Women" on the summit she had ascended, which was slightly lower than the one reached by Bingham a little later. This banner action was part of the women's suffrage campaigns that were taking place at that time, and meant to illustrate that women were just as capable as men of physical deeds. Bingham's ascent determined that Coropuna was not the highest summit of South America. Since then, other summits of the mountain have been ascended as well.
The rugged area offers mountaineering opportunities. Coropuna is normally ascended from Laguna Pallarcocha, from where a route along the western rib and glacier slopes leads up to a fore-summit and then to the main summit. Along this way, a high camp can be set up at {{convert|5600|-|5800|m|abbr=on}} elevation. An ascent of Coropuna would normally be a three-day trip, and on the French adjectival climbing scale the route is graded as Facile (F). Pallarcocha itself can be reached from a road that begins in the town of Chuquibamba.
Notes
{{Notelist}}
References
{{reflist|refs=
{{cite book|via=Project MUSE|title=Living with the Dead in the Andes|last1=Fitzsimmons|first1=James L.|last2=Shimada|first2=Izumi|publisher=University of Arizona Press|location=Tucson|isbn=9780816531745|url=https://muse.jhu.edu/pub/208/edited_volume/book/41527|chapter=The Sadness of Jars: Separation and Rectification in Andean Understandings of Death|oclc=906131040|year=2015|pages=315–316}}
{{Cite GVP|vn=354003|name=Coropuna|access-date=2 March 2019}}
{{cite journal|last1=Stern|first1=Charles R.|title=Active Andean volcanism: its geologic and tectonic setting|journal=Revista Geológica de Chile|date=December 2004|volume=31|issue=2|pages=161–206|doi=10.4067/S0716-02082004000200001|issn=0716-0208|doi-access=free}}
{{cite book|last1=Goicochea|first1=Zaniel I. Novoa|title=Geología 2008: Expedición Científica Polaca "Cañón del Colca"|date=2009|publisher=Sociedad Geográfica de Lima|isbn=9789972602498|trans-title=Geology 2008: "Cañón del Colca" Polish scientific expedition|language=es|pages=19–35|via=ResearchGate}}
{{cite journal|last1=Woloszyn|first1=Janusz Z.|last2=Sobczyk|first2=Maciej|last3=Presbítero Rodríguez|first3=Gonzalo|last4=Buda|first4=Pawel|title=Espacios ceremoniales del sitio inca de Maucallacta (Departamento de Arequipa, Perú)|issue=35|url=https://www.redalyc.org/html/3713/371336245003/|trans-title=Ceremonial spaces of the Inca site Maucallacta (Arequipa Department, Perú)|journal=Diálogo Andino – Revista de Historia, Geografía y Cultura Andina|date=2010|language=es|access-date=24 March 2019|archive-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203043/https://www.redalyc.org/html/3713/371336245003/|url-status=live}}
{{cite journal|last1=Chávez|first1=Chávez|title=Investigaciones Arqueológicas de Alta Montaña en el Sur del Perú|last2=Antonio|first2=José|journal=Chungará (Arica)|date=2001|volume=33|issue=2|pages=283–288|doi=10.4067/S0717-73562001000200014|trans-title=High altitude archeological investigations in South Perú|issn=0717-7356|language=es|doi-access=free}}
{{Cite book|url=https://archive.org/details/islandsoftiticac00band|title=The islands of Titicaca and Koati, illustrated|last=Bandelier|first=Adolph Francis Alphonse|author-link=Adolph Francis Alphonse Bandelier|date=1910|publisher=Hispanic Society of America|page=[https://archive.org/details/islandsoftiticac00band/page/24 24]|oclc=458607359}}
}}
= Sources =
{{refbegin}}
- {{Cite report | last=Aguilar | first=R. | year=2024 | title=Evaluación de peligros por flujos de detritos en el centro poblado de Viraco y zonas aledañas. Distrito de Viraco, provincia Castilla, departamento Arequipa | publisher=INGEMMET | series=Informe Técnico N° A7486 | pages=30|url=https://repositorio.ingemmet.gob.pe/handle/20.500.12544/4982?locale=es|language=es|hdl=20.500.12544/4982}}
- {{cite journal|last1=Baca|first1=Mateusz|last2=Molak|first2=Martyna|last3=Sobczyk|first3=Maciej|last4=Węgleński|first4=Piotr|last5=Stankovic|first5=Anna|title=Locals, resettlers, and pilgrims: A genetic portrait of three pre-Columbian Andean populations|journal=American Journal of Physical Anthropology|date=2014|volume=154|issue=3|pages=402–412|doi=10.1002/ajpa.22524|pmid=24801631|language=en|issn=1096-8644|doi-access=free}}
- {{cite journal|last1=Bromley|first1=Gordon R.M.|last2=Schaefer|first2=Joerg M.|last3=Winckler|first3=Gisela|last4=Hall|first4=Brenda L.|last5=Todd|first5=Claire E.|last6=Rademaker|first6=Kurt M.|title=Relative timing of last glacial maximum and late-glacial events in the central tropical Andes|journal=Quaternary Science Reviews|date=November 2009|volume=28|issue=23–24|pages=2514–2526|doi=10.1016/j.quascirev.2009.05.012|bibcode=2009QSRv...28.2514B|hdl=10379/14779|s2cid=52253555 |hdl-access=free}}
- {{Cite journal|last1=Bromley|first1=Gordon R. M.|last2=Hall|first2=Brenda L.|last3=Rademaker|first3=Kurt M.|last4=Todd|first4=Claire E.|last5=Racovteanu|first5=Adina E.|date=2011|title=Late Pleistocene snowline fluctuations at Nevado Coropuna (15°S), southern Peruvian Andes|journal=Journal of Quaternary Science|language=en|volume=26|issue=3|pages=305–317|doi=10.1002/jqs.1455|issn=1099-1417|bibcode=2011JQS....26..305B|hdl=10379/14782|s2cid=140657748|hdl-access=free}}
- {{cite journal|last1=Bromley|first1=Gordon R. M.|last2=Hall|first2=Brenda L.|last3=Schaefer|first3=Joerg M.|last4=Winckler|first4=Gisela|last5=Todd|first5=Claire E.|last6=Rademaker|first6=Kurt M.|title=Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He|journal=Journal of Quaternary Science|date=2011b|volume=26|issue=1|pages=37–43|doi=10.1002/jqs.1424|language=en|issn=1099-1417|bibcode=2011JQS....26...37B|hdl=10379/14781|s2cid=140725167|hdl-access=free}}
- {{cite journal|last1=Bromley|first1=Gordon R. M.|last2=Thouret|first2=Jean-Claude|last3=Schimmelpfennig|first3=Irene|last4=Mariño|first4=Jersy|last5=Valdivia|first5=David|last6=Rademaker|first6=Kurt|last7=del Pilar Vivanco Lopez|first7=Socorro|last8=Team|first8=ASTER|last9=Aumaître|first9=Georges|last10=Bourlès|first10=Didier|last11=Keddadouche|first11=Karim|title=In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru|journal=Bulletin of Volcanology|date=7 November 2019|volume=81|issue=11|pages=64|doi=10.1007/s00445-019-1325-6|language=en|issn=1432-0819|bibcode=2019BVol...81...64B|s2cid=207913276}}
- {{cite journal|last1=Bullard|first1=Fred M.|title=Volcanoes of Southern Peru|journal=Bulletin Volcanologique|date=1 December 1962|volume=24|issue=1|pages=443–453|doi=10.1007/BF02599360|language=en|issn=1432-0819|bibcode=1962BVol...24..443B|s2cid=140637499}}
- {{Cite journal|last=Caldas Vidal|first=Julio|date=1993|title=Geología de los cuadrángulos de Huambo y Orcopampa 32-r, 31-r – [Boletín A 46]|url=http://repositorio.ingemmet.gob.pe/handle/ingemmet/166|journal=Repositorio INGEMMET|publisher=Instituto Geológico, Minero y Metalúrgico|issn=0257-1641|trans-title=Geology of the Huambo and Orcopampa quadrangles 32-r, 31-r – [Bulletin 46]|language=es|access-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203044/http://repositorio.ingemmet.gob.pe/handle/ingemmet/166|archive-date=24 March 2019}}
- {{Cite journal|last=Campos|first=Néstor|date=30 December 2015|title=Fluctuación altitudinal de la línea de equilibrio glaciar en la vertiente Suroeste del Nevado Coropuna desde el Último Máximo Glaciar (Cordillera Ampato, Perú)|journal=Pirineos|language=en|volume=170|page=015|doi=10.3989/Pirineos.2015.170008|issn=1988-4281|doi-access=free}}
- {{cite journal |last1=Ccanccapa-Cartagena |first1=Alexander |last2=Paredes |first2=Betty |last3=Vera |first3=Corina |last4=Chavez-Gonzales |first4=Francisco D. |last5=Olson |first5=Elizabeth J. |last6=Welp |first6=Lisa R. |last7=Zyaykina |first7=Nadezhda N. |last8=Filley |first8=Timothy R. |last9=Warsinger |first9=David M. |last10=Jafvert |first10=Chad T. |title=Occurrence and probabilistic health risk assessment (PRA) of dissolved metals in surface water sources in Southern Peru |journal=Environmental Advances |date=1 October 2021 |volume=5 |pages=100102 |doi=10.1016/j.envadv.2021.100102 |language=en |issn=2666-7657 |doi-access=free |bibcode=2021EnvAd...500102C }}
- {{cite journal|last1=Cuber|first1=Piotr|last2=Panajew|first2=Paweł|last3=Gałaś|first3=Andrzej|title=Stratovolcanoes in the Western Cordillera – Polish Scientific Expedition to Peru 2003–2012 reconnaissance research|journal=Geotourism/Geoturystyka|date=30 November 2015|volume=37|issue=2|page=61|doi=10.7494/geotour.2014.37.61|language=en|issn=2353-3641|doi-access=free}}
- {{cite journal|last1=Cubukcu|first1=Evren H.|last2=Paquette|first2=Jean-Louis|last3=Jicha|first3=Brian R.|last4=Thouret|first4=Jean-Claude|title=A 25 myr chronostratigraphy of ignimbrites in south Peru: implications for the volcanic history of the Central Andes|journal=Journal of the Geological Society|date=1 September 2016|volume=173|issue=5|pages=734–756|doi=10.1144/jgs2015-162|url=https://pubs.geoscienceworld.org/jgs/article-abstract/173/5/734/317509/a-25-myr-chronostratigraphy-of-ignimbrites-in|language=en|issn=0016-7649|bibcode=2016JGSoc.173..734T|s2cid=131293712|access-date=24 March 2019|archive-date=30 March 2019|archive-url=https://web.archive.org/web/20190330170818/https://pubs.geoscienceworld.org/jgs/article-abstract/173/5/734/317509/a-25-myr-chronostratigraphy-of-ignimbrites-in|url-status=live}}
- {{cite journal|last1=de Silva|first1=SL|last2=Francis|first2=PW|title=Potentially active volcanoes of Peru-Observations using Landsat Thematic Mapper and Space Shuttle imagery|journal=Bulletin of Volcanology|date=1 March 1990|volume=52|issue=4|pages=286–301|doi=10.1007/BF00304100|language=en|issn=1432-0819|bibcode=1990BVol...52..286D|s2cid=140559785}}
- {{cite journal|last1=Dornbusch|first1=Uwe|title=Pleistocene and present day snowline rise in the Cordillera Ampato, Western Cordillera, Southern Peru (15° 15'-15° 45' S and 73° 30'-72° 15' W)|journal=Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen|date=24 June 2002|volume=225|issue=1|pages=103–126|doi=10.1127/njgpa/225/2002/103}}
- {{cite journal|last1=Engel|first1=Zbyněk|last2=Skrzypek|first2=Grzegorz|last3=Chuman|first3=Tomáš|last4=Šefrna|first4=Luděk|last5=Mihaljevič|first5=Martin|title=Climate in the Western Cordillera of the Central Andes over the last 4300 years|journal=Quaternary Science Reviews|date=September 2014|volume=99|pages=60–77|doi=10.1016/j.quascirev.2014.06.019|bibcode=2014QSRv...99...60E }}
- {{Cite journal|last1=Forget|first1=Marie-Emilie|last2=Thouret|first2=Jean-Claude|last3=Kuentz|first3=Adèle|last4=Fontugne|first4=Michel|date=2008|title=Héritages glaciaires, périglaciaires et évolution récente: le cas du Nevado Coropuna (Andes centrales, sud du Pérou)|journal=Géomorphologie: Relief, Processus, Environnement|volume=14|issue=2|pages=113–132|doi=10.4000/geomorphologie.6383|issn=1266-5304|url=http://journals.openedition.org/geomorphologie/6383|language=fr|access-date=6 June 2020|archive-date=11 December 2020|archive-url=https://web.archive.org/web/20201211014438/https://journals.openedition.org/geomorphologie/6383|url-status=live}}
- {{Cite journal|last=Fourtané|first=Nicole|date=2001|title=La montagne dans la littérature orale andine|journal=América. Cahiers du CRICCAL|volume=26|issue=1|pages=9–21|doi=10.3406/ameri.2001.1493|language=fr}}
- {{Cite book|title=La vegetación de la región Arequipa, Perú|first1=Antonio|last1=Galán|date=2012|publisher=Impreso en el Taller Librería Junior|last2=Linares Perea|first2=Eliana|isbn=9786120009406|oclc=824610716|trans-title=The vegetation of the Arequipa Region, Perú|language=es}}
- {{Cite journal|last1=García Zúñiga|first1=Fredy F.|last2=Mariño Salazar|first2=Jersy|last3=Valdivia Humerez|first3=David|date=April 2018|title=Estudio preliminar de los depósitos de lahar del Complejo Volcánico Nevado Coropuna emplazados en el río Capiza: sectores de Andamayo, Jollpa y Tipan|url=http://repositorio.ingemmet.gob.pe/handle/ingemmet/1478|journal=Repositorio INGEMMET|publisher=Instituto Geológico, Minero y Metalúrgico|trans-title=Preliminary study of the lahar deposits of the Nevado Coropuna Volcanic Complex in the Capiza River valley: Andamayo, Jollpa and Tipan sectors|language=es|access-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203043/http://repositorio.ingemmet.gob.pe/handle/ingemmet/1478|archive-date=24 March 2019}}
- {{cite web|last1=Gómez|first1=Juan Carlos|last2=Macías|first2=José Luis|last3=Arce|first3=José Luis|last4=Sánchez-Nuñez|first4=Juan Manuel|last5=Siebe|first5=Claus|title=Caracterizacion geologica de los depositos de avalancha de escombros en Chuquibamba y Cotahuasi, region Arequipa|url=https://biblioserver.sernageomin.cl/opac/DataFiles/14127_pp_1024_1026.pdf|year=2012|publisher=SERNAGEOMIN|access-date=25 February 2019|page=1025|trans-title=Geologic characterisation of the debris avalanche deposits of Chuquibamba and Cotahuasi, Arequipa Region|language=es|archive-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203044/https://biblioserver.sernageomin.cl/opac/DataFiles/14127_pp_1024_1026.pdf|url-status=dead}}
- {{Cite book|last=Heine|first=Klaus|date=2019|title=Das Quartär in den Tropen|doi=10.1007/978-3-662-57384-6|isbn=978-3-662-57384-6|language=de|publisher=Springer Spektrum|s2cid=187666121}}
- {{cite web|url=http://sigrid.cenepred.gob.pe/sigridv3/documento/2237|publisher=Sistema de Información para la Gestión del Riesgo de Desastres|author=INGEMMET|year=2015|title=Monitoreo de los volcanes Coropuna, Ticsani y Tutupaca (Biblioteca SIGRID)|website=sigrid.cenepred.gob.pe|trans-title=Monitoring of the volcanoes Coropuna, Ticsani and Tutupaca (SIGRID library)|language=es|access-date=21 January 2019|archive-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203043/http://sigrid.cenepred.gob.pe/sigridv3/documento/2237|url-status=live}}
- {{Cite book|last1=Herrmann|first1=Helmut|title=Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik|last2=Bucksch|first2=Herbert|date=2014|publisher=Springer Berlin Heidelberg|isbn=978-3-642-41713-9|language=en|doi=10.1007/978-3-642-41714-6|s2cid=199493015}}
- {{cite journal|last1=Kuentz|first1=Adèle|last2=Ledru|first2=Marie-Pierre|last3=Thouret|first3=Jean-Claude|title=Environmental changes in the highlands of the western Andean Cordillera, southern Peru, during the Holocene|journal=The Holocene|date=22 July 2011b|volume=22|issue=11|pages=1215–1226|doi=10.1177/0959683611409772|bibcode=2012Holoc..22.1215K|s2cid=128710738|language=en}}
- {{Cite journal|last1=Kuentz|first1=Adèle|last2=Mera|first2=Antonio Galán De|last3=Ledru|first3=Marie-Pierre|last4=Thouret|first4=Jean-Claude|date=2007|title=Phytogeographical data and modern pollen rain of the puna belt in southern Peru (Nevado Coropuna, Western Cordillera)|journal=Journal of Biogeography|language=en|volume=34|issue=10|pages=1762–1776|doi=10.1111/j.1365-2699.2007.01728.x|bibcode=2007JBiog..34.1762K |s2cid=84850642|issn=1365-2699}}
- {{Cite journal|last1=Kuentz|first1=Adèle|last2=Thouret|first2=Jean-Claude|last3=Ledru|first3=Marie-Pierre|last4=Forget|first4=Marie-Émilie|date=1 August 2011|title=Sociétés andines et changements environnementaux depuis 4 000 ans dans la région du Nevado Coropuna (sud du Pérou)|journal=Bulletin de l'Institut Français d'Études Andines|volume=40|language=fr|issue=2|pages=235–257|doi=10.4000/bifea.1388|issn=0303-7495|doi-access=free}}
- {{cite journal|last1=Lohman|first1=R. B.|last2=Pritchard|first2=M. E.|last3=Holtkamp|first3=S. G.|title=Earthquake swarms in South America|journal=Geophysical Journal International|date=1 October 2011|volume=187|issue=1|pages=128–146|doi=10.1111/j.1365-246X.2011.05137.x|language=en|issn=0956-540X|bibcode=2011GeoJI.187..128H|doi-access=free|hdl=1813/14866|hdl-access=free}}
- {{Cite journal|last1=Marinque|first1=Nelida|last2=Marino|first2=Jersy|last3=Enderlin|first3=Ellyn M.|last4=Edwards|first4=Benjamin R.|last5=Kochtitzky|first5=William H.|date=April 2018|title=Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru|journal=Journal of Glaciology|language=en|volume=64|issue=244|pages=175–184|doi=10.1017/jog.2018.2|issn=0022-1430|bibcode=2018JGlac..64..175K|doi-access=free|hdl=20.500.12544/1938|hdl-access=free}}
- {{cite journal |last1=Medina Allcca |first1=Lucio |last2=Gomez Velásquez |first2=Hugo Dulio |last3=Santos Romero |first3=Boris Laurend |last4=Moreno Herrera |first4=José Luis |last5=Pari Pinto |first5=Walter |title=Estudio geoambiental en la cuenca del río Ocoña - [Boletín N 2] |journal=Repositorio Institucional INGEMMET |date=July 2021 |url=https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3167 |language=es |trans-title=Geoenvironmental study of the Ocoña River watershed - [Bulletin No 2] |access-date=2 December 2021 |archive-date=2 December 2021 |archive-url=https://web.archive.org/web/20211202133624/https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3167 |url-status=live }}
- {{Cite journal|last1=Núñez Juárez|first1=Segundo|last2=Steinmüller|first2=Klaus|date=1998|title=Hidrotermalismo en el sur del Perú: Sector Cailloma-Puquio - [Boletín D 19]|url=http://repositorio.ingemmet.gob.pe/handle/ingemmet/316|journal=Repositorio INGEMMET|publisher=Instituto Geológico, Minero y Metalúrgico|issn=1607-5617|trans-title=Hydrothermal activity in southern Perú: Cailloma-Puquio sector [Bulletin D 19]|language=es|access-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203040/http://repositorio.ingemmet.gob.pe/handle/ingemmet/316|archive-date=24 March 2019}}
- {{cite journal |last1=Olson |first1=Elizabeth J. |last2=Welp |first2=Lisa R. |last3=Frisbee |first3=Marty D. |last4=Zúñiga Medina |first4=Sebastián A. |last5=Alvarez-Campos |first5=Odiney |last6=Roque Quispe |first6=Wendy R. |last7=Salazar Mamani |first7=Carol I. |last8=Arenas Carrión |first8=Midhuar R. |last9=Diaz Rodriguez |first9=José |last10=Jara Gonzalez |first10=Juan Manuel |last11=Ccanccapa-Cartagena |first11=Alexander |last12=Jafvert |first12=Chad T. |title=Spatially heterogeneous discharge of glacial meltwater to drainages surrounding the ablating Coropuna ice cap, Peruvian Andes |journal=Hydrological Sciences Journal |date=10 June 2024 |volume=69 |issue=8 |pages=1113–1129 |doi=10.1080/02626667.2024.2352522}}
- {{Cite journal|last1=Palenque|first1=Jose Úbeda|last2=Niño de Guzmán|first2=Ronald Concha|last3=Choque|first3=Pool Vásquez|last4=Álvarez|first4=Pablo Masías|last5=Ayala|first5=Joshua Iparraguirre|year=2018|format=PDF|title=Prospección de edades 36Cl de la última máxima expansión de los glaciares y el comienzo de la deglaciación al noreste del complejo volcánico Nevado Coropuna (Región Arequipa)|url=https://www.researchgate.net/publication/322498608|volume=8|pages=97–123|issn=0079-1091|access-date=20 January 2019|journal=Boletín de la Sociedad Geológica del Perú|via=ResearchGate|trans-title=Prospecting of 36Cl dates of the last maximum glacial expansion and beginning deglaciation of the northeast of the Nevado Coropuna volcanic complex|language=es|archive-date=2 April 2022|archive-url=https://web.archive.org/web/20220402125459/https://www.researchgate.net/publication/322498608_Prospeccion_de_edades_36Cl_de_la_ultima_maxima_expansion_de_los_glaciares_y_el_comienzo_de_la_deglaciacion_al_noreste_del_complejo_volcanico_Nevado_Coropuna_Region_Arequipa|url-status=live}}
- {{Cite journal|last1=Racoviteanu|first1=Adina E.|last2=Manley|first2=William F.|last3=Arnaud|first3=Yves|last4=Williams|first4=Mark W.|date=1 October 2007|title=Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes|journal=Global and Planetary Change|series=Mass Balance of Andean Glaciers|volume=59|issue=1–4|pages=110–125|doi=10.1016/j.gloplacha.2006.11.036|issn=0921-8181|bibcode=2007GPC....59..110R}}
- {{cite journal |last1=Rivera |first1=Marco |last2=Del Carpio Calienes |first2=José Alberto |last3=Tavera |first3=Hernando |last4=Cruz Igme |first4=John Edward |last5=Vargas Alva |first5=Katherine Andrea |last6=Torres Aguilar |first6=José Luis |last7=Concha Calle |first7=Jorge Andrés |title=Análisis y evaluación de escenarios críticos por descenso de lahares en volcanes peruanos |date=February 2021 |url=https://repositorio.igp.gob.pe/handle/20.500.12816/4927 |language=es |trans-title=Analysis and evaluation of critical scenarios due to the descent of lahars from Peruvian volcanoes |journal=Instituto Geofísico del Perú Informe Técnico 003–2021 |access-date=2 December 2021 |archive-date=2 December 2021 |archive-url=https://web.archive.org/web/20211202140149/https://repositorio.igp.gob.pe/handle/20.500.12816/4927 |url-status=live }}
- {{cite journal|last1=Sandweiss|first1=Daniel H.|last2=Álvarez|first2=Willy Yépez|last3=Reid|first3=David A.|last4=Leach|first4=Peter|last5=Bromley|first5=Gordon R. M.|last6=Miller|first6=Christopher|last7=Zarrillo|first7=Sonia|last8=Moore|first8=Katherine|last9=Hodgins|first9=Gregory|last10=Rademaker|first10=Kurt|title=Paleoindian settlement of the high-altitude Peruvian Andes|journal=Science|date=24 October 2014|volume=346|issue=6208|pages=466–469|doi=10.1126/science.1258260|pmid=25342802|language=en|issn=0036-8075|bibcode=2014Sci...346..466R|s2cid=206560472}}
- {{Cite journal|last1=Schotterer|first1=U.|last2=Delachaux|first2=F.|last3=Ledru|first3=M.-P.|last4=Angelis|first4=M. De|last5=Patris|first5=N.|last6=Ginot|first6=P.|last7=Taupin|first7=J.-D.|last8=Moreno|first8=I.|last9=Herreros|first9=J.|date=13 October 2009|title=Environmental records from temperate glacier ice on Nevado Coropuna saddle, southern Peru|journal=Advances in Geosciences|language=en|volume=22|pages=27–34|doi=10.5194/adgeo-22-27-2009|bibcode=2009AdG....22...27H|doi-access=free}}
- {{Cite journal|last1=Silverio|first1=W.|last2=Herold|first2=C.|last3=Peduzzi|first3=P.|date=23 August 2010|title=Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru)|journal=The Cryosphere|language=en|volume=4|issue=3|pages=313–323|doi=10.5194/tc-4-313-2010|issn=1994-0416|bibcode=2010TCry....4..313P|doi-access=free}}
- {{cite journal|last1=Silverio|first1=Walter|last2=Jaquet|first2=Jean-Michel|s2cid=59608395|date=5 April 2012|title=Multi-temporal and multi-source cartography of the glacial cover of Nevado Coropuna (Arequipa, Peru) between 1955 and 2003|journal=International Journal of Remote Sensing|volume=33|issue=18|pages=5876–5888|doi=10.1080/01431161.2012.676742|bibcode=2012IJRS...33.5876S}}
- {{Cite journal|journal=Revista de Glaciares y Ecosistemas de Montaña|volume=4|url=https://www.researchgate.net/publication/330042461|trans-title=Impact of Climate Change on Mount Coropuna (Cordillera Ampato, Arequipa, Peru) and on Water Resources|first=Walter|last=Silverio|year=2018|title=Impacto del Cambio Climático en el Nevado Coropuna(Cordillera Ampato, Arequipa, Perú) y en el Recurso Hídrico|via=ResearchGate|access-date=20 January 2019|language=es|archive-date=2 April 2022|archive-url=https://web.archive.org/web/20220402125501/https://www.researchgate.net/publication/330042461_Silverio2018|url-status=live}}
- {{cite web|last1=Sobczyk|first1=Maciej|title=Maucallacta, Peru: Information about the Work Carried out in the 2012 Season|url=http://www.archeo.uw.edu.pl/swarch/Swiatowit_X(LI)A2012_s215-221.pdf|website=Instytut Archeologii UW|publisher=University of Warsaw|access-date=26 February 2019|date=2012|archive-date=14 April 2018|archive-url=https://web.archive.org/web/20180414052114/http://www.archeo.uw.edu.pl/swarch/Swiatowit_X(LI)A2012_s215-221.pdf|url-status=live}}
- {{cite journal|first1=J.-C.|last1=Thouret|first2=E.|last2=Juvigne|first3=J.|last3=Mariño|first4=M.|last4=Moscol|first5=A.|last5=Legeley-Padovani|first6=I.|last6=Loutsch|first7=J.|last7=Davila|first8=S.|last8=Lamadon|first9=M.|last9=Rivera|title=Late Pleistocene and Holocene tephro-stratography and chronology in Southern Peru|url=http://ovi.ingemmet.gob.pe/wp-content/uploads/2018/10/Tefrocronologia-2002-Misti.pdf|journal=Boletin Sociedad Geológica del Perú|publisher=Sociedad Geológica del Perú|access-date=25 February 2019|date=2002|archive-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203044/http://ovi.ingemmet.gob.pe/wp-content/uploads/2018/10/Tefrocronologia-2002-Misti.pdf|url-status=live}}
- {{cite journal|last1=Thouret|first1=Jean-Claude|last2=Gunnell|first2=Yanni|last3=Jicha|first3=Brian R.|last4=Paquette|first4=Jean-Louis|last5=Braucher|first5=Régis|title=Canyon incision chronology based on ignimbrite stratigraphy and cut-and-fill sediment sequences in SW Peru documents intermittent uplift of the western Central Andes|journal=Geomorphology|date=December 2017|volume=298|pages=1–19|doi=10.1016/j.geomorph.2017.09.013|bibcode=2017Geomo.298....1T}}
- {{Cite report|last1=Torres Aguilar|first1=José Luis|last2=Del Carpio Calienes|first2=José Alberto|last3=Rivera|first3=Marco|date=April 2020|title=Evaluación y análisis de la actividad sísmica en el complejo volcánico nevado Coropuna (periodos 2001-2002, 2008-2010 y 2018-2019)|trans-title=Evaluation and analysis of the seismic activity of Nevado Coropuna Volcanic Complex (2001-2002, 2008-2010 und 2018-2019 periods)|url=https://repositorio.igp.gob.pe/handle/20.500.12816/4786|language=es|publisher=Instituto Geofísico del Perú|access-date=3 December 2020|archive-date=15 January 2021|archive-url=https://web.archive.org/web/20210115181254/https://repositorio.igp.gob.pe/handle/20.500.12816/4786|url-status=live}}
- {{cite journal|last1=Tosdal|first1=Richard M.|last2=Farrar|first2=Edward|last3=Clark|first3=Alan H.|title=K-Ar geochronology of the late cenozoic volcanic rocks of the Cordillera Occidental, southernmost Peru|journal=Journal of Volcanology and Geothermal Research|date=May 1981|volume=10|issue=1–3|pages=157–173|doi=10.1016/0377-0273(81)90060-3|bibcode=1981JVGR...10..157T}}
- {{cite web |date=January 2012 |first1=Jose|last1=Úbeda|first2=David|last2=Palacios|first3=Lorenzo|last3=Vázquez-Selem|format=PDF|title=La evolución glaciovolcánica del Nevado Coropuna desde la transición del Pleistoceno al Holoceno|url=https://www.researchgate.net/publication/235986166 |url-access=registration |website=ResearchGate|access-date=20 January 2019|trans-title=The glaciovolcanic evolution of Nevado Coropuna during the Pleistocene-Holocene transition|language=es|archive-date=2 April 2022|archive-url=https://web.archive.org/web/20220402125422/https://www.researchgate.net/publication/235986166_La_evolucion_glaciovolcanica_del_Nevado_Coropuna_desde_la_transicion_del_Pleistoceno_al_Holoceno|url-status=live}}
- {{Cite journal|last=Úbeda Palenque|first=José|date=2013|title=La investigación del registro glacial del cambio climático en el complejo volcánico nevado Coropuna (Arequipa – Perú)|url=https://repositorio.ingemmet.gob.pe/handle/20.500.12544/1141|journal=Repositorio INGEMMET|publisher=Instituto Geológico, Minero y Metalúrgico|access-date=3 December 2019|archive-date=3 December 2019|archive-url=https://web.archive.org/web/20191203114104/https://repositorio.ingemmet.gob.pe/handle/20.500.12544/1141|url-status=live}}
- {{cite book|last1=Urton|first1=Gary|last2=Hagen|first2=Adriana von|title=Encyclopedia of the Incas|date=2015|publisher=Rowman & Littlefield|isbn=9780759123632|language=es}}
- {{Cite journal|last1=Valenzuela Ortiz|first1=Germán|last2=Núñez Juárez|first2=Segundo|date=2001|title=Mapa preliminar de amenaza volcánica potencial del volcán-nevado Coropuna - [Boletin C 25]|url=https://repositorio.ingemmet.gob.pe/handle/20.500.12544/258|journal=Repositorio INGEMMET|publisher=Instituto Geológico, Minero y Metalúrgico|issn=1560-9928|trans-title=Preliminary hazard map of Nevado Coropuna volcano – [Bulletin C 25]|language=es|access-date=12 November 2019|archive-date=12 November 2019|archive-url=https://web.archive.org/web/20191112171305/https://repositorio.ingemmet.gob.pe/handle/20.500.12544/258|url-status=live}}
- {{Cite journal|last1=Vela|first1=Jesica|last2=Cáceres|first2=Jesús|last3=Calderón|first3=Javier|last4=Chijcheapaza|first4=Rolando|last5=Apaza|first5=Freddy|last6=Vilca|first6=Javier|last7=Masias|first7=Pablo|last8=Álvarez|first8=Yovana|last9=Miranda|first9=Rafael|date=May 2016|title=Evaluación del riesgo volcánico en el sur del Perú, situación de la vigilancia actual y requerimientos de monitoreo en el futuro|url=http://repositorio.igp.gob.pe/handle/IGP/797|trans-title=Evaluation of volcanic hazards in southern Perú, present awareness and future monitoring requirements|language=es|journal=Repositorio Institucional – IGP|access-date=24 March 2019|archive-date=24 March 2019|archive-url=https://web.archive.org/web/20190324203044/http://repositorio.igp.gob.pe/handle/IGP/797|url-status=live}}
- {{Cite journal|last1=Venturelli|first1=G.|last2=Fragipane|first2=M.|last3=Weibel|first3=M.|last4=Antiga|first4=D.|date=1 September 1978|title=Trace element distribution in the cainozoic lavas of Nevado Coropuna and Andagua Valley, Central Andes of Southern Peru|journal=Bulletin Volcanologique|language=en|volume=41|issue=3|pages=213–228|doi=10.1007/BF02597224|issn=1432-0819|bibcode=1978BVol...41..213V|s2cid=130527641}}
- {{cite journal|last1=Weibel|first1=M.|last2=Frangipane-Gysel|first2=M.|last3=Hunziker|first3=J.|title=Ein Beitrag zur Vulkanologie Süd-Perus|journal=Geologische Rundschau|date=1 February 1978|volume=67|issue=1|pages=243–252|doi=10.1007/BF01803264|language=de|issn=1432-1149|bibcode=1978GeoRu..67..243W|s2cid=128896696}}
- {{cite journal|last1=Weide|first1=D. Marie|last2=Fritz|first2=Sherilyn C.|author-link2=Sherilyn C. Fritz|last3=Brinson|first3=Bruce E.|last4=Thompson|first4=Lonnie G.|last5=Billups|first5=W. Edward|s2cid=89826625|title=Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes|journal=Diatom Research|date=17 July 2017|volume=32|issue=2|pages=153–162|doi=10.1080/0269249x.2017.1335240|bibcode=2017DiaRe..32..153W }}
- {{cite journal|title=The highest point in Perú - A short history on the survey of Huascarán|journal=Boletín de la Sociedad Geológica del Perú|via=ResearchGate|url=https://www.researchgate.net/publication/299611241|volume=98|year=2004|pages=97–101|first=James M.|last=Wise|access-date=24 March 2019|archive-date=2 April 2022|archive-url=https://web.archive.org/web/20220402125522/https://www.researchgate.net/publication/299611241_The_Highest_Point_in_Peru-_a_short_history_on_the_survey_of_Huascaran|url-status=live}}
- {{cite journal |last1=Yoshikawa |first1=Kenji |last2=Úbeda |first2=Jose |last3=Masías |first3=Pablo |last4=Pari |first4=Walter |last5=Apaza |first5=Fredy |last6=Vasquez |first6=Pool |last7=Ccallata |first7=Beto |last8=Concha |first8=Ronald |last9=Luna |first9=Gonzalo |last10=Iparraguirre |first10=Joshua |last11=Ramos |first11=Isabel |last12=Cruz |first12=Gustavo De la |last13=Cruz |first13=Rolando |last14=Pellitero |first14=Ramón |last15=Bonshoms |first15=Martí |title=Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO) |journal=Permafrost and Periglacial Processes |date=2020 |volume=31 |issue=4 |pages=598–609 |doi=10.1002/ppp.2064 |bibcode=2020PPPr...31..598Y |s2cid=219478782 |url=https://onlinelibrary.wiley.com/doi/full/10.1002/ppp.2064 |language=en |issn=1099-1530 }}
- {{Cite book|chapter-url=https://www.researchgate.net/publication/303525248 |via=ResearchGate|access-date=20 January 2019|chapter=Coropuna y Solimana: los oráculos de Condesuyos|date=January 2008|title=Adivinación y oráculos en el mundo andino antiguo|publisher=Fondo Editorial PUCP – IFEA |location=Lima|editor-first1=Marco|editor-last1=Curatola|editor-first2=Mariusz|editor-last2=Ziółkowski|pages=121–159|first=Mariusz|last=Ziółkowski|trans-title=Divination and oracles of the ancient Andean world|language=es|archive-date=2 April 2022|archive-url=https://web.archive.org/web/20220402125512/https://www.researchgate.net/publication/303525248_Coropuna_y_Solimana_los_oraculos_de_Condesuyos|url-status=live}}
{{refend}}
Further reading
- {{cite book |last1=De Silva |first1=Shanaka L. |last2=Francis |first2=Peter |year=1991 |title=Volcanoes of the Central Andes |publisher=Springer-Verlag |isbn=978-3-540-53706-9}}
- {{cite journal |last=Reinhard |first=Johan |year=1999 |title=Coropuna: Lost Mountain Temple of the Incas |journal=South American Explorers Journal |volume=58 |issue=5 |pages=26–30}}
- {{cite book |last=Reinhard |first=Johan |year=2005 |title=The Ice Maiden: Inca Mummies, Mountain Gods, and Sacred Sites in the Andes |publisher=National Geographic Society |url-access=registration |url=https://archive.org/details/icemaidenincamum0000rein |isbn=0-7922-6838-5}}
External links
{{Commons category}}
- [http://www.summitpost.org/mountain/rock/150582/coropuna.html Coropuna on Summitpost]
{{Andean volcanoes}}
{{Authority control}}
Category:Stratovolcanoes of Peru
Category:Holocene stratovolcanoes
Category:Pleistocene stratovolcanoes
Category:Pliocene stratovolcanoes
Category:Six-thousanders of the Andes