GM 6L transmission

{{short description|Motor vehicle automatic transmission models}}

{{Infobox automobile

|image = Ypsilanti Automotive Heritage Museum May 2015 069 (Hydra-Matic 6L80 transmission).jpg

|caption = A Hydra-Matic 6L80 transmission at the Ypsilanti Automotive Heritage Museum

|name = 6L 45 · 6L 50 · 6L 80 · 6L 90

|production = 2005–present

|manufacturer = General Motors

|class=6-Speed Longitudinal
Automatic Transmission

|predecessor = 4L60-E · 4L65-E
5L40-E · 5L50

|successor = 8L 45 · 8L 90

|related = Aisin AWTF-80 SC
Ford 6R
ZF 6HP

}}

The 6L 50 (and similar 6L 45) is a 6-speed longitudinally-mounted automatic transmission produced by General Motors. It is very similar in design to the larger GM 6L 80 and 6L 90, and is produced at GM Powertrain plants in Toledo, Ohio; Silao, Guanajuato, Mexico; and by the independent Punch Powerglide company in Strasbourg, France.

This transmission features clutch to clutch shifting, eliminating the bands used on older transmission designs. The 6L 50 debuted for the 2007 model year on the V8-powered versions of the Cadillac STS sedan and Cadillac SRX crossover, and replaces the 5L40-E and 5L50 in GM's lineup. The 6L 45 version is used in certain BMW vehicles and the Cadillac ATS, as part of either rear-wheel drive and all-wheel drive powertrains.

The 6L 80 (and similar 6L 90) is a 6-speed automatic transmission built by General Motors at its Willow Run Transmission plant in Ypsilanti, MI. It was introduced in late 2005, and is very similar in design to the smaller 6L 45 and 6L 50, produced at GM Powertrain in Strasbourg, France.

It features clutch to clutch shifting, eliminating the one-way clutches used on older transmission designs. In February 2006 GM announced that it would invest $500 million to expand the Toledo Transmission plant in Toledo, Ohio to produce the 6L 80 in 2008. 6L 80 and 6L 90 are adaptable to rear-wheel drive and all-wheel drive applications.

class="wikitable collapsible" style="text-align:center"

|+ Gear Ratios{{efn|Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage}}

! {{diagonal split header|Model|Gear}}

! R

! 1

! 2

! 3

! 4

! 5

! 6

! Total
Span

! Span
Center

! Avg.
Step

! Compo-
nents

colspan="12" style="background:#AAF;"|
6L 45 · 6L 50

| {{round

13386/4183|3}}

| {{round|629142/154771|3}}

| {{round|15617/6586|3}}

| {{round|138/89|3}}

| {{round|13386/11573|3}}

| {{round|13386/15689|3}}

| {{round|97/144|3}}

| {{round|13386/3293*144/97|3}}

| {{round|(13386/3293*97/144)^(1/2)|3}}

| {{round|(13386/3293*144/97)^(1/5)|3}}

| rowspan=4|3 Gearsets
2 Brakes
3 Clutches

6L 80 · 6L 90

| {{round

144/47|3}}

| {{round|6624/1645|3}}

| {{round|3888/1645|3}}

| {{round|72/47|3}}

| {{round|6624/5749|3}}

| {{round|144/169|3}}

| {{round|2/3|3}}

| {{round|6624/1645*3/2|3}}

| {{round|(6624/1645*2/3)^(1/2)|3}}

| {{round|(6624/1645*3/2)^(1/5)|3}}

colspan="11"|
ZF 6HP All · 2000{{efn|first transmission to use the Lepelletier 6-speed gearset concept}}

| {{round

4590/1349|3}}

| {{round|9180/2201|3}}

| {{round|211140/90241|3}}

| {{round|108/71|3}}

| {{round|9180/8033|3}}

| {{round|9180/10586|3}}

| {{round|85/123|3}}

| {{round|9180/2201*123/85|3}}

| {{round|(9180/2201*85/123)^(1/2)|3}}

| {{round|(9180/2201*123/85)^(1/5)|3}}

colspan="12" style="background:#AAF;"|
colspan="12"| {{notelist|2|group=efn}}
colspan="12" style="background:#AAF;"|

Specifications

= Technical Data =

class="wikitable collapsible" style="text-align:center"

|+ Features

!

! 6L 45 · MYA
6L 50 · MYB

! 6L 80 · MYC
6L 90 · MYD

colspan=3 style="background:#AAF;"|
Colspan=3| Input Capacity
Maximum engine power

| {{convert|315|bhp|kW|abbr=on|lk=on}}

| {{convert|555|bhp|kW|abbr=on|lk=on}}

Maximum gearbox torque

| {{convert|450|Nm|lbft|0|abbr=on|lk=on}}
{{convert|480|Nm|lbft|0|abbr=on|lk=on}}

| {{convert|800|Nm|lbft|0|abbr=on|lk=on}}
{{convert|1200|Nm|lbft|0|abbr=on|lk=on}}

Maximum shift speed

| 7,000/min

| 6,200/min

colspan=3| Vehicle
Maximum Validated Weight
Gross Vehicle Weight · GVW

| {{convert|5000|lb|kg

1|abbr=on|lk=on}}
{{convert|3000|kg|lb
1|abbr=on|lk=on|disp=flip}}

| {{convert|15000|lb|kg

1|abbr=on|lk=on}}
Maximum Validated Weight
Gross Curb
Vehicle Weight · GCVW

| {{convert|12500|lb|kg

1|abbr=on|lk=on}}

| {{convert|21000|lb|kg

1|abbr=on|lk=on}}
colspan=3| Gearbox
7-position quadrant

|colspan=2| P · R · N · D · X · X · X{{efn|X: available calibratable range position}}

Case material

|colspan=2| Die cast aluminum

Shift pattern (2)

|colspan=2| 3-way on/off solenoids

Shift quality

|colspan=2| 5 variable bleed solenoid

Torque converter clutch

|colspan=2| Variable Bleed Solenoid ECCC

Converter size

| {{convert|240|mm|in|2|abbr=on|lk=on}}

| {{convert|258|mm|in|2|abbr=on|lk=on}}

Fluid type

|colspan=2| DEXRON VI

Fluid capacity

|colspan=2| 9.1 kg with 258 & 300 mm

colspan=3| Available Control Features
Shift Patterns

|colspan=2| Multiple (Selectable)

Driver Shift Control

|colspan=2| Tap Up · Tap Down

Shifting

|colspan=2| Enhanced Performance Algorithm Shifting (PAS)

Additional Modes

|colspan=2| Tow & Haul Mode (Selectable)

Engine Torque Management

|colspan=2| On All Shifts

Shift Control

|colspan=2| Altitude & Temperature Compensation
Adaptive Shift Time
Neutral Idle
Reverse Lockout
Automatic Grade Braking

colspan=3| Additional Features
Control

|colspan=2| OBDII · EOBD
Integral Electro/Hydraulic Controls Module (Tehcm)
Control Interface Protocol – GMLAN
The transmission control module (TCM)
is built into the solenoid pack/housing

Assembly sites

|colspan=2| GMPT{{efn|name=GMPT|General Motors Powertrain}} Strasbourg · France
GMPT{{efn|name=GMPT}} Toledo · Ohio · USA
GMPT{{efn|name=GMPT}} Silao · Mexico

colspan=3 style="background:#AAF;"|
colspan=3| {{notelist|2|group=efn}}
colspan=3 style="background:#AAF;"|

= Progress Gearset Concept =

== Main Objectives ==

The main objective in replacing the predecessor model was to improve vehicle fuel economy with extra speeds and a wider gear span to allow the engine speed level to be lowered (downspeeding). The layout brings the ability to shift in a non-sequential manner – going from gear 6 to gear 2 in extreme situations simply by changing one shift element (actuating clutch E and releasing brake A).

== Extent ==

In order to increase the number of ratios, ZF has abandoned the conventional design method of limiting themselves to pure in-line epicyclic gearing and extended it to a combination with parallel epicyclic gearing. This was only possible thanks to computer-aided design and has resulted in a globally patent for this gearset concept. The 6L is based on the 6HP from ZF, which was the first transmission designed according to this new paradigm. After gaining additional gear ratios only with additional components, this time the number of components has to decrease while the number of ratios still increase. The progress is reflected in a much better ratio of the number of gears to the number of components used compared to existing layouts.

class="wikitable collapsible" style="text-align:center"

|+ Innovation Strength Analysis

!rowspan=2| With
Assessment

!rowspan=2| Output:
Gear
Ratios

!rowspan=2| Innovation
Elasticity{{efn|name=Progress|Innovation Elasticity Classifies Progress And Market Position

  • Automobile manufacturers drive forward technical developments primarily in order to remain competitive or to achieve or defend technological leadership. This technical progress has therefore always been subject to economic constraints
  • Only innovations whose relative additional benefit is greater than the relative additional resource input, i.e. whose economic elasticity is greater than 1, are considered for realization
  • The required innovation elasticity of an automobile manufacturer depends on its expected return on investment. The basic assumption that the relative additional benefit must be at least twice as high as the relative additional resource input helps with orientation
  • negative, if the output increases and the input decreases, is perfect
  • 2 or above is good
  • {{font color|red|1 or above is acceptable (red)}}
  • {{font color|red|below this is unsatisfactory (bold)}}}}
    Δ Output : Δ Input

!colspan=4| Input: Main Components

Total

! Gearsets

! Brakes

! Clutches

colspan="7" style="background:#AAF;"|
6L
Ref. Object

! n_{O1}
n_{O2}

!rowspan=2| Topic{{efn|name=Progress}}

! n_I= n_G+
n_B+ n_C

! n_{G1}
n_{G2}

! n_{B1}
n_{B2}

! n_{C1}
n_{C2}

Δ Number

! n_{O1}- n_{O2}

! n_{I1}- n_{I2}

! n_{G1}- n_{G2}

! n_{B1}- n_{B2}

! n_{C1}- n_{C2}

Relative Δ

! Δ Output
\tfrac{n_{O1}- n_{O2}} {n_{O2}}

! \tfrac{n_{O1}- n_{O2}} {n_{O2}}: \tfrac{n_{I1}- n_{I2}} {n_{I2}}
=\tfrac{n_{O1}- n_{O2}} {n_{O2}}·\tfrac{n_{I2}} {n_{I1}- n_{I2}}

! Δ Input
\tfrac{n_{I1}- n_{I2}} {n_{I2}}

! \tfrac{n_{G1}- n_{G2}} {n_{G2}}

! \tfrac{n_{B1}- n_{B2}} {n_{B2}}

! \tfrac{n_{C1}- n_{C2}} {n_{C2}}

colspan="7" style="background:#AAF;"|
6L
5L40-E{{efn|name=pre|Direct Predecessor

  • To reflect the progress of the specific model change}}

| 6{{efn|name=rev|plus 1 reverse gear}}
5{{efn|name=rev}}

!rowspan=2| Progress{{efn|name=Progress}}

| 8
9

| 3{{efn|name=rav|of which 2 gearsets are combined as a compound Ravigneaux gearset}}
3

| 2
3

| 3
3

Δ Number

| 1

| -1

| 0

| -1

| 0

Relative Δ

| {{round|1/5|3}}
\tfrac{1} {5}

| {{round

9/5|3}}{{efn|name=Progress}}
\tfrac{1} {5}: \tfrac{-1} {9}= \tfrac{1} {5}·\tfrac{-9} {1}= \tfrac{-9} {5}

| {{round

1/9|3}}
\tfrac{-1} {9}

| {{round|0/3|3}}
\tfrac{0} {3}

| {{round

1/3|3}}
\tfrac{-1} {3}

| {{round|0/3|3}}
\tfrac{0} {3}

colspan="7"|
6L
3-Speed{{efn|Reference Standard (Benchmark)

  • 3-speed transmissions with torque converters have established the modern market for automatic transmissions and thus made it possible in the first place, as this design proved to be a particularly successful compromise between cost and performance
  • It became the archetype and dominated the world market for around 3 decades, setting the standard for automatic transmissions. It was only when fuel consumption became the focus of interest that this design reached its limits, which is why it has now completely disappeared from the market
  • What has remained is the orientation that it offers as a reference standard (point of reference, benchmark) for this market for determining progressiveness and thus the market position of all other, later designs
  • All transmission variants consist of 7 main components
  • Typical examples are
  • Turbo-Hydramatic from GM
  • Cruise-O-Matic from Ford
  • TorqueFlite from Chrysler
  • Detroit Gear from BorgWarner for Studebaker
  • BW-35 from BorgWarner and as T35 from Aisin
  • 3N 71 from Nissan/Jatco
  • 3 HP from ZF Friedrichshafen
  • W3A 040 and W3B 050 from Mercedes-Benz}}

| 6{{efn|name=rev}}
3{{efn|name=rev}}

!rowspan=2| Market Position{{efn|name=Progress}}

| 8
7

| 3{{efn|name=rav}}
2

| 2
3

| 3
2

Δ Number

| 3

| 1

| 1

| -1

| 1

Relative Δ

| {{round|1/1|3}}
\tfrac{1} {1}

| {{round|7/1|3}}{{efn|name=Progress}}
\tfrac{1} {1}: \tfrac{1} {7}= \tfrac{1} {1}·\tfrac{7} {1}= \tfrac{7} {1}

| {{round|1/7|3}}
\tfrac{1} {7}

| {{round|1/2|3}}
\tfrac{1} {2}

| {{round

1/3|3}}
\tfrac{-1} {3}

| {{round|1/2|3}}
\tfrac{1} {2}

colspan="7" style="background:#AAF;"|
colspan="7"| {{notelist|2|group=efn}}
colspan="7" style="background:#AAF;"|

= Quality Gearset Concept =

The ratios of the 6 gears are nicely evenly distributed in all versions. Exceptions are the large step from 1st to 2nd gear and the almost geometric steps from 3rd to 4th to 5th gear. They cannot be eliminated without affecting all other gears. As the large step is shifted due to the large span to a lower speed range than with conventional gearboxes, it is less significant. As the gear steps are smaller overall due to the additional gear(s), the geometric gear steps are still smaller than the corresponding gear steps of conventional gearboxes. Overall, therefore, the weaknesses are not overly significant. As the selected gearset concept saves up to 2 components compared to 5-speed transmissions, the advantages clearly outweigh the disadvantages.

It has a torque converter lock-up for all 6 forward gears, which can be fully disengage when stationary, largely closing the fuel efficiency gap between vehicles with automatic and manual transmissions.

In a Lepelletier gearset,{{Cite web |last=Riley |first=Mike |date=2013-09-01 |title=Lepelletier Planetary System |url=https://www.transmissiondigest.com/lepelletier-planetary-system/ |access-date=2023-03-03 |website=Transmission Digest|archive-date=2023-06-21 |archive-url=https://web.archive.org/web/20230621163418/https://www.transmissiondigest.com/lepelletier-planetary-system/ |url-status=live }} a conventional planetary gearset and a composite Ravigneaux gearset are combined to reduce both the size and weight as well as the manufacturing costs. Like all transmissions realized with Lepelletier transmissions, the 6L also dispenses with the use of the direct gear ratio and is thus one of the very few automatic transmission concepts without such a ratio.

class="wikitable collapsible" style="text-align:center"

|+ Gear Ratios

!rowspan=2 colspan=2| With Assessment{{efn|All 6L-transmissions are based on the Lepelletier gear mechanism, first realized in the ZF 6HP gearbox}}{{efn|name=other|Other gearboxes using the Lepelletier gear mechanism see infobox}}

!colspan=3| Planetary Gearset: Teeth{{efn|Layout

  • Input and output are on opposite sides
  • Planetary gearset 1 is on the input (turbine) side
  • Input shafts are R1 and, if actuated, C2/C3 (the combined carrier of the compound Ravigneaux gearset 2 and 3)
  • Output shaft is R3 (ring gear of gearset 3: outer Ravigneaux gearset)}}
    Lepelletier Gear Mechanism

!rowspan=2| Count

!rowspan=2| Total{{efn|Total Ratio Span (Total Ratio Spread · Total Gear Ratio)

  • \tfrac{i_n} {i_1}
  • A wider span enables the
  • downspeeding when driving outside the city limits
  • increase the climbing ability
  • when driving over mountain passes or off-road
  • or when towing a trailer}}
    Center{{efn|Ratio Span's Center
  • (i_n i_1)^\tfrac{1} {2}
  • The center indicates the speed level of the transmission
  • Together with the final drive ratio
  • it gives the shaft speed level of the vehicle}}

!rowspan=2| Avg.{{efn|Average Gear Step

  • (\tfrac{i_n} {i_1})^\tfrac{1} {n-1}
  • With decreasing step width
  • the gears connect better to each other
  • shifting comfort increases}}
Simple

!colspan=2| Ravigneaux

colspan=8 style="background:#AAF;"|
Model
Type

! Version
First Delivery

! S1{{efn|Sun 1: sun gear of gearset 1}}
R1{{efn|Ring 1: ring gear of gearset 1}}

! S2{{efn|Sun 2: sun gear of gearset 2: inner Ravigneaux gearset}}
R2{{efn|Ring 2: ring gear of gearset 2: inner Ravigneaux gearset}}

! S3{{efn|Sun 3: sun gear of gearset 3: outer Ravigneaux gearset}}
R3{{efn|Ring 3: ring gear of gearset 3: outer Ravigneaux gearset}}

! Brakes
Clutches

! Ratio
Span

! Gear
Step{{efn|name=50:50|Standard 50:50
— 50 % Is Above And 50 % Is Below The Average Gear Step —

  • With steadily decreasing gear steps (yellow highlighted line Step)
  • and a particularly large step from 1st to 2nd gear
  • the lower half of the gear steps (between the small gears; rounded down, here the first 2) is always larger
  • and the upper half of the gear steps (between the large gears; rounded up, here the last 3) is always smaller
  • than the average gear step (cell highlighted yellow two rows above on the far right)
  • lower half: {{font color|red|smaller gear steps are a waste of possible ratios (red bold)}}
  • upper half: {{font color|red|larger gear steps are unsatisfactory (red bold)}}}}
style="font-style:italic;"

! Gear
Ratio

! R
{i_R}

! 1
{i_1}

! 2
{i_2}

! 3
{i_3}

! 4
{i_4}

! 5
{i_5}

! 6
{i_6}

Step{{efn|name=50:50}}

! -\tfrac{i_R} {i_1}{{efn|name=R:1|Standard R:1
— Reverse And 1st Gear Have The Same Ratio —

  • The ideal reverse gear has the same transmission ratio as 1st gear
  • no impairment when maneuvering
  • especially when towing a trailer
  • a torque converter can only partially compensate for this deficiency
  • Plus 11.11 % minus 10 % compared to 1st gear is good
  • {{font color|red|Plus 25 % minus 20 % is acceptable (red)}}
  • {{font color|red|Above this is unsatisfactory (bold)}}}}

! \tfrac{i_1} {i_1}

! \tfrac{i_1} {i_2}{{efn|name=1:2|Standard 1:2
— Gear Step 1st To 2nd Gear As Small As Possible —

  • With continuously decreasing gear steps (yellow marked line Step)
  • the largest gear step is the one from 1st to 2nd gear, which
  • for a good speed connection and
  • a smooth gear shift
  • must be as small as possible
  • A gear ratio of up to 1.6667:1 (5:3) is good
  • {{font color|red|Up to 1.7500:1 (7:4) is acceptable (red)}}
  • {{font color|red|Above is unsatisfactory (bold)}}}}

! \tfrac{i_2} {i_3}

! \tfrac{i_3} {i_4}

! \tfrac{i_4} {i_5}

! \tfrac{i_5} {i_6}

Δ Step{{efn|name=LS|From large to small gears (from right to left)}}{{efn|name=step|Standard STEP
— From Large To Small Gears: Steady And Progressive Increase In Gear Steps —

  • Gear steps should
  • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
  • As progressive as possible: Δ Step is always greater than the previous step
  • {{font color|red|Not progressively increasing is acceptable (red)}}
  • {{font color|red|Not increasing is unsatisfactory (bold)}}}}

!style="background:#DDF;"|

!style="background:#DDF;"|

! \tfrac{i_1} {i_2} : \tfrac{i_2} {i_3}

! \tfrac{i_2} {i_3} : \tfrac{i_3} {i_4}

! \tfrac{i_3} {i_4} : \tfrac{i_4} {i_5}

! \tfrac{i_4} {i_5} : \tfrac{i_5} {i_6}

!style="background:#DDF;"|

Shaft
Speed

! \tfrac{i_1} {i_R}

! \tfrac{i_1} {i_1}

! \tfrac{i_1} {i_2}

! \tfrac{i_1} {i_3}

! \tfrac{i_1} {i_4}

! \tfrac{i_1} {i_5}

! \tfrac{i_1} {i_6}

Δ Shaft
Speed{{efn|name=speed|Standard SPEED
— From Small To Large Gears: Steady Increase In Shaft Speed Difference —

  • Shaft speed differences should
  • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
  • {{font color|red|1 difference smaller than the previous one is acceptable (red)}}
  • {{font color|red|2 consecutive ones are a waste of possible ratios (bold)}}}}

! 0 - \tfrac{i_1} {i_R}

! \tfrac{i_1} {i_1} - 0

! \tfrac{i_1} {i_2} - \tfrac{i_1} {i_1}

! \tfrac{i_1} {i_3} - \tfrac{i_1} {i_2}

! \tfrac{i_1} {i_4} - \tfrac{i_1} {i_3}

! \tfrac{i_1} {i_5} - \tfrac{i_1} {i_4}

! \tfrac{i_1} {i_6} - \tfrac{i_1} {i_5}

colspan=8 style="background:#AAF;"|
6L 45 · MYA
6L 50 · MYB

| {{convert|500|Nm|lbft|0|abbr=on|lk=on}}
2005

| 49
89

| 37
47

| 47
97

| 2
3

| {{round|13386/3293*144/97|4}}
{{round|(13386/3293*97/144)^(1/2)|4}}

|style="background:#FFC;"| {{round|(13386/3293*144/97)^(1/5)|4}}{{efn|name=50:50}}

style="font-style:italic;"

! Gear
Ratio

| {{font color|red|{{round

13386/4183|4}}{{efn|name=R:1}}
-\tfrac{13,386}{4,183}}}

| {{round|13386/3293|4}}
\tfrac{13,386}{3,293}

| {{font color|red|{{round|15617/6586|4}}{{efn|name=1:2}}{{efn|name=step}}
\tfrac{15,617}{6,586}}}

| {{round|138/89|4}}
\tfrac{138}{89}

| {{font color|red|{{round|13386/11573|4}}{{efn|name=step}}{{efn|name=speed}}
\tfrac{13,386}{11,573}}}

| {{round|13386/15689|4}}
\tfrac{13,386}{15,689}

| {{round|97/144|4}}
\tfrac{97}{144}

Step

| {{font color|red|0.7872}}{{efn|name=R:1}}

! 1.0000

|style="background:#FFC;"| {{font color|red|1.7143}}{{efn|name=1:2}}

|style="background:#FFC;"| 1.5293

|style="background:#FFC;"| {{font color|red|1.3406}}

|style="background:#FFC;"| 1.3557

|style="background:#FFC;"| 1.2662

Step 2{{efn|name=LS}}

|style="background:#DDF;"|

|style="background:#DDF;"|

|style="background:#DFD;"| {{font color|red|1.1210}}{{efn|name=step}}

|style="background:#DFD;"| 1.1408

|style="background:#DFD;"| {{font color|red|0.9889}}{{efn|name=step}}

|style="background:#DFD;"| 1.0703

|style="background:#DDF;"|

Speed

| {{font color|red|-1.2703}}

! 1.0000

| 1.7143

| 2.6216

| {{font color|red|3.5144}}

| 4.7643

| 6.0346

Δ Speed

| {{font color|red|1.2703}}

! 1.0000

|style="background:#DFD;"| 0.7143

|style="background:#DFD;"| 0.9073

|style="background:#DFD;"| {{font color|red|0.8928}}{{efn|name=speed}}

|style="background:#DFD;"| 1.2499

|style="background:#DFD;"| 1.2703

colspan=8|
6L 80 · MYC
6L 90 · MYD

| {{convert|800|Nm|lbft|0|abbr=on|lk=on}}
{{convert|1200|Nm|lbft|0|abbr=on|lk=on}}
2005 (all)

| 50
94

| 35
46

| 46
92

| 2
3

| {{round|6624/1645*3/2|4}}
{{round|(6624/1645*2/3)^(1/2)|4}}

|style="background:#FFC;"| {{round|(6624/1645*3/2)^(1/5)|4}}{{efn|name=50:50}}

style="font-style:italic;"

! Gear
Ratio

| {{font color|red|{{round

144/47|4}}{{efn|name=R:1}}
-\tfrac{144}{47}}}

| {{round|6624/1645|4}}
\tfrac{6,624}{1,645}

| {{font color|red|{{round|3888/1645|4}}{{efn|name=1:2}}{{efn|name=step}}
\tfrac{3,888}{1,645}}}

| {{round|72/47|4}}
\tfrac{72}{47}

| {{font color|red|{{round|6624/5749|4}}{{efn|name=step}}{{efn|name=speed}}
\tfrac{6,624}{5,749}}}

| {{round|144/169|4}}
\tfrac{144}{169}

| {{round|2/3|4}}
\tfrac{2}{3}

Step

| {{font color|red|0.7609}}{{efn|name=R:1}}

! 1.0000

|style="background:#FFC;"| {{font color|red|1.7037}}{{efn|name=1:2}}

|style="background:#FFC;"| 1.5429

|style="background:#FFC;"| {{font color|red|1.3296}}

|style="background:#FFC;"| 1.3522

|style="background:#FFC;"| 1.2781

Step 2{{efn|name=LS}}

|style="background:#DDF;"|

|style="background:#DDF;"|

|style="background:#DFD;"| {{font color|red|1.1043}}{{efn|name=step}}

|style="background:#DFD;"| 1.1604

|style="background:#DFD;"| {{font color|red|0.9832}}{{efn|name=step}}

|style="background:#DFD;"| 1.0580

|style="background:#DDF;"|

Speed

| {{font color|red|-1.3143}}

! 1.0000

| 1.7037

| 2.6286

| {{font color|red|3.4948}}

| 4.7258

| 6.0401

Δ Speed

| {{font color|red|1.3143}}

! 1.0000

|style="background:#DFD;"| 0.7037

|style="background:#DFD;"| 0.9249

|style="background:#DFD;"| {{font color|red|0.8662}}{{efn|name=speed}}

|style="background:#DFD;"| 1.2310

|style="background:#DFD;"| 1.3143

colspan=8 style="background:#AAF;"|
ZF 6HP

| All{{efn|name=other}} · 2000{{efn|First gearbox on the market to use the Lepelletier gear mechanism
for comparison purposes only}}

| 37
71

| 31
38

| 38
85

| 2
3

| {{round|9180/2201*123/85|4}}
{{round|(9180/2201*85/123)^(1/2)|4}}

|style="background:#FFC;"| {{round|(9180/2201*123/85)^(1/5)|4}}{{efn|name=50:50}}

style="font-style:italic;"

! Gear
Ratio

| {{font color|red|{{round

4590/1349|4}}{{efn|name=R:1}}
-\tfrac{4,590}{1,349}}}

| {{round|9180/2201|4}}
\tfrac{9,180}{2,201}

| {{font color|red|{{round|211140/90241|4}}{{efn|name=1:2}}
\tfrac{211,140}{90,241}}}

| {{round|108/71|4}}
\tfrac{108}{71}

| {{font color|red|{{round|9180/8033|4}}{{efn|name=step}}{{efn|name=speed}}}}

| {{round|4590/5293|4}}
\tfrac{4,590}{5,293}

| {{round|85/123|4}}
\tfrac{85}{123}

Step

| {{font color|red|0.8158}}{{efn|name=R:1}}

! 1.0000

|style="background:#FFC;"| {{font color|red|1.7826{{efn|name=1:2}}}}

|style="background:#FFC;"| 1.5382

|style="background:#FFC;"| {{font color|red|1.3311}}

|style="background:#FFC;"| 1.3178

|style="background:#FFC;"| 1.2549

Step 2{{efn|name=LS}}

|style="background:#DDF;"|

|style="background:#DDF;"|

|style="background:#DFD;"| 1.1589

|style="background:#DFD;"| 1.1559

|style="background:#DFD;"| {{font color|red|1.0101}}{{efn|name=step}}

|style="background:#DFD;"| 1.0502

|style="background:#DDF;"|

Speed

| {{font color|red

1.2258}}

! 1.0000

| 1.7826

| 2.7419

| {{font color|red|3.6497}}

| 4.8096

| 6.0354

Δ Speed

| {{font color|red|1.2258}}

! 1.0000

|style="background:#DFD;"| 0.7826

|style="background:#DFD;"| 0.9593

|style="background:#DFD;"| {{font color|red|0.9078}}{{efn|name=speed}}

|style="background:#DFD;"| 1.1599

|style="background:#DFD;"| 1.2258

colspan=8 style="background:#AAF;"|
style="font-style:italic;"

! Ratio
R & Even

| -\tfrac{R_{3} (S_1+ R_1)}{R_1 S_{3}}

|colspan=2| \tfrac{R_{3} (S_1+ R_1) (S_{2}+ R_{2})}{R_1 S_{2} (S_{3}+ R_{3})}

|colspan=2| \tfrac{R_{2} R_{3} (S_1+ R_1)}{R_{2} R_{3} (S_1+ R_1)- S_1 S_{2} S_{3}}

|colspan=2| \tfrac{R_{3}}{S_{3}+ R_{3}}

style="font-style:italic;"

! Ratio
Odd

|colspan=2| \tfrac{R_{2} R_{3} (S_1+ R_1)}{R_1 S_{2} S_{3}}

|colspan=2| \tfrac{S_{1}+ R_{1}}{R_{1}}

|colspan=2| \tfrac{R_{3} (S_1+ R_1)}{R_{3} (S_1+ R_1)+ S_1 S_{3}}

|

colspan=8| Algebra And Actuated Shift Elements
Brake A{{efn|Blocks R2 and S3}}

|

| ❶

| ❶

| ❶

| ❶

|

|

Brake B{{efn|Blocks C2 (carrier 2) and C3 (carrier 3)}}

| ❶

|

|

| ❶

|

| ❶

|

Clutch C{{efn|Couples C1 (carrier 1) and S2}}

|

|

| ❶

|

|

|

| ❶

Clutch D{{efn|Couples C1 (carrier 1) with R2 and S3}}

| ❶

| ❶

|

|

|

|

|

Clutch E{{efn|Couples R1 with C2 (carrier 2) and C3 (carrier 3)}}

|

|

|

|

| ❶

| ❶

| ❶

colspan=8 style="background:#AAF;"|
colspan=8| {{notelist|2|group=efn}}
colspan=8 style="background:#AAF;"|

Applications

= 6L 45 · MYA =

  • 2007–2010: BMW X3 - 3.0si / 2.5si / 3.0i
  • 2007–2013: BMW 3 series - 330(x)i / 328(x)i / 325(x)i / 323i / 320i / 318i / 316i
  • 2007–2019: BMW 1 series - 130i / 128i / 125i / 120i / 118i / 116i
  • 2009–2015: BMW X1 (E84) - 2.8i xDrive / 2.5i xDrive / 1.8i sDrive
  • 2013–2015: Cadillac ATS{{cite book |last=Csere |first=Csaba |authorlink=Csaba Csere |title=Dissected: 2013 Cadillac ATS|url=https://www.caranddriver.com/features/dissected-2013-cadillac-ats-feature |publisher=Car and Driver |oclc=38224673 |date=March 2012 |isbn=9781858941905 |accessdate=2012-11-21 |archiveurl=https://web.archive.org/web/20121030060927/http://www.caranddriver.com/features/dissected-2013-cadillac-ats-feature |archivedate=2012-10-30 |url-status=live }}
  • 2010–2013: Cadillac SLS
  • 2012–2017: Chevrolet Caprice PPV V6
  • 2011–2013: Holden VE Commodore, Calais, SV6
  • 2013–2017: Holden VF Commodore, Calais, SV6

= 6L 50 · MYB =

= 6L 80 · MYC =

= 6L 90 · MYD =

See also

  • List of GM transmissions
  • {{cite web|url=http://media.gm.com/servlet/GatewayServlet?target=http://image.emerald.gm.com/gmnews/viewmonthlyreleasedetail.do?domain=74&docid=25969|title=GM Launches More Fuel-Saving Six-Speed Automatic Transmissions|work=GM Media Online|accessdate=June 18, 2006}} {{Dead link|date=November 2010|bot=H3llBot}}
  • Cadillac PDF info on 6L 80-E Transmission: http://www.cadillacfaq.com/stsfaq/tsb/data/tsb/05-07-30-023.pdf
  • {{cite web |url=http://www.automfg.com/articles/wip/1205wip04.html |title=GM Ypsilanti Begins 6-Speed Production |work=Automotive Design and Production |accessdate=January 3, 2006 |url-status=dead |archiveurl=https://web.archive.org/web/20060303042833/http://www.automfg.com/articles/wip/1205wip04.html |archivedate=March 3, 2006 }}

References

{{Reflist|2}}