Hexagonal tiling honeycomb#Polytopes and honeycombs with tetrahedral vertex figures

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Hexagonal tiling honeycomb

bgcolor=#ffffff align=center colspan=2|320px
Perspective projection view
within Poincaré disk model
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{6,3,3}
t{3,6,3}
2t{6,3,6}
2t{6,3[3]}
t{3[3,3]}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|6|node|3|node|3|node}}
{{CDD|node_1|3|node_1|6|node|3|node}}
{{CDD|node|6|node_1|3|node_1|6|node}}
{{CDD|branch_11|split2|node_1|6|node}}
{{CDD|branch_11|splitcross|branch_11}} ↔ {{CDD|node_1|6|node_g|3sg|node_g|3g|node_g}} ↔ {{CDD|node_1|3|node_1|6|node_g|3sg|node_g}} ↔
{{CDD|node_h0|6|node_1|3|node_1|6|node_h0}} ↔ {{CDD|branch_11|split2|node_1|6|node_h0}}
bgcolor=#e7dcc3|Cells{6,3} 40px
bgcolor=#e7dcc3|Faceshexagon {6}
bgcolor=#e7dcc3|Edge figuretriangle {3}
bgcolor=#e7dcc3|Vertex figure80px
tetrahedron {3,3}
bgcolor=#e7dcc3|DualOrder-6 tetrahedral honeycomb
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
{\overline{Y}}_3, [3,6,3]
{\overline{Z}}_3, [6,3,6]
{\overline{VP}}_3, [6,3[3]]
{\overline{PP}}_3, [3[3,3]]
bgcolor=#e7dcc3|PropertiesRegular

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of this honeycomb, six hexagons meet at each vertex, and four edges meet at each vertex.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III

Images

480px

Viewed in perspective outside of a Poincaré disk model, the image above shows one hexagonal tiling cell within the honeycomb, and its mid-radius horosphere (the horosphere incident with edge midpoints). In this projection, the hexagons grow infinitely small towards the infinite boundary, asymptoting towards a single ideal point. It can be seen as similar to the order-3 apeirogonal tiling, {∞,3} of H2, with horocycles circumscribing vertices of apeirogonal faces.

class=wikitable width=480

!{6,3,3}

!{∞,3}

240px

|240px

align=center

|One hexagonal tiling cell of the hexagonal tiling honeycomb

|An order-3 apeirogonal tiling with a green apeirogon and its horocycle

Symmetry constructions

File:Hyperbolic subgroup tree 336-direct.png]]

It has a total of five reflectional constructions from five related Coxeter groups all with four mirrors and only the first being regular: {{CDD|node_c1|6|node|3|node|3|node}} [6,3,3], {{CDD|node_c1|3|node_c1|6|node|3|node}} [3,6,3], {{CDD|node|6|node_c1|3|node_c1|6|node}} [6,3,6], {{CDD|branch_c1|split2|node_c1|6|node}} [6,3[3]] and [3[3,3]] {{CDD|branch_c1|splitcross|branch_c1}}, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are {{CDD|node_1|6|node|3|node|3|node}}, {{CDD|node_1|3|node_1|6|node|3|node}}, {{CDD|node|6|node_1|3|node_1|6|node}}, {{CDD|branch_11|split2|node_1|6|node}} and {{CDD|branch_11|splitcross|branch_11}}, representing different types (colors) of hexagonal tilings in the Wythoff construction.

{{-}}

Related polytopes and honeycombs

The hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

{{Regular_paracompact_H3_honeycombs}}

It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual, the order-6 tetrahedral honeycomb.

{{633 family}}

It is part of a sequence of regular polychora, which include the 5-cell {3,3,3}, tesseract {4,3,3}, and 120-cell {5,3,3} of Euclidean 4-space, along with other hyperbolic honeycombs containing tetrahedral vertex figures.

{{Tetrahedral vertex figure tessellations}}

It is also part of a sequence of regular honeycombs of the form {6,3,p}, which are each composed of hexagonal tiling cells:

{{Hexagonal tiling cell tessellations}}

= Rectified hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{6,3,3} or t1{6,3,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|6|node_1|3|node|3|node}}
{{CDD|node_h0|6|node_1|3|node|3|node}} ↔ {{CDD|branch_11|split2|node|3|node}}
bgcolor=#e7dcc3|Cells{3,3} 40px
r{6,3} 40px or 40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular prism
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
{\overline{P}}_3, [3,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified hexagonal tiling honeycomb, t1{6,3,3}, {{CDD|node|6|node_1|3|node|3|node}} has tetrahedral and trihexagonal tiling facets, with a triangular prism vertex figure. The {{CDD|branch_11|split2|node|3|node}} half-symmetry construction alternates two types of tetrahedra.

480px

class=wikitable

!Hexagonal tiling honeycomb
{{CDD|node_1|6|node|3|node|3|node}}

!Rectified hexagonal tiling honeycomb
{{CDD|node|6|node_1|3|node|3|node}} or {{CDD|branch_11|split2|node|3|node}}

align=center

|200px

|200px

colspan=2|Related H2 tilings
Order-3 apeirogonal tiling
{{CDD|node_1|infin|node|3|node}}

!Triapeirogonal tiling
{{CDD|node|infin|node_1|3|node}} or {{CDD|labelinfin|branch_11|split2|node}}

align=center

|100px

|100px100px

{{-}}

= Truncated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt{6,3,3} or t0,1{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|3|node}}
bgcolor=#e7dcc3|Cells{3,3} 40px
t{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
triangular pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated hexagonal tiling honeycomb, t0,1{6,3,3}, {{CDD||node_1|6|node_1|3|node|3|node}} has tetrahedral and truncated hexagonal tiling facets, with a triangular pyramid vertex figure.

480px

It is similar to the 2D hyperbolic truncated order-3 apeirogonal tiling, t{∞,3} with apeirogonal and triangle faces:

: 240px

{{-}}

= Bitruncated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Bitruncated hexagonal tiling honeycomb
Bitruncated order-6 tetrahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol2t{6,3,3} or t1,2{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|6|node_1|3|node_1|3|node}}
{{CDD|branch_11|split2|node_1|3|node}} ↔ {{CDD|node_h0|6|node_1|3|node_1|3|node}}
bgcolor=#e7dcc3|Cellst{3,3} 40px
t{3,6} 40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
digonal disphenoid
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
{\overline{P}}_3, [3,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The bitruncated hexagonal tiling honeycomb or bitruncated order-6 tetrahedral honeycomb, t1,2{6,3,3}, {{CDD|node|6|node_1|3|node_1|3|node}} has truncated tetrahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.

480px

{{-}}

= Cantellated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantellated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolrr{6,3,3} or t0,2{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node_1|3|node}}
bgcolor=#e7dcc3|Cellsr{3,3} 40px
rr{6,3} 40px
{}×{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantellated hexagonal tiling honeycomb, t0,2{6,3,3}, {{CDD||node_1|6|node|3|node_1|3|node}} has octahedron, rhombitrihexagonal tiling, and triangular prism cells, with a wedge vertex figure.

480px

{{-}}

= Cantitruncated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{6,3,3} or t0,1,2{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|3|node}}
bgcolor=#e7dcc3|Cellst{3,3} 40px
tr{6,3} 40px
{}×{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
mirrored sphenoid
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantitruncated hexagonal tiling honeycomb, t0,1,2{6,3,3}, {{CDD||node_1|6|node_1|3|node_1|3|node}} has truncated tetrahedron, truncated trihexagonal tiling, and triangular prism cells, with a mirrored sphenoid vertex figure.

480px

{{-}}

= Runcinated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcinated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node|3|node_1}}
bgcolor=#e7dcc3|Cells{3,3} 40px
{6,3} 40px
{}×{6}40px
{}×{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
irregular triangular antiprism
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcinated hexagonal tiling honeycomb, t0,3{6,3,3}, {{CDD||node_1|6|node|3|node|3|node_1}} has tetrahedron, hexagonal tiling, hexagonal prism, and triangular prism cells, with an irregular triangular antiprism vertex figure.

480px

{{-}}

= Runcitruncated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|3|node_1}}
bgcolor=#e7dcc3|Cellsrr{3,3} 40px
{}x{3} 40px
{}x{12} 40px
t{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
isosceles-trapezoidal pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcitruncated hexagonal tiling honeycomb, t0,1,3{6,3,3}, {{CDD||node_1|6|node_1|3|node|3|node_1}} has cuboctahedron, triangular prism, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

480px

{{-}}

= Runcicantellated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcicantellated hexagonal tiling honeycomb
runcitruncated order-6 tetrahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,2,3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node_1|3|node_1}}
bgcolor=#e7dcc3|Cellst{3,3} 40px
{}x{6} 40px
rr{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
isosceles-trapezoidal pyramid
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t0,2,3{6,3,3}, {{CDD||node_1|6|node|3|node_1|3|node_1}} has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

480px

{{-}}

= Omnitruncated hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated hexagonal tiling honeycomb
Omnitruncated order-6 tetrahedral honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,3{6,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|3|node_1}}
bgcolor=#e7dcc3|Cellstr{3,3} 40px
{}x{6} 40px
{}x{12} 40px
tr{6,3} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
irregular tetrahedron
bgcolor=#e7dcc3|Coxeter groups{\overline{V}}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The omnitruncated hexagonal tiling honeycomb or omnitruncated order-6 tetrahedral honeycomb, t0,1,2,3{6,3,3}, {{CDD||node_1|6|node_1|3|node_1|3|node_1}} has truncated octahedron, hexagonal prism, dodecagonal prism, and truncated trihexagonal tiling cells, with an irregular tetrahedron vertex figure.

480px

{{-}}

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I,II)
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [https://link.springer.com/article/10.1007%2FBF01238563] [https://web.archive.org/web/20140223225217/http://homeweb1.unifr.ch/kellerha/pub/TGarticle.pdf]
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [http://www.sciencedirect.com/science/article/pii/S0024379501004773]