Isotopes of livermorium#Ununhexium-291
{{Short description|none}}
{{Infobox livermorium isotopes}}
Livermorium (116Lv) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 293Lv in 2000. There are six known radioisotopes, with mass numbers 288–293, as well as a few suggestive indications of a possible heavier isotope 294Lv. The longest-lived known isotope is 293Lv with a half-life of 57 ms.{{cite web|url=https://www.rsc.org/periodic-table/element/116/livermorium|title=Livermorium - Element Information (Uses and properties)|website=rsc.org|access-date=October 27, 2020}}
List of isotopes
{{Anchor|Livermorium-289}}
{{Isotopes table
|symbol=Lv
|refs=NUBASE2020, AME2020 II
|notes=unc(), mass#, hl#, m, exen#
}}
|-id=Livermorium-288
| style="text-align:right" | 116
| style="text-align:right" | 172
|
| <1 ms
| α
| 284Fl
| 0+
|-id=Livermorium-289
| 289Lv{{Cite web |url=https://indico.jinr.ru/event/4343/contributions/28663/attachments/20748/36083/U%20+%20Cr%20AYSS%202024.pptx |title=Synthesis and study of the decay properties of isotopes of superheavy element Lv in Reactions 238U + 54Cr and 242Pu + 50Ti |last=Ibadullayev |first=Dastan |date=2024 |website=jinr.ru |publisher=Joint Institute for Nuclear Research |access-date=2 November 2024 |quote=}}
| style="text-align:right" | 116
| style="text-align:right" | 173
| 289.19802(54)#
|
| α
| 285Fl
|
|-id=Livermorium-290
| 290Lv
| style="text-align:right" | 116
| style="text-align:right" | 174
| 290.19864(59)#
| {{val|8.3|3.5|1.9|u=ms}}
[{{val|9|(3)|u=ms}}]
| α
| 286Fl
| 0+
|-id=Livermorium-291
| 291Lv
| style="text-align:right" | 116
| style="text-align:right" | 175
| 291.20101(67)#
| {{val|19|17|6|u=ms}}
[{{val|26|(12)|u=ms}}]
| α
| 287Fl
|
|-id=Livermorium-292
| 292Lv
| style="text-align:right" | 116
| style="text-align:right" | 176
| 292.20197(82)#
| {{val|16|(6)|u=ms}}
| α
| 288Fl
| 0+
|-id=Livermorium-293
| 293Lv
| style="text-align:right" | 116
| style="text-align:right" | 177
| 293.20458(55)#
| {{val|57|43|17|u=ms}}
[{{val|70|(30)|u=ms}}]
| α
| 289Fl
|
|-id=Livermorium-293m
| style="text-indent:1em" | 293mLvThis isomer is unconfirmed
| colspan="3" style="text-indent:2em" | 720(290)# keV
| {{val|20|96|9|u=ms}}
[{{val|80|(60)|u=ms}}]
| α
|
|
|-id=Livermorium-294
| 294LvThis isotope is unconfirmed
| style="text-align:right" | 116
| style="text-align:right" | 178
|
| α ?
| 290Fl
| 0+
{{Isotopes table/footer}}
Nucleosynthesis
=Target-projectile combinations leading to Z=116 compound nuclei=
The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with atomic number 116.
class="wikitable" style="text-align:center"
! Target !! Projectile !! CN !! Attempt result |
208Pb
|82Se || 290Lv||{{no|Failure to date}} |
---|
238U
|54Cr||292Lv||{{yes|Successful reaction}} |
244Pu
|50Ti||294Lv||{{yes|Successful reaction}} |
242Pu
|50Ti||292Lv||{{yes|Successful reaction}} |
250Cm
|48Ca||298Lv||{{unk|Reaction yet to be attempted}} |
248Cm
|48Ca||296Lv||{{yes|Successful reaction}} |
246Cm
|48Ca||294Lv||{{unk|Reaction yet to be attempted}} |
245Cm
|48Ca||293Lv||{{yes|Successful reaction}} |
243Cm
|48Ca||291Lv||{{unk|Reaction yet to be attempted}} |
248Cm
|44Ca||292Lv||{{unk|Reaction yet to be attempted}} |
251Cf
|40Ar||291Lv||{{unk|Reaction yet to be attempted}} |
=Cold fusion=
==<sup>208</sup>Pb(<sup>82</sup>Se,''x''n)<sup>290−''x''</sup>Lv==
In 1995, the team at GSI attempted the synthesis of 290Lv as a radiative capture (x=0) product. No atoms were detected during a six-week experimental run, reaching a cross section limit of 3 pb.{{cite book |last1=Hoffman |first1=Darleane C. |last2=Ghiorso |first2=Albert |last3=Seaborg |first3=Glenn T. |title=The Transuranium People: The Inside Story |url=https://archive.org/details/transuraniumpeop00hoff |url-access=limited |date=2000 |publisher=World Scientific |isbn=978-1-78-326244-1 |page=[https://archive.org/details/transuraniumpeop00hoff/page/n459 367]}}
=Hot fusion=
This section deals with the synthesis of nuclei of livermorium by so-called "hot" fusion reactions. These are processes which create compound nuclei at high excitation energy (~40–50 MeV, hence "hot"), leading to a reduced probability of survival from fission. The excited nucleus then decays to the ground state via the emission of 3–5 neutrons. Fusion reactions utilizing 48Ca nuclei usually produce compound nuclei with intermediate excitation energies (~30–35 MeV) and are sometimes referred to as "warm" fusion reactions. This leads, in part, to relatively high yields from these reactions.
==<sup>238</sup>U(<sup>54</sup>Cr,''x''n)<sup>292−''x''</sup>Lv (''x''=4)==
There are sketchy indications that this reaction was attempted by the team at GSI in 2006. There are no published results on the outcome, presumably indicating that no atoms were detected. This is expected from a study of the systematics of cross sections for 238U targets.[http://opal.dnp.fmph.uniba.sk/~beer/experiments.php "List of experiments 2000–2006"] {{webarchive|url=https://web.archive.org/web/20070723094218/http://opal.dnp.fmph.uniba.sk/~beer/experiments.php |date=2007-07-23 }}
In 2023, this reaction was studied again at the JINR's Superheavy Element Factory in Dubna, in preparation for a future synthesis attempt of element 120 using 54Cr projectiles. One atom of 288Lv was reported; it underwent alpha decay with a lifetime of less than 1 millisecond. Further analysis of the reaction and its cross section are underway.{{cite news |url=http://www.jinr.ru/posts/v-lyar-oiyai-vpervye-v-mire-sintezirovan-livermorij-288/ |title=В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288 |trans-title=Livermorium-288 was synthesized for the first time in the world at FLNR JINR |language=ru |date=23 October 2023 |publisher=Joint Institute for Nuclear Research |access-date=18 November 2023}}
==<sup>244</sup>Pu(<sup>50</sup>Ti,''x''n)<sup>294−''x''</sup>Lv (''x''=4)==
In 2024, this reaction was performed at the LBNL, in preparation for a future synthesis attempt of element 120 using 50Ti projectiles. Two atoms of the known isotope 290Lv were successfully produced.{{cite web |url=https://newscenter.lbl.gov/2024/07/23/a-new-way-to-make-element-116-opens-the-door-to-heavier-atoms/ |title=A New Way to Make Element 116 Opens the Door to Heavier Atoms |last=Biron |first=Lauren |date=23 July 2024 |website=lbl.gov |publisher=Lawrence Berkeley National Laboratory |access-date=24 July 2024 |quote=}}{{cite journal |last1=Bourzac |first1=Katherine |date=23 July 2024 |title=Heaviest element yet within reach after major breakthrough |url=https://www.nature.com/articles/d41586-024-02416-3 |journal=Nature |volume= |issue= |pages= |doi=10.1038/d41586-024-02416-3 |access-date=24 July 2024|url-access=subscription }}{{cite news |last=Service |first=Robert F. |date=23 July 2024 |title=U.S. back in race to forge unknown, superheavy elements |url=https://www.science.org/content/article/u-s-back-race-forge-unknown-superheavy-elements |work=Science |location= |access-date=24 July 2024}} This was the first successful synthesis of a superheavy element using 50Ti projectiles and an actinide target; the cross section was reported to be {{Val|0.44|0.58|0.28|u=pb}}.{{cite journal |last=Gates |first=P. M. |display-authors=et al. |title=Toward the Discovery of New Elements: Production of Livermorium {{nowrap|(Z {{=}} 116)}} with 50Ti |journal=Physical Review Letters |date=2024 |volume=133 |number=172502 |doi=10.1103/PhysRevLett.133.172502}}
==<sup>242</sup>Pu(<sup>50</sup>Ti,''x''n)<sup>292−''x''</sup>Lv (''x''=3,4)==
In 2024, this reaction was studied at the JINR, as a next step after the successful 238U+54Cr reaction. Two atoms of 288Lv were detected, as well as three atoms of the new alpha-decaying isotope 289Lv. One atom of 289Mc was found in the p2n channel, which was the first time any pxn channel had been detected in a reaction of actinides with 48Ca, 50Ti, or 54Cr projectiles.
==<sup>248</sup>Cm(<sup>48</sup>Ca,''x''n)<sup>296−''x''</sup>Lv (''x''=2?,3,4,5?)==
The first attempt to synthesise livermorium was performed in 1977 by Ken Hulet and his team at the Lawrence Livermore National Laboratory (LLNL). They were unable to detect any atoms of livermorium.{{cite journal |doi=10.1103/PhysRevLett.39.385 |title=Search for Superheavy Elements in the Bombardment of 248Cm with48Ca |year=1977 |last1=Hulet |first1=E. K. |journal=Physical Review Letters |volume=39 |pages=385–389 |last2=Lougheed |first2=R. |last3=Wild |first3=J. |last4=Landrum |first4=J. |last5=Stevenson |first5=P. |last6=Ghiorso |first6=A. |last7=Nitschke |first7=J. |last8=Otto |first8=R. |last9=Morrissey |first9=D. |last10=Baisden |first10=P. |last11=Gavin |first11=B. |last12=Lee |first12=D. |last13=Silva |first13=R. |last14=Fowler |first14=M. |last15=Seaborg |first15=G. |bibcode=1977PhRvL..39..385H |issue=7 |display-authors=8}} Yuri Oganessian and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) subsequently attempted the reaction in 1978 and met failure. In 1985, a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative with a calculated cross-section limit of 10–100 pb.{{cite journal |doi=10.1103/PhysRevLett.54.406 |title=Attempts to Produce Superheavy Elements by Fusion of 48Ca with 248Cm in the Bombarding Energy Range of 4.5–5.2 MeV/u |year=1985 |last1=Armbruster |first1=P. |journal=Physical Review Letters |volume=54 |pages=406–409 |pmid=10031507 |last2=Agarwal |first2=YK |last3=Brüchle |first3=W |last4=Brügger |first4=M |last5=Dufour |first5=JP |last6=Gaggeler |first6=H |last7=Hessberger |first7=FP |last8=Hofmann |first8=S |last9=Lemmertz |first9=P |last10=Münzenberg |first10=G. |last11=Poppensieker |first11=K. |last12=Reisdorf |first12=W. |last13=Schädel |first13=M. |last14=Schmidt |first14=K. |last15=Schneider |first15=J. |last16=Schneider |first16=W. |last17=Sümmerer |first17=K. |last18=Vermeulen |first18=D. |last19=Wirth |first19=G. |last20=Ghiorso |first20=A. |last21=Gregorich |first21=K. |last22=Lee |first22=D. |last23=Leino |first23=M. |last24=Moody |first24=K. |last25=Seaborg |first25=G. |last26=Welch |first26=R. |last27=Wilmarth |first27=P. |last28=Yashita |first28=S. |last29=Frink |first29=C. |last30=Greulich |first30=N. |issue=5 |bibcode=1985PhRvL..54..406A |url=https://zenodo.org/record/1233843 |display-authors=8}}
In 2000, Russian scientists at Dubna finally succeeded in detecting a single atom of livermorium, assigned to the isotope 292Lv.{{cite journal |doi=10.1103/PhysRevC.63.011301 |title=Observation of the decay of 292116 |year=2000 |last1=Oganessian |first1=Yu. Ts. |journal=Physical Review C |volume=63 |issue=1 |pages=011301 |bibcode=2000PhRvC..63a1301O |last2=Utyonkov |first2=V. |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Ivanov |first15=O. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Itkis |first18=M. |last19=Moody |first19=K. |last20=Wild |first20=J. |last21=Stoyer |first21=N. |last22=Stoyer |first22=M. |last23=Lougheed |first23=R. |last24=Laue |first24=C. |last25=Karelin |first25=Ye. |last26=Tatarinov |first26=A.}}
In 2001, they repeated the reaction and formed a further 2 atoms in a confirmation of their discovery experiment. A third atom was tentatively assigned to 293Lv on the basis of a missed parental alpha decay.[https://e-reports-ext.llnl.gov/pdf/302186.pdf "Confirmed results of the 248Cm(48Ca,4n)292116 experiment"] {{Webarchive|url=https://web.archive.org/web/20160130164119/https://e-reports-ext.llnl.gov/pdf/302186.pdf |date=2016-01-30 }}, Patin et al., LLNL report (2003). Retrieved 2008-03-03
In April 2004, the team ran the experiment again at higher energy and were able to detect a new decay chain, assigned to 292Lv. On this basis, the original data were reassigned to 293Lv. The tentative chain is therefore possibly associated with a rare decay branch of this isotope or an isomer, 293mLv; given the possible reassignment of its daughter to 290Fl instead of 289Fl, it could also conceivably be 294Lv, although all these assignments are tentative and need confirmation in future experiments aimed at the 2n channel.{{Cite journal|doi=10.1515/ract-2019-3104|title=Synthesis and properties of isotopes of the transactinides|year=2019|last1=Hofmann|first1=Sigurd|journal=Radiochimica Acta|volume=107|issue=9–11|pages=879–915|s2cid=203848120}}{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }} In this reaction, two additional atoms of 293Lv were detected.{{cite journal |doi=10.1103/PhysRevC.70.064609 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca |year=2004 |last1=Oganessian |first1=Yu. Ts. |journal=Physical Review C |volume=70 |issue=6 |pages=064609 |bibcode=2004PhRvC..70f4609O |last2=Utyonkov |first2=V. |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Wilk |first27=P. |last28=Lougheed |first28=R. |last29=Il’kaev |first29=R. |last30=Vesnovskii |first30=S.|url=http://www1.jinr.ru/Preprints/2004/160(E7-2004-160).pdf }}
In 2007, in a GSI-SHIP experiment, besides four 292Lv chains and one 293Lv chain, another chain was observed, initially not assigned but later shown to be 291Lv. However, it is unclear whether it comes from the 248Cm(48Ca,5n) reaction or from a reaction with a lighter curium isotope (present in the target as an admixture), such as 246Cm(48Ca,3n).{{Cite journal | doi=10.1140/epja/i2012-12062-1|title = The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP| journal=The European Physical Journal A| volume=48| issue=5|year = 2012|last1 = Hofmann|first1 = S.| last2=Heinz| first2=S.| last3=Mann| first3=R.| last4=Maurer| first4=J.| last5=Khuyagbaatar| first5=J.| last6=Ackermann| first6=D.| last7=Antalic| first7=S.| last8=Barth| first8=W.| last9=Block| first9=M.| last10=Burkhard| first10=H. G.| last11=Comas| first11=V. F.| last12=Dahl| first12=L.| last13=Eberhardt| first13=K.| last14=Gostic| first14=J.| last15=Henderson| first15=R. A.| last16=Heredia| first16=J. A.| last17=Heßberger| first17=F. P.| last18=Kenneally| first18=J. M.| last19=Kindler| first19=B.| last20=Kojouharov| first20=I.| last21=Kratz| first21=J. V.| last22=Lang| first22=R.| last23=Leino| first23=M.| last24=Lommel| first24=B.| last25=Moody| first25=K. J.| last26=Münzenberg| first26=G.| last27=Nelson| first27=S. L.| last28=Nishio| first28=K.| last29=Popeko| first29=A. G.| last30=Runke| first30=J.|page = 62| display-authors=29| bibcode=2012EPJA...48...62H|s2cid = 121930293}}{{cite journal|doi=10.1088/0034-4885/78/3/036301|pmid=25746203|title=Super-heavy element research|year=2015|last1=Oganessian |first1=Yu. Ts. |journal=Reports on Progress in Physics |volume=78 |pages=036301 |bibcode= 2015RPPh...78c6301O|last2=Utyonkov |first2=V.|issue=3|s2cid=37779526 }}
In an experiment run at the GSI during June–July 2010, scientists detected six atoms of livermorium; two atoms of 293Lv and four atoms of 292Lv. They were able to confirm both the decay data and cross sections for the fusion reaction.{{cite journal|last=Hoffman|first=S.|display-authors=etal|title=The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP|date=2012|journal=European Physical Journal A|volume=48|issue=62|page=62 |doi=10.1140/epja/i2012-12062-1|url=https://www.researchgate.net/publication/257866147|bibcode=2012EPJA...48...62H|s2cid=121930293}}
A 2016 experiment at RIKEN aimed at studying the 48Ca+248Cm reaction seemingly detected one atom that may be assigned to 294Lv alpha decaying to 290Fl and 286Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed.{{cite journal |last1=Kaji |first1=Daiya |last2=Morita |first2=Kosuke |first3=Kouji |last3=Morimoto |first4=Hiromitsu |last4=Haba |first5=Masato |last5=Asai |first6=Kunihiro |last6=Fujita |first7=Zaiguo |last7=Gan |first8=Hans |last8=Geissel |first9=Hiroo |last9=Hasebe |first10=Sigurd |last10=Hofmann |first11=MingHui |last11=Huang |first12=Yukiko |last12=Komori |first13=Long |last13=Ma |first14=Joachim |last14=Maurer |first15=Masashi |last15=Murakami |first16=Mirei |last16=Takeyama |first17=Fuyuki |last17=Tokanai |first18=Taiki |last18=Tanaka |first19=Yasuo |last19=Wakabayashi |first20=Takayuki |last20=Yamaguchi |first21=Sayaka |last21=Yamaki |first22=Atsushi |last22=Yoshida |date=2017 |title=Study of the Reaction 48Ca + 248Cm → 296Lv* at RIKEN-GARIS |journal=Journal of the Physical Society of Japan |volume=86 |issue=3 |pages=034201–1–7 |doi=10.7566/JPSJ.86.034201 |bibcode=2017JPSJ...86c4201K }}
==<sup>245</sup>Cm(<sup>48</sup>Ca,xn)<sup>293−x</sup>Lv (x=2,3)==
In order to assist in the assignment of isotope mass numbers for livermorium, in March–May 2003 the Dubna team bombarded a 245Cm target with 48Ca ions. They were able to observe two new isotopes, assigned to 291Lv and 290Lv.{{cite journal |doi=10.1103/PhysRevC.69.054607 |title=Measurements of cross sections for the fusion-evaporation reactions244Pu(48Ca,xn)292−x114 and 245Cm(48Ca,xn)293−x116 |year=2004 |last1=Oganessian |first1=Yu. Ts. |journal=Physical Review C |volume=69 |pages=054607 |last2=Utyonkov |first2=V. |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Lougheed |first27=R. |bibcode=2004PhRvC..69e4607O |issue=5 |url=http://link.aps.org/abstract/PRC/V69/E054607/ |display-authors=8|doi-access=free }} This experiment was successfully repeated in February–March 2005 where 10 atoms were created with identical decay data to those reported in the 2003 experiment.{{cite journal |first1=Yu. Ts. |last1=Oganessian |first2=V. K. |last2=Utyonkov |first3=Yu. V. |last3=Lobanov |first4=F. Sh. |last4=Abdullin |first5=A. N. |last5=Polyakov |first6=R. N. |last6=Sagaidak |first7=I. V. |last7=Shirokovsky |first8=Yu. S. |last8=Tsyganov |first9=A. A. |last9=Voinov |first10=G. G. |last10=Gulbekian |first11=S. L. |last11=Bogomolov |first12=B. N. |last12=Gikal |first13=A. N. |last13=Mezentsev |first14=S. |last14=Iliev |first15=V. G. |last15=Subbotin |first16=A. M. |last16=Sukhov |first17=K. |last17=Subotic |first18=V. I. |last18=Zagrebaev |first19=G. K. |last19=Vostokin |first20=M. G. |last20=Itkis |first21=K. J. |last21=Moody |first22=J. B. |last22=Patin |first23=D. A. |last23=Shaughnessy |first24=M. A. |last24=Stoyer |first25=N. J. |last25=Stoyer |first26=P. A. |last26=Wilk |first27=J. M. |last27=Kenneally |first28=J. H. |last28=Landrum |first29=J. F. |last29=Wild |first30=R. W. |last30=Lougheed
|display-authors={{{display-authors|{{template other||8}}}}}
|title=Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions
|journal=Physical Review C
|volume=74 |issue=4 |pages=044602 |date=2006-10-09 |access-date=2008-01-18
|url=http://link.aps.org/abstract/PRC/v74/e044602
|doi=10.1103/PhysRevC.74.044602 |bibcode = 2006PhRvC..74d4602O
}}
=As a decay product=
Livermorium has also been observed in the decay of oganesson. In October 2006 it was announced that three atoms of oganesson had been detected by the bombardment of californium-249 with calcium-48 ions, which then rapidly decayed into livermorium.
The observation of the daughter 290Lv allowed the assignment of the parent to 294Og and confirmed the synthesis of oganesson.
=Fission of compound nuclei with Z=116=
Several experiments have been performed between 2000 and 2006 at the Flerov Laboratory of Nuclear Reactions in Dubna studying the fission characteristics of the compound nuclei 296,294,290Lv. Four nuclear reactions have been used, namely 248Cm+48Ca, 246Cm+48Ca, 244Pu+50Ti, and 232Th+58Fe. The results have revealed how nuclei such as this fission predominantly by expelling closed shell nuclei such as 132Sn (Z = 50, N = 82). It was also found that the yield for the fusion-fission pathway was similar between 48Ca and 58Fe projectiles, indicating a possible future use of 58Fe projectiles in superheavy element formation. In addition, in comparative experiments synthesizing 294Lv using 48Ca and 50Ti projectiles, the yield from fusion-fission was roughly three times smaller for 50Ti, also suggesting a future use in SHE production.see [http://www1.jinr.ru/Reports/Reports_eng_arh.html Flerov lab annual reports 2000–2006]
=Retracted isotopes=
==<sup>289</sup>Lv==
In 1999, researchers at Lawrence Berkeley National Laboratory announced the synthesis of 293Og (see oganesson), in a paper published in Physical Review Letters.{{cite journal |last=Ninov |first=V. |year=1999 |title=Observation of Superheavy Nuclei Produced in the Reaction of86Kr with 208Pb |journal=Physical Review Letters |volume=83 |pages=1104–1107 |doi=10.1103/PhysRevLett.83.1104 |bibcode=1999PhRvL..83.1104N |issue=6 |display-authors=etal|url=https://zenodo.org/record/1233919 }} The claimed isotope 289Lv decayed by 11.63 MeV alpha emission with a half-life of 0.64 ms. The following year, they published a retraction after other researchers were unable to duplicate the results.{{cite journal |doi=10.1103/PhysRevLett.89.039901 |title=Editorial Note: Observation of Superheavy Nuclei Produced in the Reaction of ^{86}Kr with ^{208}Pb [Phys. Rev. Lett. 83, 1104 (1999)] |year=2002 |last1=Ninov |first1=V. |journal=Physical Review Letters |volume=89 |issue=3 |pages=039901 |bibcode=2002PhRvL..89c9901N |last2=Gregorich |first2=K. |last3=Loveland |first3=W. |last4=Ghiorso |first4=A. |last5=Hoffman |first5=D. |last6=Lee |first6=D. |last7=Nitsche |first7=H. |last8=Swiatecki |first8=W. |last9=Kirbach |first9=U. |last10=Laue |first10=C. |last11=Adams |first11=J. |last12=Patin |first12=J. |last13=Shaughnessy |first13=D. |last14=Strellis |first14=D. |last15=Wilk |first15=P.|doi-access=free }} In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by the principal author Victor Ninov. This isotope of livermorium was finally discovered in 2024 by the JINR, in the 242Pu(50Ti,3n) reaction.
=Chronology of isotope discovery=
Yields of isotopes
=Hot fusion=
The table below provides cross-sections and excitation energies for hot fusion reactions producing livermorium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.
class="wikitable" style="text-align:center" | ||||||
Projectile | Target | CN | 2n | 3n | 4n | 5n |
---|---|---|---|---|---|---|
48Ca | 248Cm | 296Lv | 1.1 pb, 38.9 MeV | 3.3 pb, 38.9 MeV | ||
48Ca | 245Cm | 293Lv | 0.9 pb, 33.0 MeV | 3.7 pb, 37.9 MeV |
Theoretical calculations
=Decay characteristics=
Theoretical calculation in a quantum tunneling model supports the experimental data relating to the synthesis of 293Lv and 292Lv.{{cite journal |journal=Physical Review C |volume=73 |issue=1 |pages=014612 |year=2006 |title=α decay half-lives of new superheavy elements |author=P. Roy Chowdhury |author2=C. Samanta |author3=D. N. Basu |doi=10.1103/PhysRevC.73.014612 |bibcode=2006PhRvC..73a4612C |arxiv = nucl-th/0507054 |s2cid=118739116 }}{{cite journal | journal=Nuclear Physics A |volume=789 |issue=1–4 |pages=142–154 |year=2007 | title=Predictions of alpha decay half lives of heavy and superheavy elements |author=C. Samanta |author2=P. Roy Chowdhury |author3=D. N. Basu |doi=10.1016/j.nuclphysa.2007.04.001 |bibcode=2007NuPhA.789..142S |arxiv = nucl-th/0703086 |s2cid=7496348 }}
=Evaporation residue cross sections=
The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
DNS = Di-nuclear system; σ = cross section
class="wikitable" style="text-align:center" | ||||||
Target | Projectile | CN | Channel (product) | σmax | Model | Ref |
---|---|---|---|---|---|---|
208Pb | ||||||
208Pb | ||||||
238U | ||||||
250Cm | ||||||
248Cm | ||||||
247Cm | ||||||
245Cm | ||||||
243Cm
|48Ca||291Lv||3n (288Lv)||1.53 pb||DNS||{{cite journal|last1=Zhu|first1=L.|last2=Su|first2=J.|last3=Zhang|first3=F.|title=Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions|journal=Physical Review C|date=2016|url=https://www.researchgate.net/publication/304366659|volume=93|issue=6|page=064610 | doi=10.1103/PhysRevC.93.064610|bibcode=2016PhRvC..93f4610Z }} | ||||||
248Cm |