Lerch transcendent
{{Short description|Special mathematical function}}
In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887.{{citation | first= Mathias | last= Lerch | authorlink= Mathias Lerch | title= Note sur la fonction | language= French | year= 1887 | journal= Acta Mathematica | volume= 11 | issue= 1–4 | pages= 19–24 | doi= 10.1007/BF02612318 | mr= 1554747 | jfm= 19.0438.01| s2cid= 121885446 | url= https://zenodo.org/record/1681743 | doi-access= free }} The Lerch transcendent, is given by:
:
\frac { z^n} {(n+\alpha)^s}.
It only converges for any real number , where , or , and .{{sfn|Guillera|Sondow|2008}}
Special cases
The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function is given by:
:
\frac { e^{2\pi i\lambda n}} {(n+\alpha)^s}=\Phi(e^{2\pi i\lambda}, s,\alpha)
The Hurwitz zeta function is the special case{{harvnb|Guillera|Sondow|2008|p=248–249}}
:
The polylogarithm is another special case:
:
The Riemann zeta function is a special case of both of the above:
:
:
:
:
The inverse tangent integral:{{Cite web |last=Weisstein |first=Eric W. |title=Inverse Tangent Integral |url=https://mathworld.wolfram.com/InverseTangentIntegral.html |access-date=2024-10-13 |website=mathworld.wolfram.com |language=en}}
:
The polygamma functions for positive integers n:The polygamma function has the series representation
which holds for integer values of {{math|m > 0}} and any complex {{mvar|z}} not equal to a negative integer.{{Cite web |last=Weisstein |first=Eric W. |title=Polygamma Function |url=https://mathworld.wolfram.com/PolygammaFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}
:
The Clausen function:{{Cite web |last=Weisstein |first=Eric W. |title=Clausen Function |url=https://mathworld.wolfram.com/ClausenFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}
:
Integral representations
The Lerch transcendent has an integral representation:
:
\Phi(z,s,a)=\frac{1}{\Gamma(s)}\int_0^\infty
\frac{t^{s-1}e^{-at}}{1-ze^{-t}}\,dt
The proof is based on using the integral definition of the gamma function to write
:
= \sum_{n=0}^\infty \frac{z^n}{(n+a)^s} \int_0^\infty x^s e^{-x} \frac{dx}{x}
= \sum_{n=0}^\infty \int_0^\infty t^s z^n e^{-(n+a)t} \frac{dt}{t}
and then interchanging the sum and integral. The resulting integral representation converges for Re(s) > 0, and Re(a) > 0. This analytically continues to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.{{harvnb|Bateman|Erdélyi|1953|p=27}}{{harvnb|Guillera|Sondow|2008|loc=Lemma 2.1 and 2.2}}
A contour integral representation is given by
:
\Phi(z,s,a)=-\frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-t)^{s-1}e^{-at}}{1-ze^{-t}}\,dt
where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.{{harvnb|Bateman|Erdélyi|1953|p=28}}
=Other integral representations=
A Hermite-like integral representation is given by
:
\Phi(z,s,a)=
\frac{1}{2a^s}+
\int_0^\infty \frac{z^t}{(a+t)^s}\,dt+
\frac{2}{a^{s-1}}
\int_0^\infty
\frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt
for
:
and
:
\Phi(z,s,a)=\frac{1}{2a^s}+
\frac{\log^{s-1}(1/z)}{z^a}\Gamma(1-s,a\log(1/z))+
\frac{2}{a^{s-1}}
\int_0^\infty
\frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt
for
:
Similar representations include
:
\Phi(z,s,a)= \frac{1}{2a^s} + \int_{0}^{\infty}\frac{\cos(t\log z)\sin\Big(s\arctan\tfrac{t}{a}\Big) - \sin(t\log z)\cos\Big(s\arctan\tfrac{t}{a}\Big)}{\big(a^2 + t^2\big)^{\frac{s}{2}} \tanh\pi t }\,dt,
and
:
holding for positive z (and more generally wherever the integrals converge). Furthermore,
:
The last formula is also known as Lipschitz formula.
Identities
For λ rational, the summand is a root of unity, and thus may be expressed as a finite sum over the Hurwitz zeta function. Suppose with and . Then and .
:
\frac {\omega^n} {(n+\alpha)^s} = \sum_{m=0}^{q-1} \sum_{n=0}^\infty \frac {\omega^{qn + m}}{(qn + m + \alpha)^s} = \sum_{m=0}^{q-1} \omega^m q^{-s} \zeta \left( s,\frac{m + \alpha}{q} \right)
Various identities include:
:
and
:
and
:
Series representations
A series representation for the Lerch transcendent is given by
:
\sum_{n=0}^\infty \left(\frac{-z}{1-z} \right)^n
\sum_{k=0}^n (-1)^k \binom{n}{k} (q+k)^{-s}.
(Note that is a binomial coefficient.)
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.{{cite web| url=https://www.physicsforums.com/insights/the-analytic-continuation-of-the-lerch-and-the-zeta-functions/ | title=The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function | date=27 April 2020 | access-date=28 April 2020}}
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for{{cite journal | author=B. R. Johnson | title=Generalized Lerch zeta function | journal=Pacific J. Math. | volume=53 | number=1 | date=1974 | pages=189–193 | doi=10.2140/pjm.1974.53.189 | doi-access=free}}
:
:
\Phi(z,s,a)=z^{-a}\left[\Gamma(1-s)\left(-\log (z)\right)^{s-1}
+\sum_{k=0}^\infty \zeta(s-k,a)\frac{\log^k (z)}{k!}\right]
If n is a positive integer, then
:
\Phi(z,n,a)=z^{-a}\left\{
\sum_{{k=0}\atop k\neq n-1}^ \infty \zeta(n-k,a)\frac{\log^k (z)}{k!}
+\left[\psi(n)-\psi(a)-\log(-\log(z))\right]\frac{\log^{n-1}(z)}{(n-1)!}
\right\},
where is the digamma function.
A Taylor series in the third variable is given by
:
where is the Pochhammer symbol.
Series at a = −n is given by
:
\Phi(z,s,a)=\sum_{k=0}^n \frac{z^k}{(a+k)^s}
+z^n\sum_{m=0}^\infty (1-m-s)_{m}\operatorname{Li}_{s+m}(z)\frac{(a+n)^m}{m!};\ a\rightarrow-n
A special case for n = 0 has the following series
:
\Phi(z,s,a)=\frac{1}{a^s}
+\sum_{m=0}^\infty (1-m-s)_m \operatorname{Li}_{s+m}(z)\frac{a^m}{m!}; |a|<1,
where is the polylogarithm.
An asymptotic series for
:
for
and
:
\Phi(-z,s,a)=z^{-a}\Gamma(1-s)\sum_{k=-\infty}^\infty
[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}
for
An asymptotic series in the incomplete gamma function
:
\Phi(z,s,a)=\frac{1}{2a^s}+
\frac{1}{z^a}\sum_{k=1}^\infty
\frac{e^{-2\pi i(k-1)a}\Gamma(1-s,a(-2\pi i(k-1)-\log(z)))}
{(-2\pi i(k-1)-\log(z))^{1-s}}+
\frac{e^{2\pi ika}\Gamma(1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}
for
The representation as a generalized hypergeometric function is{{cite journal|first1=J. E.|last1=Gottschalk|first2=E. N. |last2=Maslen| title=Reduction formulae for generalized hypergeometric functions of one variable|journal=J. Phys. A | year=1988| volume=21|issue=9|pages=1983–1998|doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G}}
:
\Phi(z,s,\alpha)=\frac{1}{\alpha^s}{}_{s+1}F_s\left(\begin{array}{c}
1,\alpha,\alpha,\alpha,\cdots\\
1+\alpha,1+\alpha,1+\alpha,\cdots\\
\end{array}\mid z\right).
Asymptotic expansion
The polylogarithm function is defined as
:
Let
:
\Omega_{a} \equiv\begin{cases}
\mathbb{C}\setminus[1,\infty) & \text{if } \Re a > 0, \\
{z \in \mathbb{C}, |z|<1} & \text{if } \Re a \le 0.
\end{cases}
For and , an asymptotic expansion of for large and fixed and is given by
:
\Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}}
+
\sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}}
+O(a^{-N-s})
for , where is the Pochhammer symbol.{{cite journal |last1=Ferreira |first1=Chelo |last2=López |first2=José L. |title=Asymptotic expansions of the Hurwitz–Lerch zeta function |journal=Journal of Mathematical Analysis and Applications |date=October 2004 |volume=298 |issue=1 |pages=210–224 |doi=10.1016/j.jmaa.2004.05.040|doi-access=free }}
Let
:
Let be its Taylor coefficients at . Then for fixed and ,
:
\Phi(z,s,a) - \frac{\mathrm{Li}_{s}(z)}{z^{a}}
=
\sum_{n=0}^{N-1}
C_{n}(z,a) \frac{(s)_{n}}{a^{n+s}}
+
O\left( (\Re a)^{1-N-s}+a z^{-\Re a} \right),
Software
The Lerch transcendent is implemented as LerchPhi in [http://www.maplesoft.com/support/help/Maple/view.aspx?path=LerchPhi Maple] and [https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/ Mathematica], and as lerchphi in [http://mpmath.org/doc/current/functions/zeta.html#lerch-transcendent mpmath] and [https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.zeta_functions.lerchphi SymPy].
References
{{Reflist}}
- {{dlmf | id= 25.14 | first= T. M. | last= Apostol | title= Lerch's Transcendent}}.
- {{citation | first1= H. | last1= Bateman | author1-link= Harry Bateman | first2= A. | last2= Erdélyi | author2-link= Arthur Erdélyi | title= Higher Transcendental Functions, Vol. I | year= 1953 | location= New York | publisher= McGraw-Hill | url=http://apps.nrbook.com/bateman/Vol1.pdf}}. (See § 1.11, "The function Ψ(z,s,v)", p. 27)
- {{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=Academic Press |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 |title-link=Gradshteyn and Ryzhik |chapter=9.55.}}
- {{citation | first1= Jesus | last1= Guillera | first2= Jonathan | last2= Sondow | arxiv= math.NT/0506319 | mr = 2429900 | title= Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent | journal= The Ramanujan Journal | volume= 16 | year= 2008 | pages= 247–270 | issue= 3 | doi= 10.1007/s11139-007-9102-0| s2cid= 119131640 }}. (Includes various basic identities in the introduction.)
- {{citation | first= M. | last= Jackson | title= On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2 | year= 1950 | journal= J. London Math. Soc. | volume= 25 | issue= 3 | pages= 189–196 | doi= 10.1112/jlms/s1-25.3.189 | mr= 0036882}}.
- {{citation | first1= F. | last1= Johansson | first2= Ia. | last2= Blagouchine | arxiv= 1804.01679 | mr = 3925487 | title= Computing Stieltjes constants using complex integration | journal= Mathematics of Computation | volume= 88 | year= 2019 | pages= 1829–1850 | issue= 318 | doi= 10.1090/mcom/3401| s2cid= 4619883 }}.
- {{citation | first1= Antanas | last1= Laurinčikas | first2= Ramūnas | last2= Garunkštis | title= The Lerch zeta-function | publisher= Kluwer Academic Publishers | location= Dordrecht | year= 2002 | isbn= 978-1-4020-1014-9 | mr= 1979048}}.
External links
- {{citation | first1= Sergej V. | last1= Aksenov | first2= Ulrich D. | last2= Jentschura | year=2002 | url= http://aksenov.freeshell.org/lerchphi.html | title= C and Mathematica Programs for Calculation of Lerch's Transcendent}}.
- Ramunas Garunkstis, [http://www.mif.vu.lt/~garunkstis Home Page] (2005) (Provides numerous references and preprints.)
- {{cite journal|first1=Ramunas|last1=Garunkstis|url=http://www.mif.vu.lt/~garunkstis/preprintai/approx.pdf |title=Approximation of the Lerch Zeta Function|year=2004|journal=Lithuanian Mathematical Journal|volume=44|number=2|pages=140–144|doi=10.1023/B:LIMA.0000033779.41365.a5|s2cid=123059665 }}
- {{cite web|first1=S.|last1=Kanemitsu|first2=Y.|last2=Tanigawa|first3=H.|last3=Tsukada|url=https://hal.archives-ouvertes.fr/hal-02220916|title=A generalization of Bochner's formula|year=2015}} {{cite journal|first1=S.|last1=Kanemitsu|first2=Y.|last2=Tanigawa|first3=H.|last3=Tsukada|doi=10.46298/hrj.2004.150|journal=Hardy-Ramanujan Journal|title=A generalization of Bochner's formula|year=2004|volume=27|doi-access=free}}
- {{MathWorld | urlname= LerchTranscendent | title= Lerch Transcendent}}
- {{dlmf|id=25.14 |title=Lerch's Transcendent}}