Lerch transcendent

{{Short description|Special mathematical function}}

In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887.{{citation | first= Mathias | last= Lerch | authorlink= Mathias Lerch | title= Note sur la fonction \scriptstyle{\mathfrak K}(w,x,s) = \sum_{k=0}^\infty {e^{2k\pi ix} \over (w+k)^s} | language= French | year= 1887 | journal= Acta Mathematica | volume= 11 | issue= 1–4 | pages= 19–24 | doi= 10.1007/BF02612318 | mr= 1554747 | jfm= 19.0438.01| s2cid= 121885446 | url= https://zenodo.org/record/1681743 | doi-access= free }} The Lerch transcendent, is given by:

:\Phi(z, s, \alpha) = \sum_{n=0}^\infty

\frac { z^n} {(n+\alpha)^s}.

It only converges for any real number \alpha > 0, where |z| < 1, or \mathfrak{R}(s) > 1, and |z| = 1.{{sfn|Guillera|Sondow|2008}}

Special cases

The Lerch transcendent is related to and generalizes various special functions.

The Lerch zeta function is given by:

:L(\lambda, s, \alpha) = \sum_{n=0}^\infty

\frac { e^{2\pi i\lambda n}} {(n+\alpha)^s}=\Phi(e^{2\pi i\lambda}, s,\alpha)

The Hurwitz zeta function is the special case{{harvnb|Guillera|Sondow|2008|p=248–249}}

:\zeta(s,\alpha) = \sum_{n=0}^\infty \frac{1}{(n+\alpha)^s} = \Phi(1,s,\alpha)

The polylogarithm is another special case:

:\textrm{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s} =z\Phi(z,s,1)

The Riemann zeta function is a special case of both of the above:

:\zeta(s) =\sum_{n=1}^\infty \frac{1}{n^s} = \Phi(1,s,1)

The Dirichlet eta function:

:\eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s} = \Phi(-1,s,1)

The Dirichlet beta function:

:\beta(s) = \sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)^s} = 2^{-s}\Phi(-1,s,\tfrac12)

The Legendre chi function:

:\chi_s(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^s}= \frac {z}{2^s} \Phi(z^2,s,\tfrac12)

The inverse tangent integral:{{Cite web |last=Weisstein |first=Eric W. |title=Inverse Tangent Integral |url=https://mathworld.wolfram.com/InverseTangentIntegral.html |access-date=2024-10-13 |website=mathworld.wolfram.com |language=en}}

:\textrm{Ti}_s(z)= \sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{(2k+1)^s}=\frac{z}{2^s}\Phi(-z^2,s,\tfrac12)

The polygamma functions for positive integers n:The polygamma function has the series representation

\psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}}

which holds for integer values of {{math|m > 0}} and any complex {{mvar|z}} not equal to a negative integer.{{Cite web |last=Weisstein |first=Eric W. |title=Polygamma Function |url=https://mathworld.wolfram.com/PolygammaFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}

:\psi^{(n)}(\alpha)= (-1)^{n+1} n!\Phi (1,n+1,\alpha)

The Clausen function:{{Cite web |last=Weisstein |first=Eric W. |title=Clausen Function |url=https://mathworld.wolfram.com/ClausenFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}

:\text{Cl}_2(z)= \frac{ie^{-iz}}2 \Phi(e^{-iz},2,1)-\frac{ie^{iz}}2 \Phi(e^{iz},2,1)

Integral representations

The Lerch transcendent has an integral representation:

:

\Phi(z,s,a)=\frac{1}{\Gamma(s)}\int_0^\infty

\frac{t^{s-1}e^{-at}}{1-ze^{-t}}\,dt

The proof is based on using the integral definition of the gamma function to write

:\Phi(z,s,a)\Gamma(s)

= \sum_{n=0}^\infty \frac{z^n}{(n+a)^s} \int_0^\infty x^s e^{-x} \frac{dx}{x}

= \sum_{n=0}^\infty \int_0^\infty t^s z^n e^{-(n+a)t} \frac{dt}{t}

and then interchanging the sum and integral. The resulting integral representation converges for z \in \Complex \setminus [1,\infty), Re(s) > 0, and Re(a) > 0. This analytically continues \Phi(z,s,a) to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.{{harvnb|Bateman|Erdélyi|1953|p=27}}{{harvnb|Guillera|Sondow|2008|loc=Lemma 2.1 and 2.2}}

A contour integral representation is given by

:

\Phi(z,s,a)=-\frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-t)^{s-1}e^{-at}}{1-ze^{-t}}\,dt

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points t = \log(z) + 2k\pi i (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.{{harvnb|Bateman|Erdélyi|1953|p=28}}

=Other integral representations=

A Hermite-like integral representation is given by

:

\Phi(z,s,a)=

\frac{1}{2a^s}+

\int_0^\infty \frac{z^t}{(a+t)^s}\,dt+

\frac{2}{a^{s-1}}

\int_0^\infty

\frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt

for

:\Re(a)>0\wedge |z|<1

and

:

\Phi(z,s,a)=\frac{1}{2a^s}+

\frac{\log^{s-1}(1/z)}{z^a}\Gamma(1-s,a\log(1/z))+

\frac{2}{a^{s-1}}

\int_0^\infty

\frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt

for

:\Re(a)>0.

Similar representations include

:

\Phi(z,s,a)= \frac{1}{2a^s} + \int_{0}^{\infty}\frac{\cos(t\log z)\sin\Big(s\arctan\tfrac{t}{a}\Big) - \sin(t\log z)\cos\Big(s\arctan\tfrac{t}{a}\Big)}{\big(a^2 + t^2\big)^{\frac{s}{2}} \tanh\pi t }\,dt,

and

:\Phi(-z,s,a)= \frac{1}{2a^s} + \int_{0}^{\infty}\frac{\cos(t\log z)\sin\Big(s\arctan\tfrac{t}{a}\Big) - \sin(t\log z)\cos\Big(s\arctan\tfrac{t}{a}\Big)}{\big(a^2 + t^2\big)^{\frac{s}{2}} \sinh\pi t }\,dt,

holding for positive z (and more generally wherever the integrals converge). Furthermore,

:\Phi(e^{i\varphi},s,a)=L\big(\tfrac{\varphi}{2\pi}, s, a\big)= \frac{1}{a^s} + \frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{t^{s-1}e^{-at}\big(e^{i\varphi}-e^{-t}\big)}{\cosh{t}-\cos{\varphi}}\,dt,

The last formula is also known as Lipschitz formula.

Identities

For λ rational, the summand is a root of unity, and thus L(\lambda, s, \alpha) may be expressed as a finite sum over the Hurwitz zeta function. Suppose \lambda = \frac{p}{q} with p, q \in \Z and q > 0. Then z = \omega = e^{2 \pi i \frac{p}{q}} and \omega^q = 1.

:\Phi(\omega, s, \alpha) = \sum_{n=0}^\infty

\frac {\omega^n} {(n+\alpha)^s} = \sum_{m=0}^{q-1} \sum_{n=0}^\infty \frac {\omega^{qn + m}}{(qn + m + \alpha)^s} = \sum_{m=0}^{q-1} \omega^m q^{-s} \zeta \left( s,\frac{m + \alpha}{q} \right)

Various identities include:

:\Phi(z,s,a)=z^n \Phi(z,s,a+n) + \sum_{k=0}^{n-1} \frac {z^k}{(k+a)^s}

and

:\Phi(z,s-1,a)=\left(a+z\frac{\partial}{\partial z}\right) \Phi(z,s,a)

and

:\Phi(z,s+1,a)=-\frac{1}{s}\frac{\partial}{\partial a} \Phi(z,s,a).

Series representations

A series representation for the Lerch transcendent is given by

:\Phi(z,s,q)=\frac{1}{1-z}

\sum_{n=0}^\infty \left(\frac{-z}{1-z} \right)^n

\sum_{k=0}^n (-1)^k \binom{n}{k} (q+k)^{-s}.

(Note that \tbinom{n}{k} is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.{{cite web| url=https://www.physicsforums.com/insights/the-analytic-continuation-of-the-lerch-and-the-zeta-functions/ | title=The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function | date=27 April 2020 | access-date=28 April 2020}}

A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for{{cite journal | author=B. R. Johnson | title=Generalized Lerch zeta function | journal=Pacific J. Math. | volume=53 | number=1 | date=1974 | pages=189–193 | doi=10.2140/pjm.1974.53.189 | doi-access=free}}

:\left|\log(z)\right| < 2 \pi;s\neq 1,2,3,\dots; a\neq 0,-1,-2,\dots

:

\Phi(z,s,a)=z^{-a}\left[\Gamma(1-s)\left(-\log (z)\right)^{s-1}

+\sum_{k=0}^\infty \zeta(s-k,a)\frac{\log^k (z)}{k!}\right]

If n is a positive integer, then

:

\Phi(z,n,a)=z^{-a}\left\{

\sum_{{k=0}\atop k\neq n-1}^ \infty \zeta(n-k,a)\frac{\log^k (z)}{k!}

+\left[\psi(n)-\psi(a)-\log(-\log(z))\right]\frac{\log^{n-1}(z)}{(n-1)!}

\right\},

where \psi(n) is the digamma function.

A Taylor series in the third variable is given by

:\Phi(z,s,a+x)=\sum_{k=0}^\infty \Phi(z,s+k,a)(s)_{k}\frac{(-x)^k}{k!};|x|<\Re(a),

where (s)_{k} is the Pochhammer symbol.

Series at a = −n is given by

:

\Phi(z,s,a)=\sum_{k=0}^n \frac{z^k}{(a+k)^s}

+z^n\sum_{m=0}^\infty (1-m-s)_{m}\operatorname{Li}_{s+m}(z)\frac{(a+n)^m}{m!};\ a\rightarrow-n

A special case for n = 0 has the following series

:

\Phi(z,s,a)=\frac{1}{a^s}

+\sum_{m=0}^\infty (1-m-s)_m \operatorname{Li}_{s+m}(z)\frac{a^m}{m!}; |a|<1,

where \operatorname{Li}_s(z) is the polylogarithm.

An asymptotic series for s\rightarrow-\infty

:\Phi(z,s,a)=z^{-a}\Gamma(1-s)\sum_{k=-\infty}^\infty [2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}

for |a|<1;\Re(s)<0 ;z\notin (-\infty,0)

and

:

\Phi(-z,s,a)=z^{-a}\Gamma(1-s)\sum_{k=-\infty}^\infty

[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}

for |a|<1;\Re(s)<0 ;z\notin (0,\infty).

An asymptotic series in the incomplete gamma function

:

\Phi(z,s,a)=\frac{1}{2a^s}+

\frac{1}{z^a}\sum_{k=1}^\infty

\frac{e^{-2\pi i(k-1)a}\Gamma(1-s,a(-2\pi i(k-1)-\log(z)))}

{(-2\pi i(k-1)-\log(z))^{1-s}}+

\frac{e^{2\pi ika}\Gamma(1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}

for |a|<1;\Re(s)<0.

The representation as a generalized hypergeometric function is{{cite journal|first1=J. E.|last1=Gottschalk|first2=E. N. |last2=Maslen| title=Reduction formulae for generalized hypergeometric functions of one variable|journal=J. Phys. A | year=1988| volume=21|issue=9|pages=1983–1998|doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G}}

:

\Phi(z,s,\alpha)=\frac{1}{\alpha^s}{}_{s+1}F_s\left(\begin{array}{c}

1,\alpha,\alpha,\alpha,\cdots\\

1+\alpha,1+\alpha,1+\alpha,\cdots\\

\end{array}\mid z\right).

Asymptotic expansion

The polylogarithm function \mathrm{Li}_n(z) is defined as

:\mathrm{Li}_0(z)=\frac{z}{1-z}, \qquad \mathrm{Li}_{-n}(z)=z \frac{d}{dz} \mathrm{Li}_{1-n}(z).

Let

:

\Omega_{a} \equiv\begin{cases}

\mathbb{C}\setminus[1,\infty) & \text{if } \Re a > 0, \\

{z \in \mathbb{C}, |z|<1} & \text{if } \Re a \le 0.

\end{cases}

For |\mathrm{Arg}(a)|<\pi, s \in \mathbb{C} and z \in \Omega_{a}, an asymptotic expansion of \Phi(z,s,a) for large a and fixed s and z is given by

:

\Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}}

+

\sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}}

+O(a^{-N-s})

for N \in \mathbb{N}, where (s)_n = s (s+1)\cdots (s+n-1) is the Pochhammer symbol.{{cite journal |last1=Ferreira |first1=Chelo |last2=López |first2=José L. |title=Asymptotic expansions of the Hurwitz–Lerch zeta function |journal=Journal of Mathematical Analysis and Applications |date=October 2004 |volume=298 |issue=1 |pages=210–224 |doi=10.1016/j.jmaa.2004.05.040|doi-access=free }}

Let

:f(z,x,a) \equiv \frac{1-(z e^{-x})^{1-a}}{1-z e^{-x}}.

Let C_{n}(z,a) be its Taylor coefficients at x=0. Then for fixed N \in \mathbb{N}, \Re a > 1 and \Re s > 0,

:

\Phi(z,s,a) - \frac{\mathrm{Li}_{s}(z)}{z^{a}}

=

\sum_{n=0}^{N-1}

C_{n}(z,a) \frac{(s)_{n}}{a^{n+s}}

+

O\left( (\Re a)^{1-N-s}+a z^{-\Re a} \right),

as \Re a \to \infty.{{cite journal |last1=Cai |first1=Xing Shi |last2=López |first2=José L. |title=A note on the asymptotic expansion of the Lerch's transcendent |journal=Integral Transforms and Special Functions |date=10 June 2019 |volume=30 |issue=10 |pages=844–855 |doi=10.1080/10652469.2019.1627530|arxiv=1806.01122 |s2cid=119619877 }}

Software

The Lerch transcendent is implemented as LerchPhi in [http://www.maplesoft.com/support/help/Maple/view.aspx?path=LerchPhi Maple] and [https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/ Mathematica], and as lerchphi in [http://mpmath.org/doc/current/functions/zeta.html#lerch-transcendent mpmath] and [https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.zeta_functions.lerchphi SymPy].

References

{{Reflist}}

  • {{dlmf | id= 25.14 | first= T. M. | last= Apostol | title= Lerch's Transcendent}}.
  • {{citation | first1= H. | last1= Bateman | author1-link= Harry Bateman | first2= A. | last2= Erdélyi | author2-link= Arthur Erdélyi | title= Higher Transcendental Functions, Vol. I | year= 1953 | location= New York | publisher= McGraw-Hill | url=http://apps.nrbook.com/bateman/Vol1.pdf}}. (See § 1.11, "The function Ψ(z,s,v)", p. 27)
  • {{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=Academic Press |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 |title-link=Gradshteyn and Ryzhik |chapter=9.55.}}
  • {{citation | first1= Jesus | last1= Guillera | first2= Jonathan | last2= Sondow | arxiv= math.NT/0506319 | mr = 2429900 | title= Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent | journal= The Ramanujan Journal | volume= 16 | year= 2008 | pages= 247–270 | issue= 3 | doi= 10.1007/s11139-007-9102-0| s2cid= 119131640 }}. (Includes various basic identities in the introduction.)
  • {{citation | first= M. | last= Jackson | title= On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2 | year= 1950 | journal= J. London Math. Soc. | volume= 25 | issue= 3 | pages= 189–196 | doi= 10.1112/jlms/s1-25.3.189 | mr= 0036882}}.
  • {{citation | first1= F. | last1= Johansson | first2= Ia. | last2= Blagouchine | arxiv= 1804.01679 | mr = 3925487 | title= Computing Stieltjes constants using complex integration | journal= Mathematics of Computation | volume= 88 | year= 2019 | pages= 1829–1850 | issue= 318 | doi= 10.1090/mcom/3401| s2cid= 4619883 }}.
  • {{citation | first1= Antanas | last1= Laurinčikas | first2= Ramūnas | last2= Garunkštis | title= The Lerch zeta-function | publisher= Kluwer Academic Publishers | location= Dordrecht | year= 2002 | isbn= 978-1-4020-1014-9 | mr= 1979048}}.