inverse tangent integral

{{Short description|Special function related to the dilogarithm}}

The inverse tangent integral is a special function, defined by:

:\operatorname{Ti}_2(x) = \int_0^x \frac{\arctan t}{t} \, dt

Equivalently, it can be defined by a power series, or in terms of the dilogarithm, a closely related special function.

Definition

The inverse tangent integral is defined by:

:\operatorname{Ti}_2(x) = \int_0^x \frac{\arctan t}{t} \, dt

The arctangent is taken to be the principal branch; that is, −{{pi}}/2 < arctan(t) < {{pi}}/2 for all real t.{{harvnb|Lewin|1981|pp=38–39|loc=Section 2.1}}

Its power series representation is

:\operatorname{Ti}_2(x) = x - \frac{x^3}{3^2} + \frac{x^5}{5^2} - \frac{x^7}{7^2} + \cdots

which is absolutely convergent for |x| \le 1.{{harvnb|Lewin|1981|pp=38–39|loc=Section 2.1}}

The inverse tangent integral is closely related to the dilogarithm \operatorname{Li}_2(z) = \sum_{n=1}^\infty \frac{z^n}{n^2} and can be expressed simply in terms of it:

:\operatorname{Ti}_2(z) = \frac{1}{2i} \left( \operatorname{Li}_2(iz) - \operatorname{Li}_2(-iz) \right)

That is,

:\operatorname{Ti}_2(x) = \operatorname{Im}(\operatorname{Li}_2(ix))

for all real x.

Properties

The inverse tangent integral is an odd function:

:\operatorname{Ti}_2(-x) = -\operatorname{Ti}_2(x)

The values of Ti2(x) and Ti2(1/x) are related by the identity

:\operatorname{Ti}_2(x) - \operatorname{Ti}_2 \left(\frac{1}{x} \right) = \frac{\pi}{2} \log x

valid for all x > 0 (or, more generally, for Re(x) > 0).

This can be proven by differentiating and using the identity \arctan(t) + \arctan(1/t) = \pi/2.

The special value Ti2(1) is Catalan's constant 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \approx 0.915966.{{harvnb|Lewin|1981|pp=39–40|loc=Section 2.2}}

Generalizations

Similar to the polylogarithm \operatorname{Li}_n(z) = \sum_{k=1}^\infty \frac{z^k}{k^n}, the function

:\operatorname{Ti}_{n}(x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^{k}x^{2k+1}}{\left(2k+1\right)^{n}}=x - \frac{x^3}{3^n} + \frac{x^5}{5^n} - \frac{x^7}{7^n} + \cdots

is defined analogously. This satisfies the recurrence relation:{{harvnb|Lewin|1981|p=190|loc=Section 7.1.2}}

:\operatorname{Ti}_{n}(x) = \int_0^x \frac{\operatorname{Ti}_{n-1}(t)}{t} \, dt

By this series representation it can be seen that the special values \operatorname{Ti}_{n}(1)=\beta(n), where \beta(s) represents the Dirichlet beta function.

Relation to other special functions

The inverse tangent integral is related to the Legendre chi function \chi_2(x) = x + \frac{x^3}{3^2} + \frac{x^5}{5^2} + \cdots by:

:\operatorname{Ti}_2(x) = -i \chi_2(ix)

Note that \chi_2(x) can be expressed as \int_0^x \frac{\operatorname{artanh} t}{t} \, dt, similar to the inverse tangent integral but with the inverse hyperbolic tangent instead.

The inverse tangent integral can also be written in terms of the Lerch transcendent \Phi(z,s,a) = \sum_{n=0}^\infty \frac{z^n}{(n+a)^s}:{{MathWorld |id=InverseTangentIntegral |title=Inverse Tangent Integral}}

:\operatorname{Ti}_2(x) = \frac{1}{4} x \Phi(-x^2, 2, 1/2)

History

The notation Ti2 and Tin is due to Lewin. Spence (1809){{Cite book | last= Spence | first= William | date= 1809 | title= An essay on the theory of the various orders of logarithmic transcendents; with an inquiry into their applications to the integral calculus and the summation of series | location= London | url= https://babel.hathitrust.org/cgi/pt?id=uc1.c3118082}} studied the function, using the notation \overset{n}{\operatorname{C}}(x). The function was also studied by Ramanujan.{{Cite journal | first= S. | last= Ramanujan | author-link= Srinivasa Ramanujan | journal= Journal of the Indian Mathematical Society | volume= 7 | date= 1915 | pages= 93–96 | title= On the integral \int_0^x \frac{\tan^{-1} t}{t} \, dt}} Appears in: {{Cite book | title= Collected Papers of Srinivasa Ramanujan | editor-first1= G. H. | editor-last1= Hardy |editor-link= G. H. Hardy | editor-first2= P. V. | editor-last2=Seshu Aiyar | editor-first3= B. M. | editor-last3= Wilson | editor-link3= Bertram Martin Wilson | date = 1927 | pages= 40–43 }}

References

{{Reflist}}

  • {{Cite book | last= Lewin | first= L. | title= Dilogarithms and Associated Functions | location= London | publisher= Macdonald | year= 1958 | mr= 0105524 | zbl= 0083.35904 }}
  • {{Cite book | last= Lewin | first= L. | title= Polylogarithms and Associated Functions | location= New York | publisher= North-Holland | year= 1981 | isbn= 978-0-444-00550-2 }}

Category:Special functions