Timeline of quantum computing and communication

{{Quantum computing#History}}

{{See also|Quantum computing#History}}

{{Short description|none}}

{{Disputed list|Misleading short descriptions|date=December 2024}}

{{Inc-up|date=July 2021}}

{{Use mdy dates|date=April 2020}}

{{History of computing}}

This is a timeline of quantum computing.

{{Horizontal TOC|nonum=yes}}

1960s

=1968/69/70=

Stephen Wiesner invents conjugate coding{{cite journal | doi=10.1007/s11047-014-9464-3 | title=Preface | date=2014 | last1=Mor | first1=Tal | last2=Renner | first2=Renato | journal=Natural Computing | volume=13 | issue=4 | pages=447–452 }}{{efn| published January 1, 1983.{{Cite journal|last1=Wiesner|first1=Stephen|date=1 January 1983|title=Conjugate coding|journal=ACM SIGACT News|volume=15|issue=1|pages=78–88|doi=10.1145/1008908.1008920|doi-access=free }}{{cite web |last1=Wiesner |first1=Stephen |author-link1=Stephen Wiesner|location= Columbia University in the city of New York, Department of Physics |title=Conjugate Coding |url=http://users.cms.caltech.edu/~vidick/teaching/120_qcrypto/wiesner.pdf |website=users.cms.caltech.edu|publication-place=California |publisher=California Institute of Technology |via=Thomas Vidick: users.cms.caltech.edu/~vidick/teaching/120_qcrypto/ (CS/PH 120 Quantum Cryptography)|access-date=15 February 2025}} 1968 is the year Wiesner developed a new coding in the Columbia University timeline {{cite web|url=https://quantum.columbia.edu/quantum-history-columbia|website=quantum.columbia.edu|title=1968 Columbia & Quantum Cryptography|publisher= Columbia University in the city of New York |access-date=15 February 2025}} and of the relevant publication in Charles H. Bennett (2021) citing Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) “[https://link.springer.com/article/10.1007/BF00191318 Experimental quantum cryptography.]” J Cryptol 5(1): 3–28. In Bennett, Bessette et al. (1992) the year of "manuscript written" by Wiesner is "circa 1970".{{Cite journal|last1=Bennett |url=https://www.itsoc.org/sites/default/files/2021-03/NITS_Mar2021_web.pdf|first1=Charles H.|date=March 2021|title=Quantum Information Theory: What Early 20th Century Physics Revealed About the Nature of Information and Computation|journal=IEEE Information Theory Society Newsletter |editor= Changho Suh |volume=71|issue=2|pages=6}}}}

===1969===

13 June – James L. Park (Washington State University, Pullman)'s paper is received by Foundations of Physics {{cite journal

| last1 = Park | first1 = James

| date = March 1970

| title = The concept of transition in quantum mechanics

| journal = Foundations of Physics

| volume = 1

| issue = 1

| pages = 23–33

|doi = 10.1007/BF00708652 | bibcode = 1970FoPh....1...23P| citeseerx = 10.1.1.623.5267

| s2cid = 55890485

}} in which he describes the non possibility of disturbance in a quantum transition state in the context of a disproof of quantum jumps in the concept of the atom described by Bohr. {{cite web|author=James Park |url=https://quantum-thermodynamics.unibs.it/Park-FoundPhys-1-23-1970.pdf|website=quantum-thermodynamics.unibs.it|title=The Concept of Transition in Quantum Mechanics|date=|publisher=University of Brescia|access-date=19 February 2025}}{{cite book |last1= Bertlmann |first1=Reinhold A. |author-link1=Reinhold Bertlmann |last2=Friis |first2=Nicolai |date= 2023 |chapter=21.5.Impossible Operations - No cloning |chapter-url=https://books.google.com/books?id=yzHaEAAAQBAJ&dq=no-cloning+theorem&pg=PA721 |page=721|title=Modern Quantum Theory From Quantum Mechanics to Entanglement and Quantum Information |url=https://books.google.com/books?id=yzHaEAAAQBAJ |publication-place=United States of America |publisher= Oxford Academic|publication-date=23 November 2023 |isbn=9780199683338|access-date=19 February 2025 |via=Google Books }}{{efn|Some sources state that: an idea in Park's paper was used as {{cite web|last1=Saam |first1=Brian |url=https://physics.wsu.edu/in-memorium-jim-park/|website=physics.wsu.edu|title=Dear Department Community|publisher=Washington State University|access-date=20 February 2025|archive-url=https://archive.today/20250220011538/https://physics.wsu.edu/in-memorium-jim-park/|archive-date=20 February 2025}} information for what was later undertood by proof as the no-cloning theorem circa 1982. An alternative position is: the no-cloning theorem was discovered in 1982 without mentioning 1969/1970. {{Cite journal|last1=Coecke|first1= Bob |url=https://d1wqtxts1xzle7.cloudfront.net/73812435/0908-libre.pdf?1635513312=&response-content-disposition=inline%3B+filename%3DQuantum_picturalism.pdf&Expires=1740021018&Signature=cd5-IUvg6mr8XSUEIQyazW7vzfJ1hLaV-SrxnWM~t7GoZtoKwCPsi1cPG2tW6nGcOitj7112oMboPkDB-L9Aco3AjJs-dNOdjmgiHGis6deVOhHXlvKJMx23ocmTLNc1haMZl28Fzi9Az-eAhmU9~NZHXtp~9klR4F46p941Xwinmt~76NLSJLQ2Ow5AeKPMG1bznYqPuuLdsCV8n7OJ51qEWjhC2qMM7puodHTHGnOKrJ~E3gimwcwGidoZDJAxvZN4~Jp1YQ-m9SOjiUHGFNpmDT9agxS9QHkGXcxfDiWKVnz7qzRMFl84Bx5I1dKckoXxrd5fLuXW5dcj0dKdNQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA|location=Oxford University Computing Laboratory, Wolfson Building |date=February 2009|title=Quantum picturalism|journal=Contemporary Physics|volume=51|issue=1|pages=59–83|arxiv=0908.1787v1|doi=10.1080/00107510903257624|bibcode= 2010ConPh..51...59C }}{{Cite journal|last1=Nagata|first1=Koji |last2=Nakamura|first2=Tadao|date=June 2015|title=Theoretical Study of the No-Cloning Theorem|url= https://ijeert.ijrsset.org/pdf/v3-i6/7.pdf|journal=International Journal of Emerging Engineering Research and Technology|publisher=Sryahwa Publications|volume=3|issue=6|pages=49|issn=2349-4409}} Sources state Park proved mathematically no-cloning explicitly as a reality {{Cite journal|last1=Ortigoso|first1= Juan|date=2018|title=Twelve years before the quantum no-cloning theorem|journal=American Journal of Physics|volume=86|issue=3|pages=201–205|doi= 10.1119/1.5021356|arxiv=1707.06910|bibcode= 2018AmJPh..86..201O}}{{Cite journal|last1=Beretta|first1=Gian Paolo|date=2022|location=University of Brescia|title=Quantum thermodynamics, today Quantum Steampunk: The Physics of Yesterday's Tomorrow, Nicole Yunger Halpern, Johns Hopkins U. Press, 2022|journal=Physics Today|volume=75|issue=5|pages=51–52 |doi=10.1063/PT.3.5003|issn=1945-0699|publisher=American Institute of Physics |doi-access=free}} though his paper makes no mention explicitly of the term as it is now known.{{Cite journal|last1=Wootters |first1=W. K. |last2=Zurek|first2=W. H.|date=28 October 1982|title=A single quantum cannot be cloned|journal=Nature|volume=299 |issue=5886 |pages=802–803|doi=10.1038/299802a0|bibcode=1982Natur.299..802W }} An alternative position: simply, Park 1970 was the origin of the no-cloning theorem without mentioning 1982. {{cite web|url=https://hal.science/hal-04596335/|website=hal.science |last1=Jacquet |first1=Philippe |last2=Joly|first2=Veronique |title=Retro-information implies quantum unitary violation|date=31 May 2024|page=4|access-date=20 February 2025}} One further position states Park was first to show the existence of no-cloning - this quantum mechanical reality was rediscovered in 1982 and 2013. {{cite web|url=https://www.researchgate.net/publication/367529534|website=researchgate.net|last1=Ray |first1=Rohit Kishan |last2= Beretta |first2=Gian Paolo |title=No-Signaling in Steepest Entropy Ascent: A Nonlinear Non-local Non-equilibrium Quantum Dynamics of Composite Systems|page=3 |date=4 February 2025|access-date=20 February 2025 }} }}

1970s

=1973=

  • Alexander Holevo's paper {{efn|Holevo's paper is the first published on the subject of quantum information according to the Stanford Encyclopedia of Philosophy (Michael Cuffaro) {{cite encyclopedia|url=https://plato.stanford.edu/archives/spr2024/entries/qt-quantcomp/ |title=Quantum Computing |encyclopedia=The Stanford Encyclopedia of Philosophy (Spring 2024 Edition) |publisher=The Metaphysics Research Lab, Department of Philosophy, Stanford University |editor=Edward N. Zalta, Uri Nodelman |access-date=26 March 2025|issn=1095-5054

|author=Michael Cuffaro, Amit Hagar |at=Sec. 1.3 Milestones}}}} is published {{cite journal

|first=А. С. (A. S.)

|last=Холево (Holevo)

|journal=ПРОБЛЕМЫ ПЕРЕДАЧ И ИНФОРМАЦИИ

|trans-journal=Problemy Peredachi Informatsii

|language= ru

|pages=177–183

|volume=9|issue=3|year=1973

|title=НЕКОТОРЫЕ ОЦЕНКИ ДЛЯ КОЛИЧЕСТВА ИНФОРМАЦИИ, ПЕРЕДАВАЕМОГО КВАНТОВЫМ КАНАЛОМ СВЯЗИ

|trans-title=Bounds for the quantity of information transmitted by a quantum communication channel

|url=http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=903&option_lang=eng

|via=www.mathnet.ru: Steklov Mathematical Institute of the Russian Academy of Sciences

}} - the Holevo bound describes a limit of the quantity of classical information which is possible to quanta encode. {{Cite journal|last1= Giovannetti |first1=Vittorio |last2= Lloyd|first2=Seth|last3= Maccone|first3=Lorenzo |location=Scuola Normale Superiore and Istituto Nanoscienze–CNR, Department of Mechanical Engineering - Massachusetts Institute of Technology, Dipartimento Fisica “A. Volta” - INFN Sezione Pavia - Università di Pavia|date= 3 January 2012|url= https://dspace.mit.edu/bitstream/handle/1721.1/69151/Giovannetti-2012-Achieving%20the%20Holevo%20bound%20via%20sequential%20measurements.pdf?sequence=2|title=Achieving the Holevo bound via sequential measurements|journal=Physical Review A|volume=85 |issue=1|pages=012302-1: 1.Introduction|doi=10.1103/PhysRevA.85.012302|issn=|publisher=American Physical Society :mit.edu |arxiv=1012.0386 |bibcode=2012PhRvA..85a2302G |via=Umesh Vazirani: people.eecs.berkeley.edu/~vazirani/s07quantum/notes/lec17/lec17.pdf: "Holevo's bound". quantumexplainer.com/holevo-bound-holevos-theorem}}

  • Charles H. Bennett shows that computation can be done reversibly.{{cite journal|last1=Bennett|first1=C.|date=November 1973|title=Logical Reversibility of Computation|journal=IBM Journal of Research and Development|volume=17|issue=6|pages=525–532|doi=10.1147/rd.176.0525|url=https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf}}

=1975=

  • R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian){{cite journal |last1=Poplavskii |first1=R. P. |year=1975 |title=Thermodynamical models of information processing |journal=Uspekhi Fizicheskikh Nauk |language=ru |volume=115 |issue=3 |pages=465–501 |doi=10.3367/UFNr.0115.197503d.0465 |doi-access=free}} which shows the computational infeasibility of simulating quantum systems on classical computers, due to the superposition principle.
  • Roman Stanisław Ingarden, a Polish mathematical physicist, submits the paper "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, pp. 43–72, published 1976. It is one of the first attempts at creating a quantum information theory, showing that Shannon information theory cannot directly be generalized to the quantum case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).

1980s

=1980=

  • Paul Benioff describes the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines, laying a foundation for further work in quantum computing. The paper{{cite journal |last1=Benioff | first1=Paul | title=The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines | journal=Journal of Statistical Physics |volume=22 | issue=5 | pages=563–591 | year=1980 | doi=10.1007/bf01011339|bibcode=1980JSP....22..563B | s2cid=122949592 }} was submitted in June 1979 and published in April 1980.
  • Yuri Manin briefly motivates the idea of quantum computing.{{cite book |author=Manin |first=Yu I |url=http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5Bdjv%5D.zip |title=Vychislimoe i nevychislimoe (Computable and Noncomputable) |publisher=Soviet Radio |year=1980 |pages=13–15 |language=ru |access-date=March 4, 2013 |archive-url=https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.%281980%29.%5Bdjv%5D.zip |archive-date=May 10, 2013 |url-status=dead |df=mdy-all}}
  • Tommaso Toffoli introduces the reversible Toffoli gate,Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: {{cite conference

|chapter-url = http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf

|chapter = Reversible computing

|first = Tommaso

|last = Toffoli

|title = Automata, Languages and Programming

|series = Lecture Notes in Computer Science

|author-link = Tommaso Toffoli

|year = 1980

|volume = 85

|conference = Automata, Languages and Programming, Seventh Colloquium

|editor = J. W. de Bakker and J. van Leeuwen

|publisher = Springer Verlag

|location = Noordwijkerhout, Netherlands

|pages = 632–644

|doi = 10.1007/3-540-10003-2_104

|isbn = 3-540-10003-2

|url-status = dead

|archive-url = https://web.archive.org/web/20100415041123/http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf

|archive-date = April 15, 2010

}} which (together with initialized ancilla bits) is functionally complete for reversible classical computation.

=1981=

At the first Conference on the Physics of Computation, held at the Massachusetts Institute of Technology (MIT) in May,{{cite magazine |author=Garfinkel |first=Simson |date=April 27, 2021 |title=Tomorrow's computer, yesterday: Four decades ago at Endicott House, an MIT professor convened a conference that launched quantum computing. |url=https://www.technologyreview.com/2021/04/27/1021714/tomorrows-computer-yesterday/ |magazine=MIT News |page=10}} Paul Benioff and Richard Feynman give talks on quantum computing. Benioff's talk built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines".{{Cite journal|last=Benioff|first=Paul A.|date=April 1, 1982|title=Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines|journal=International Journal of Theoretical Physics|language=en|volume=21|issue=3|pages=177–201|doi=10.1007/BF01857725|bibcode=1982IJTP...21..177B|s2cid=122151269|issn=1572-9575}} In Feynman's talk, he observed that it appeared to be impossible to efficiently simulate the evolution of a quantum nature system on a classical computer, and he proposed a basic model for a quantum computer.{{Cite web |title=Simulating physics with computers |url=https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf |access-date=2023-07-05 |archive-url=https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf |archive-date=August 30, 2019 }} Feynman's conjecture on a quantum simulating computer, published 1982, {{efn|Submission received by the IJoTP: May 7 1981}} understood as - the reality of quantum mechanics expressed as an effective quantum system necessitates quantum computers, {{cite journal | last= Feynman | first= Richard |author-link= Richard Feynman| title= Simulating physics with computers|journal = International Journal of Theoretical Physics|doi= 10.1007/BF02650179|year=1982|volume=21|issue=6| pages= 467–488 | bibcode= 1982IJTP...21..467F |url=https://s2.smu.edu/~mitch/class/5395/papers/feynman-quantum-1981.pdf|publisher=(Southern Methodist University: smu.edu)}} is conventionally accepted as a beginning of quantum computing. {{cite web|last1=Stein|first1=Jonas |url=https://qarlab.de/en/history-of-quantum-computing/|website=qarlab.de|title=History of quantum computing|date=|publisher=Ludwig-Maximilians-Universität München|access-date=9 March 2025|location=Oettingenstraße 67 80538 Munich|archive-url=https://archive.today/20250310000355/https://qarlab.de/en/history-of-quantum-computing/|archive-date=March 10, 2025}}{{cite book|last1=Hirvensalo|first1=Mika|chapter=1. Introduction 1.1 A Brief History of Quantum Computing|page=1 |location=University of Turku|editor-last1=Rozenberg|editor-first1=G. |editor-last2=Eiben|editor-first2=A.E.|title=Quantum Computing|url=https://books.google.com/books?id=lAmrCAAAQBAJ&q=Quantum+Computing+Front+Cover+Mika+Hirvensalo|series=NATURAL COMPUTING SERIES|volume=|edition=2|publication-place=Berlin Heidelberg New York|publisher=Springer-Verlag |publication-date=2004 |isbn=978-3-662-09636-9|issn=|access-date=18 March 2025|via=Google Books}}

=1982=

  • Paul Benioff further develops his original model of a quantum mechanical Turing machine.{{Cite journal |last1=Benioff |first1=Paul A. |year=1982 |title=Quantum mechanical hamiltonian models of turing machines |journal=Journal of Statistical Physics |volume=29 |issue=3 |pages=515–546 |bibcode=1982JSP....29..515B |doi=10.1007/BF01342185 |s2cid=14956017}}
  • William Wootters and Wojciech H. Zurek,{{Cite journal |last1=Wootters |first1=William K. |last2=Zurek |first2=Wojciech H. |year=1982 |title=A single quantum cannot be cloned |journal=Nature |volume=299 |issue=5886 |pages=802–803 |bibcode=1982Natur.299..802W |doi=10.1038/299802a0 |s2cid=4339227}} and independently Dennis Dieks{{Cite journal |last1=Dieks |first1=Dennis |year=1982 |title=Communication by EPR devices |journal=Physics Letters A |volume=92 |issue=6 |pages=271–272 |bibcode=1982PhLA...92..271D |citeseerx=10.1.1.654.7183 |doi=10.1016/0375-9601(82)90084-6}} rediscover the no-cloning theorem of James L. Park.

=1984=

Charles Bennett and Gilles Brassard employ Wiesner's conjugate coding for distribution of cryptographic keys.{{cite book|first1=C. H. |last1=Bennett |first2=G. |last2=Brassard |chapter=Quantum cryptography: Public key distribution and coin tossing |title=Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India |volume=1 |pages=175–179 |publisher=IEEE |year=1984 |location=New York }} Reprinted as {{cite journal|first1=C. H. |last1=Bennett |first2=G. |last2=Brassard |title=Quantum cryptography: Public key distribution and coin tossing |journal=Theoretical Computer Science |series=Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84 |volume=560 |number=1 |date=4 December 2014 |pages=7–11 |doi=10.1016/j.tcs.2014.05.025 |doi-access=free|arxiv=2003.06557 }}

=1985=

| last = Peres

| first = Asher

| title = SReversible Logic and Quantum Compzters

| journal = Physical Review A

| volume = 32

| issue = 6

| pages = 3266–3276

| year = 1985

| doi = 10.1103/PhysRevA.32.3266

| pmid = 9896493

| bibcode = 1985PhRvA..32.3266P

}}

=1988=

  • Yoshihisa Yamamoto and K. Igeta propose the first physical realization of a quantum computer, including Feynman's CNOT gate.{{Cite journal |last1=Igeta |first1=K. |last2=Yamamoto |first2=Yoshihisa |date=1988-07-18 |title=Quantum mechanical computers with single atom and photon fields |url=https://opg.optica.org/abstract.cfm?uri=IQEC-1988-TuI4 |journal=International Conference on Quantum Electronics (1988), Paper TuI4 |language=EN |publisher=Optica Publishing Group |pages=TuI4}} Their approach uses atoms and photons and is the progenitor of modern quantum computing and networking protocols using photons to transmit qubits and atoms to perform two-qubit operations.

=1989=

  • Gerard J. Milburn proposes a quantum-optical realization of a Fredkin gate.{{Cite journal |last=Milburn |first=Gerard J. |date=1989-05-01 |title=Quantum optical Fredkin gate |url=https://link.aps.org/doi/10.1103/PhysRevLett.62.2124 |journal=Physical Review Letters |volume=62 |issue=18 |pages=2124–2127 |doi=10.1103/PhysRevLett.62.2124|pmid=10039862 |bibcode=1989PhRvL..62.2124M }}
  • Bikas Chakrabarti & collaborators from Saha Institute of Nuclear Physics, Kolkata, India, propose that quantum fluctuations could help explore rugged energy landscapes by escaping from local minima of glassy systems having tall but thin barriers by tunneling (instead of climbing over using thermal excitations), suggesting the effectiveness of quantum annealing over classical simulated annealing.{{Cite journal | doi=10.1103/PhysRevB.39.11828| title=Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations| journal=Physical Review B| volume=39| issue=16| pages=11828–11832| year=1989| last1=Ray| first1=P.| last2=Chakrabarti| first2=B. K.| last3=Chakrabarti| first3=A.| pmid=9948016| bibcode=1989PhRvB..3911828R}}{{cite journal |first1=A. |last1=Das |first2=B. K. |last2=Chakrabarti |title=Quantum Annealing and Analog Quantum Computation | journal=Rev. Mod. Phys. |volume=80 |issue=3 |pages=1061–1081 |year=2008 |doi=10.1103/RevModPhys.80.1061 |bibcode=2008RvMP...80.1061D|citeseerx=10.1.1.563.9990 |arxiv=0801.2193 |s2cid=14255125 }}

1990s

=1991=

Artur Ekert at the University of Oxford, proposes entanglement-based secure communication.{{cite journal |last1=Ekert |first1=A. K. |year=1991 |title=Quantum cryptography based on Bell's theorem |journal=Physical Review Letters |volume=67 |issue=6 |pages=661–663 |bibcode=1991PhRvL..67..661E |doi=10.1103/PhysRevLett.67.661 |pmid=10044956 |s2cid=27683254}}

=1992=

  • David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with the deterministic Deutsch–Jozsa algorithm on a quantum computer, but for which no deterministic classical algorithm is possible. This was perhaps the earliest result in the computational complexity of quantum computers, proving that they were capable of performing some well-defined computation more efficiently than any classical computer.
  • Ethan Bernstein and Umesh Vazirani propose the Bernstein–Vazirani algorithm. It is a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. The Bernstein–Vazirani algorithm was designed to prove an oracle separation between complexity classes BQP and BPP.
  • Research groups at Max Planck Institute of Quantum Optics (Garching){{Cite journal |last1=Waki |first1=I. |last2=Kassner |first2=S. |last3=Birkl |first3=G. |last4=Walther |first4=H. |date=March 30, 1992 |title=Observation of ordered structures of laser-cooled ions in a quadrupole storage ring |url=https://link.aps.org/doi/10.1103/PhysRevLett.68.2007 |journal=Physical Review Letters |volume=68 |issue=13 |pages=2007–2010 |doi=10.1103/PhysRevLett.68.2007|pmid=10045280 |bibcode=1992PhRvL..68.2007W }}{{Cite journal |last1=Birkl |first1=G. |last2=Kassner |first2=S. |last3=Walther |first3=H. |date=May 28, 1992 |title=Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring |url=https://doi.org/10.1038/357310a0 |journal=Nature |volume=357 |issue=6376 |pages=310–313 |doi=10.1038/357310a0}} and shortly after at NIST (Boulder){{Cite journal |last1=Raizen |first1=M. G. |last2=Gilligan |first2=J. M. |last3=Bergquist |first3=J. C. |last4=Itano |first4=W. M. |last5=Wineland |first5=D. J. |date=May 1, 1992 |title=Ionic crystals in a linear Paul trap |url=https://link.aps.org/doi/10.1103/PhysRevA.45.6493 |journal=Physical Review A |volume=45 |issue=9 |pages=6493–6501 |doi=10.1103/PhysRevA.45.6493|pmid=9907772 |bibcode=1992PhRvA..45.6493R }} experimentally realize the first crystallized strings of laser-cooled ions. Linear ion crystals constitute the qubit basis for most quantum computing and simulation experiments with trapped ions.

=1993=

Daniel R. Simon, at Université de Montréal, Quebec, Canada, invent an oracle problem, Simon's problem, for which a quantum computer would be exponentially faster than a conventional computer. This algorithm introduces the main ideas which were then developed in Peter Shor's factorization algorithm.

=1994=

  • Peter Shor, at AT&T's Bell Labs in New Jersey, publishes Shor's algorithm. It would allow a quantum computer to factor large integers quickly. It solves both the factoring problem and the discrete log problem. The algorithm can theoretically break many of the cryptosystems in use today. Its invention sparked tremendous interest in quantum computers.
  • The first United States Government workshop on quantum computing is organized by NIST in Gaithersburg, Maryland, in autumn.
  • Isaac Chuang and Yoshihisa Yamamoto propose a quantum-optical realization of a quantum computer to implement Deutsch's algorithm.{{cite journal | doi=10.1103/PhysRevA.52.3489 | title=Simple quantum computer | date=1995 | last1=Chuang | first1=Isaac L. | last2=Yamamoto | first2=Yoshihisa | journal=Physical Review A | volume=52 | issue=5 | pages=3489–3496 | pmid=9912648 | arxiv=quant-ph/9505011 | bibcode=1995PhRvA..52.3489C }} Their work introduced dual-rail encoding for photonic qubits.
  • In December, Ignacio Cirac, at University of Castilla–La Mancha at Ciudad Real, and Peter Zoller at the University of Innsbruck propose an experimental realization of the controlled NOT gate with cold trapped ions.{{Cite journal |last1=Cirac |first1=J. I. |last2=Zoller |first2=P. |date=1995-05-15 |title=Quantum Computations with Cold Trapped Ions |url=https://link.aps.org/doi/10.1103/PhysRevLett.74.4091 |journal=Physical Review Letters |language=en |volume=74 |issue=20 |pages=4091–4094 |doi=10.1103/PhysRevLett.74.4091 |pmid=10058410 |bibcode=1995PhRvL..74.4091C |issn=0031-9007}}

=1995=

  • Christopher Monroe and David J. Wineland at NIST (Boulder, Colorado) experimentally realize the first quantum logic gatethe controlled NOT gate – with trapped ions, following the Cirac-Zoller proposal.{{Cite journal |last1=Monroe |first1=C. |last2=Meekhof |first2=D. M. |last3=King |first3=B. E. |last4=Itano |first4=W. M. |last5=Wineland |first5=D. J. |date=December 18, 1995 |title=Demonstration of a Fundamental Quantum Logic Gate |url=http://tf.nist.gov/general/pdf/140.pdf |journal=Physical Review Letters |volume=75 |issue=25 |pages=4714–4717 |bibcode=1995PhRvL..75.4714M |doi=10.1103/PhysRevLett.75.4714 |pmid=10059979 |access-date=December 29, 2007 |doi-access=free}}
  • Independently, Subhash Kak and Ronald Chrisley propose the first quantum neural network.{{cite journal |author=Kak |first=S. C. |year=1995 |title=Quantum Neural Computing |journal=Advances in Imaging and Electron Physics |volume=94 |pages=259–313 |doi=10.1016/S1076-5670(08)70147-2 |bibcode=1995AdIEP..94..259K |isbn=9780120147366}}{{cite journal |author=Chrisley |first=R. |year=1995 |editor-last=Pyllkkänen |editor-first=P. |editor2-last=Pyllkkö |editor2-first=P. |title=Quantum learning |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a4051e9f560742b9d28afb78da4622141ec4db89 |journal=New Directions in Cognitive Science |publisher=Finnish Society for Artificial Intelligence}}

=1996=

  • Lov Grover, at Bell Labs, invents the quantum database search algorithm. The quadratic speedup is not as dramatic as the speedup for factoring, discrete logs, or physics simulations. However, the algorithm can be applied to a much wider variety of problems. Any problem that can be solved by random, brute-force search, may take advantage of this quadratic speedup in the number of search queries.
  • The United States Government, particularly in a joint partnership of the Army Research Office (now part of the Army Research Laboratory) and the National Security Agency, issues the first public call for research proposals in quantum information processing.
  • Andrew Steane designs Steane code for error correction.{{cite journal |last=Steane |first=Andrew |author-link=Andrew Steane |year=1996 |title=Multiple-Particle Interference and Quantum Error Correction |url=http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:quant-ph/9601029 |url-status=dead |journal=Proceedings of the Royal Society of London A |volume=452 |issue=1954 |pages=2551–2577 |arxiv=quant-ph/9601029 |bibcode=1996RSPSA.452.2551S |doi=10.1098/rspa.1996.0136 |s2cid=8246615 |archive-url=https://web.archive.org/web/20060519062515/http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:quant-ph/9601029 |archive-date=May 19, 2006 |access-date=April 5, 2020}}
  • David DiVincenzo, of IBM, proposes a list of minimal requirements for creating a quantum computer,{{cite news |last1=DiVincenzo |first1=David P. |year=1996 |title=Topics in Quantum Computers |arxiv=cond-mat/9612126 |bibcode=1996cond.mat.12126D}} now called DiVincenzo's criteria.
  • Seth Lloyd proves Feynman's conjecture on quantum simulation.{{cite journal | last= Lloyd | first= Lloyd |author-link= Seth Lloyd| title= Universal Quantum Simulators|journal = Science|doi= 10.1126/science.273.5278.1073|year=1996|volume=273|issue=5278| pages= 1073–1078 | pmid= 8688088 | bibcode= 1996Sci...273.1073L |url=https://www.science.org/doi/10.1126/science.273.5278.1073}}

=1997=

  • David G. Cory, Amr Fahmy and Timothy Havel, and at the same time Neil Gershenfeld and Isaac Chuang at MIT publish the first papers realizing gates for quantum computers based on bulk nuclear spin resonance, or thermal ensembles. The technology is based on a nuclear magnetic resonance (NMR) machine, which is similar to the medical magnetic resonance imaging machine.
  • Alexei Kitaev describes the principles of topological quantum computation as a method for dealing with the problem of decoherence.{{cite journal |author=Kitaev |first=A. Yu |year=2003 |title=Fault-tolerant quantum computation by anyons |journal=Annals of Physics |volume=303 |issue=1 |pages=2–30 |arxiv=quant-ph/9707021 |bibcode=2003AnPhy.303....2K |doi=10.1016/S0003-4916(02)00018-0 |s2cid=119087885}}
  • Daniel Loss and David DiVincenzo propose the Loss-DiVincenzo quantum computer, using as qubits the intrinsic spin-1/2 degree of freedom of individual electrons confined to quantum dots.{{Cite journal |last1=Loss |first1=Daniel |last2=DiVincenzo |first2=David P. |date=1998-01-01 |title=Quantum Computation with Quantum Dots |journal=Physical Review A |volume=57 |issue=1 |pages=120–126 |doi=10.1103/PhysRevA.57.120 |arxiv=cond-mat/9701055 |bibcode=1998PhRvA..57..120L |s2cid=13152124 |issn=1050-2947}}

=1998=

  • The first experimental demonstration of a quantum algorithm is reported. A working 2-qubit NMR quantum computer was used to solve Deutsch's problem by Jonathan A. Jones and Michele Mosca at Oxford University and shortly after by Isaac L. Chuang at IBM's Almaden Research Center, in California, and Mark Kubinec and the University of California, Berkeley together with coworkers at Stanford University in California and MIT in Massachusetts.{{Cite journal|last1=Chuang|first1=Isaac L.|last2=Gershenfeld|first2=Neil|last3=Kubinec|first3=Mark|date=April 13, 1998|title=Experimental Implementation of Fast Quantum Searching|journal=Physical Review Letters|volume=80|issue=15|pages=3408–3411|doi=10.1103/PhysRevLett.80.3408|bibcode=1998PhRvL..80.3408C|s2cid=13891055}}
  • The first working 3-qubit NMR computer is reported.
  • Bruce Kane proposes a silicon-based nuclear spin quantum computer, using nuclear spins of individual phosphorus atoms in silicon as the qubits and donor electrons to mediate the coupling between qubits.{{Cite journal|last=Kane|first=B. E.|date=May 14, 1998|title=A silicon-based nuclear spin quantum computer|journal=Nature|volume=393|issue=6681|pages=133–137|doi=10.1038/30156|issn=0028-0836|bibcode=1998Natur.393..133K|s2cid=8470520}}
  • The first execution of Grover's algorithm on an NMR computer is reported.{{cite journal |last1=Chuang |first1=Isaac L. |author-link1=Isaac Chuang |last2=Gershenfeld |first2=Neil |author-link2=Neil Gershenfeld |last3=Kubinec |first3=Markdoi |date=Apr 1998 |title=Experimental Implementation of Fast Quantum Searching |url=https://link.aps.org/doi/10.1103/PhysRevLett.80.3408 |journal=Physical Review Letters |publisher=American Physical Society |volume=80 |issue=15 |pages=3408–3411 |bibcode=1998PhRvL..80.3408C |doi=10.1103/PhysRevLett.80.3408}}
  • Hidetoshi Nishimori & colleagues from Tokyo Institute of Technology show that a quantum annealing algorithm can perform better than classical simulated annealing under certain conditions.{{Cite web |title=Hidetoshi Nishimori – Applying quantum annealing to computers |url=https://www.titech.ac.jp/english/public-relations/research/stories/faces13-nishimori |access-date=2022-09-08 |website=Tokyo Institute of Technology |language=en}}
  • Daniel Gottesman and Emanuel Knill independently prove that a certain subclass of quantum computations can be efficiently emulated with classical resources (Gottesman–Knill theorem).{{Cite book |last=Gottesman |first=Daniel |author-link=Daniel Gottesman |title=Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics |publisher=International Press |year=1999 |editor1=Corney |editor-first=S. P. |volume=22 |location=Cambridge, Massachusetts |pages=32–43 |language=en-us |chapter=The Heisenberg Representation of Quantum Computers |bibcode=1998quant.ph..7006G |editor2=Delbourgo |editor-first2=R. |editor3=Jarvis |editor-first3=P. D. |arxiv=quant-ph/9807006v1}}

=1999=

  • Samuel L. Braunstein and collaborators show that none of the bulk NMR experiments performed to date contain any entanglement; the quantum states being too strongly mixed. This is seen as evidence that NMR computers would likely not yield a benefit over classical computers. It remains an open question, however, whether entanglement is necessary for quantum computational speedup.{{Cite journal |last1=Braunstein |first1=S. L. |last2=Caves |first2=C. M. |last3=Jozsa |first3=R. |last4=Linden |first4=N. |last5=Popescu |first5=S. |last6=Schack |first6=R. |year=1999 |title=Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing |journal=Physical Review Letters |volume=83 |issue=5 |pages=1054–1057 |arxiv=quant-ph/9811018 |bibcode=1999PhRvL..83.1054B |doi=10.1103/PhysRevLett.83.1054 |s2cid=14429986}}
  • Gabriel Aeppli, Thomas Rosenbaum and colleagues demonstrate experimentally the basic concepts of quantum annealing in a condensed matter system.
  • Yasunobu Nakamura and Jaw-Shen Tsai demonstrate that a superconducting circuit can be used as a qubit.{{Cite journal |last1=Nakamura |first1=Y. |last2=Pashkin |first2=Yu A. |last3=Tsai |first3=J. S. |date=April 1999 |title=Coherent control of macroscopic quantum states in a single-Cooper-pair box |url=https://www.nature.com/articles/19718 |journal=Nature |language=en |volume=398 |issue=6730 |pages=786–788 |doi=10.1038/19718 |arxiv=cond-mat/9904003 |bibcode=1999Natur.398..786N |s2cid=4392755 |issn=1476-4687}}

2000s

=2000=

=2001=

  • The first execution of Shor's algorithm at IBM's Almaden Research Center and Stanford University is demonstrated. The number 15 was factored using 1018 identical molecules, each containing seven active nuclear spins.
  • Noah Linden and Sandu Popescu prove that the presence of entanglement is a necessary condition for a large class of quantum protocols. This, coupled with Braunstein's result (see 1999 above), called the validity of NMR quantum computation into question.{{Cite journal |doi=10.1103/PhysRevLett.87.047901|pmid=11461646|title=Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?|journal=Physical Review Letters|volume=87|issue=4|page=047901|year=2001|last1=Linden|first1=Noah|last2=Popescu|first2=Sandu|arxiv=quant-ph/9906008|bibcode=2001PhRvL..87d7901L|s2cid=10533287}}
  • Emanuel Knill, Raymond Laflamme, and Gerard Milburn show that optical quantum computing is possible with single-photon sources, linear optical elements, and single-photon detectors, establishing the field of linear optical quantum computing.
  • Robert Raussendorf and Hans Jürgen Briegel propose measurement-based quantum computation.{{cite journal |last1=Raussendorf |first1=R. |last2=Briegel |first2=H. J. |year=2001 |title=A One-Way Quantum Computer |journal=Physical Review Letters |volume=86 |issue=22 |pages=5188–91 |bibcode=2001PhRvL..86.5188R |citeseerx=10.1.1.252.5345 |doi=10.1103/PhysRevLett.86.5188 |pmid=11384453}}

=2002=

  • The Quantum Information Science and Technology Roadmapping Project, involving some of the main participants in the field, lays out the Quantum computation roadmap.
  • The Institute for Quantum Computing is established at the University of Waterloo in Waterloo, Ontario by Mike Lazaridis, Raymond Laflamme and Michele Mosca.{{Cite web |date=2019-05-07 |title=Quick facts {{!}} Institute for Quantum Computing {{!}} University of Waterloo |work=Institute for Quantum Computing |url=https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts |access-date=2024-12-24 |archive-url=https://web.archive.org/web/20190507063322/https://uwaterloo.ca/institute-for-quantum-computing/about/quick-facts |archive-date=May 7, 2019 }}
  • A group led by Gerhard Birkl (now at TU Darmstadt) demonstrates the first 2D array of optical tweezers with trapped atoms for quantum computation with atomic qubits.{{Cite journal |last1=Dumke |first1=R. |last2=Volk |first2=M. |last3=Müther |first3=T. |last4=Buchkremer |first4=F. B. J. |last5=Birkl |first5=G. |last6=Ertmer |first6=W. |date=August 8, 2002 |title=Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits |url=https://link.aps.org/doi/10.1103/PhysRevLett.89.097903 |journal=Physical Review Letters |volume=89 |issue=9 |pages=097903 |doi=10.1103/PhysRevLett.89.097903|pmid=12190441 |arxiv=quant-ph/0110140 |bibcode=2002PhRvL..89i7903D }}

=2003=

  • Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer at the University of Innsbruck is reported.{{cite journal |last1=Gulde |first1=S. |last2=Riebe |first2=M. |last3=Lancaster |first3=G. P. T. |last4=Becher |first4=C. |last5=Eschner |first5=J. |last6=Häffner |first6=H. |last7=Schmidt-Kaler |first7=F. |last8=Chuang |first8=I. L. |last9=Blatt |first9=R. |date=January 2, 2003 |title=Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer |journal=Nature |volume=421 |issue=6918 |pages=48–50 |bibcode=2003Natur.421...48G |doi=10.1038/nature01336 |pmid=12511949 |s2cid=4401708 |display-editors=etal}}
  • Todd D. Pittman and collaborators at Johns Hopkins University, Applied Physics Laboratory, and independently Jeremy O'Brien and collaborators at the University of Queensland, demonstrate quantum controlled NOT gates using only linear optical elements.{{cite journal |last1=Pittman |first1=T. B. |last2=Fitch |first2=M. J. |last3=Jacobs |first3=B. C. |last4=Franson |first4=J. D. |year=2003 |title=Experimental controlled-not logic gate for single photons in the coincidence basis |journal=Physical Review A |volume=68 |issue=3 |page=032316 |arxiv=quant-ph/0303095 |bibcode=2003PhRvA..68c2316P |doi=10.1103/physreva.68.032316 |s2cid=119476903}}{{cite journal | last1=O'Brien | first1=J. L. | last2=Pryde | first2=G. J. | last3=White | first3=A. G. | last4=Ralph | first4=T. C. | last5=Branning | first5=D. | year=2003 | title=Demonstration of an all-optical quantum controlled-NOT gate | journal=Nature | volume=426 | issue=6964| pages=264–267 |arxiv=quant-ph/0403062 |bibcode=2003Natur.426..264O |doi=10.1038/nature02054 | pmid=14628045 | s2cid=9883628 }}
  • The first implementation of a CNOT quantum gate, according to the Cirac–Zoller proposal, is reported by a team at the University of Innsbruck led by Rainer Blatt.{{cite journal |last1=Schmidt-Kaler |first1=F. |last2=Häffner |first2=H. |last3=Riebe |first3=M. |last4=Gulde |first4=S. |last5=Lancaster |first5=G. P. T. |last6=Deutschle |first6=T. |last7=Becher |first7=C. |last8=Roos |first8=C. F. |last9=Eschner |first9=J. |last10=Blatt |first10=R. |date=March 27, 2003 |title=Realization of the Cirac-Zoller controlled-NOT quantum gate |journal=Nature |volume=422 |issue=6930 |pages=408–411 |bibcode=2003Natur.422..408S |doi=10.1038/nature01494 |pmid=12660777 |s2cid=4401898 |display-editors=etal}}
  • The United States government DARPA Quantum Network becomes fully operational on October 23, 2003.
  • The Institute for Quantum Optics and Quantum Information (IQOQI) is established in Innsbruck and Vienna, Austria, by the founding directors Rainer Blatt, Hans Jürgen Briegel, Rudolf Grimm, Anton Zeilinger and Peter Zoller.

=2004=

  • The first working pure state NMR quantum computer (based on parahydrogen) is demonstrated at Oxford University and University of York in England.
  • Physicists at the University of Innsbruck show deterministic quantum-state teleportation between a pair of trapped calcium ions.{{cite journal |last1=Riebe |first1=M. |last2=Häffner |first2=H. |last3=Roos |first3=C. F. |last4=Hänsel |first4=W. |last5=Benhelm |first5=J. |last6=Lancaster |first6=G. P. T. |last7=Körber |first7=T. W. |last8=Becher |first8=C. |last9=Schmidt-Kaler |first9=F. |last10=James |first10=D. F. V. |last11=Blatt |first11=R. |date=June 17, 2004 |title=Deterministic quantum teleportation with atoms |journal=Nature |volume=429 |issue=6993 |pages=734–737 |bibcode=2004Natur.429..734R |doi=10.1038/nature02570 |pmid=15201903 |s2cid=4397716 |display-editors=etal}}
  • The first five-photon entanglement is demonstrated by Pan Jianwei's team at the University of Science and Technology of Chin; the minimal number of qubits required for universal quantum error correction.{{cite journal |last1=Zhao |first1=Z. |last2=Chen |first2=Y. A. |last3=Zhang |first3=A. N. |last4=Yang |first4=T. |last5=Briegel |first5=H. J. |last6=Pan |first6=J. W. |year=2004 |title=Experimental demonstration of five-photon entanglement and open-destination teleportation |journal=Nature |volume=430 |issue=6995 |pages=54–58 |arxiv=quant-ph/0402096 |bibcode=2004Natur.430...54Z |doi=10.1038/nature02643 |pmid=15229594 |s2cid=4336020}}

=2005=

  • University of Illinois Urbana-Champaign scientists demonstrate quantum entanglement of multiple characteristics, potentially allowing multiple qubits per particle.
  • Two teams of physicists measure the capacitance of a Josephson junction for the first time. The methods could be used to measure the state of quantum bits in a quantum computer without disturbing the state.{{Cite news |first=Belle |last=Dumé |date=November 22, 2005 |title=Breakthrough for quantum measurement |publisher=PhysicsWeb |url=https://physicsworld.com/a/breakthrough-for-quantum-measurement/ |access-date=August 10, 2018}}
  • In December, W states of quantum registers with up to 8 qubits implemented using trapped ions are demonstrated at the Institute for Quantum Optics and Quantum Information and the University of Innsbruck in Austria.{{cite journal |last1=Häffner |first1=H. |last2=Hänsel |first2=W. |last3=Roos |first3=C. F. |last4=Benhelm |first4=J. |last5=Chek-Al-Kar |first5=D. |last6=Chwalla |first6=M. |last7=Körber |first7=T. |last8=Rapol |first8=U. D. |last9=Riebe |first9=M. |last10=Schmidt |first10=P. O. |last11=Becher |first11=C. |last12=Gühne |first12=O. |last13=Dür |first13=W. |last14=Blatt |first14=R. |date=December 1, 2005 |title=Scalable multiparticle entanglement of trapped ions |journal=Nature |volume=438 |issue=7068 |pages=643–646 |arxiv=quant-ph/0603217 |bibcode=2005Natur.438..643H |doi=10.1038/nature04279 |pmid=16319886 |s2cid=4411480}}
  • Harvard University and Georgia Institute of Technology (US) researchers succeed in transferring quantum information between "quantum memories" – from atoms to photons and back again.{{citation needed|date=May 2022}}

=2006=

  • The Materials Science Department of Oxford University, England cage a qubit in a "buckyball" (a molecule of buckminsterfullerene) and demonstrated quantum "bang-bang" error correction.{{Cite news |date=January 4, 2006 |title=Bang-bang: a step closer to quantum supercomputers |url=http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml |url-status=dead |archive-url=https://web.archive.org/web/20180830005255/http://www.admin.ox.ac.uk/po/news/2005-06/jan/04a.shtml |archive-date=August 30, 2018 |access-date=December 29, 2007 |publisher=University of Oxford |location=England}}
  • Researchers from the University of Illinois Urbana-Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database using counterfactual quantum computation.{{cite journal |last1=Dowling |first1=Jonathan P. |author-link=Jonathan P. Dowling |year=2006 |title=To Compute or Not to Compute? |journal=Nature |volume=439 |issue=7079|pages=919–920 |doi=10.1038/439919a|pmid=16495978 |bibcode=2006Natur.439..919D |s2cid=4327844 |doi-access=free }}
  • Vlatko Vedral of the University of Leeds, England and colleagues at the universities of Porto and Vienna find that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.{{cite web |author=Dumé |first=Belle |date=February 23, 2007 |title=Entanglement heats up |url=http://physicsworld.com/cws/article/news/24285 |archive-url=https://web.archive.org/web/20071019032222/http://physicsworld.com/cws/article/news/24285 |archive-date=October 19, 2007 |work=Physics World}}
  • Samuel L. Braunstein at the University of York, North Yorkshire, England, along with the University of Tokyo and the Japan Science and Technology Agency give the first experimental demonstration of quantum telecloning.{{Cite press release |title=Captain Kirk's clone and the eavesdropper |url=http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm |access-date=December 29, 2007 |archive-url=https://web.archive.org/web/20070207105035/http://www.york.ac.uk/admin/presspr/pressreleases/kirkclone.htm |archive-date=February 7, 2007 |url-status=dead |date=February 16, 2006 |publisher=University of York |location=England}}
  • Professors at the University of Sheffield, England, develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.{{Cite web |date=2023-06-23 |title=Soft Machines – Some personal views on nanotechnology, science and science policy from Richard Jones |url=http://www.softmachines.org/wordpress/ |access-date=2023-07-05 |language=en-US}}
  • A new error checking method is theorized for Josephson junction computers.{{Cite news |author=Simonite |first=Tom |date=June 8, 2010 |title=Error-check breakthrough in quantum computing |url=http://www.newscientisttech.com/article/dn9301-errorcheck-breakthrough-in-quantum-computing.html |access-date=May 20, 2010 |work=New Scientist}}
  • The first 12-qubit quantum computer is benchmarked by researchers at the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics in Waterloo, Ontario as well as at MIT, Cambridge, Massachusetts.{{Cite news |date=May 8, 2006 |title=12-qubits Reached In Quantum Information Quest |url=https://www.sciencedaily.com/releases/2006/05/060508164700.htm |access-date=May 20, 2010 |work=ScienceDaily}}
  • A two-dimensional ion trap is developed for quantum computing.{{Cite news |author=Simonite |first=Tom |date=July 7, 2010 |title=Flat 'ion trap' holds quantum computing promise |url=http://www.newscientisttech.com/article/dn9502-flat-ion-trap-holds-quantum-computing-promise.html |access-date=May 20, 2010 |work=New Scientist}}
  • Seven atoms are placed in a stable line, a step on the way to constructing a quantum gate, at the University of Bonn, Germany.{{Cite news |last=Luerweg |first=Frank |date=July 12, 2006 |title=Quantum Computer: Laser tweezers sort atoms |url=http://www.physorg.com/news71935118.html |url-status=dead |archive-url=https://web.archive.org/web/20071215041757/http://www.physorg.com/news71935118.html |archive-date=December 15, 2007 |access-date=December 29, 2007 |work=PhysOrg.com}}
  • A team at Delft University of Technology in the Netherlands creates a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.{{Cite news |date=August 16, 2006 |title='Electron-spin' trick boosts quantum computing |url=http://www.newscientisttech.com/article.ns?id=dn9768 |url-status=dead |archive-url=https://web.archive.org/web/20061122102719/http://www.newscientisttech.com/article.ns?id=dn9768 |archive-date=November 22, 2006 |access-date=December 29, 2007 |work=New Scientist}}
  • The University of Arkansas develops quantum dot molecules.{{Cite news |author=Berger |first=Michael |date=August 16, 2006 |title=Quantum Dot Molecules – One Step Further Towards Quantum Computing |url=http://www.newswiretoday.com/news/7723/ |access-date=December 29, 2007 |work=Newswire Today}}
  • The spinning new theory on particle spin brings science closer to quantum computing.{{Cite news |date=September 7, 2006 |title=Spinning new theory on particle spin brings science closer to quantum computing |url=http://www.physorg.com/news76863086.html |url-status=dead |archive-url=https://web.archive.org/web/20080117223659/http://www.physorg.com/news76863086.html |archive-date=January 17, 2008 |access-date=December 29, 2007 |work=PhysOrg.com}}
  • The University of Copenhagen, Denmark, develops quantum teleportation between photons and atoms.{{Cite journal |last1=Merali |first1=Zeeya |date=October 4, 2006 |title=Spooky steps to a quantum network |url=http://www.newscientisttech.com/article/dn10226-spooky-steps-to-a-quantum-network.html |journal=New Scientist |volume=192 |issue=2572 |page=12 |doi=10.1016/s0262-4079(06)60639-8 |access-date=December 29, 2007}}
  • University of Camerino scientists develop a theory of macroscopic object entanglement, which has implications for the development of quantum repeaters.{{Cite news |author=Zyga |first=Lisa |date=October 24, 2006 |title=Scientists present method for entangling macroscopic objects |url=http://physorg.com/news80896839.html |url-status=dead |archive-url=https://web.archive.org/web/20071013014512/http://physorg.com/news80896839.html |archive-date=October 13, 2007 |access-date=December 29, 2007 |work=PhysOrg.com}}
  • Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.{{Cite news |author=Kloeppel |first=James E. |date=November 2, 2006 |title=Quantum coherence possible in incommensurate electronic systems |url=http://news.illinois.edu/news/06/1102quantum.html |access-date=August 19, 2010 |publisher=University of Illinois |location=Champaign-Urbana, Illinois}}
  • Cristophe Boehme, University of Utah, demonstrates the feasibility of reading data using the nuclear spin on a silicon-phosphorus Kane quantum computer.{{Cite news |date=November 19, 2006 |title=A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins' |url=http://physorg.com/news83163617.html |url-status=dead |archive-url=https://web.archive.org/web/20070929120422/http://physorg.com/news83163617.html |archive-date=September 29, 2007 |access-date=December 29, 2007 |work=PhysOrg.com}}

=2007=

  • Subwavelength waveguide is developed for light.

{{Cite news |author=Hecht |first=Jeff |date=January 8, 2007 |title=Nanoscopic 'coaxial cable' transmits light |url=http://www.newscientisttech.com/article/dn10911-nanoscopic-coaxial-cable-transmits-light.html |access-date=December 30, 2007 |work=New Scientist}}

  • A single-photon emitter for optical fibers is developed.{{Cite news |date=February 21, 2007 |title=Toshiba unveils quantum security |url=http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm |url-status=dead |archive-url=https://web.archive.org/web/20070304090639/http://www.e4engineering.com/Articles/298360/Toshiba+unveils+quantum+security.htm |archive-date=March 4, 2007 |access-date=December 30, 2007 |work=The Engineer}}
  • The first one-way quantum computers are built,{{Cite journal |doi=10.1038/nphys507|title=Experimental entanglement of six photons in graph states|journal=Nature Physics|volume=3|issue=2|pages=91–95|year=2007|last1=Lu|first1=Chao-Yang|last2=Zhou|first2=Xiao-Qi|last3=Gühne|first3=Otfried|last4=Gao|first4=Wei-Bo|last5=Zhang|first5=Jin|last6=Yuan|first6=Zhen-Sheng|last7=Goebel|first7=Alexander|last8=Yang|first8=Tao|last9=Pan|first9=Jian-Wei|arxiv=quant-ph/0609130|bibcode=2007NatPh...3...91L|s2cid=16319327}} where measurement (collapse) of an entangled cluster state is the main driving force of computation,{{cite journal |last1=Danos |first1=V. |last2=Kashefi |first2=E. |last3=Panangaden |first3=P. |date=2007 |title=The measurement calculus |journal=Journal of the Association for Computing Machinery |volume=54 |issue=2 |page=8 |arxiv=0704.1263 |doi=10.1145/1219092.1219096 |s2cid=5851623}} and shown to perform simple computations, such as Deutsch's algorithm.{{Cite news |author=Marquit |first=Miranda |date=April 18, 2007 |title=First use of Deutsch's Algorithm in a cluster state quantum computer |url=http://www.physorg.com/news96107220.html |url-status=dead |archive-url=https://web.archive.org/web/20080117224207/http://www.physorg.com/news96107220.html |archive-date=January 17, 2008 |access-date=December 30, 2007 |work=PhysOrg.com}}
  • A new material is proposed for quantum computing.{{Cite news |author=Merali |first=Zeeya |date=March 15, 2007 |title=The universe is a string-net liquid |url=https://www.newscientist.com/article.ns?id=mg19325954.200&feedId=fundamentals_rss20 |access-date=December 30, 2007 |work=New Scientist}}
  • A single-atom single-photon server is devised.

{{Cite press release |title=A Single-Photon Server with Just One Atom |url=http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2007/pressRelease200703091/index.html |access-date=December 30, 2007 |date=March 12, 2007 |publisher=Max Planck Society}}

  • The University of Cambridge, England, develops an electron quantum pump.

{{Cite news |author=Bush |first=Steve |date=April 19, 2007 |title=Cambridge team closer to working quantum computer |url=http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm |url-status=dead |archive-url=https://archive.today/20120515222358/http://www.electronicsweekly.com/Articles/2007/04/19/41206/Cambridge+team+closer+to+working+quantum+computer.htm |archive-date=May 15, 2012 |access-date=December 30, 2007 |work=Electronics Weekly}}

  • A superior method of qubit coupling is developed.

{{Cite magazine |author=Farivar |first=Cyrus |date=May 7, 2007 |title=It's the "Wiring" That's Tricky in Quantum Computing |url=https://www.wired.com/science/discoveries/news/2007/05/quantumcoupling |url-status=dead |archive-url=https://web.archive.org/web/20080706171401/http://www.wired.com/science/discoveries/news/2007/05/quantumcoupling |archive-date=July 6, 2008 |access-date=December 30, 2007 |magazine=Wired}}

  • A successful demonstration of controllably coupled qubits is reported.

{{Cite press release |title=NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits |url=http://media-newswire.com/release_1049194.html |access-date=December 30, 2007 |date=May 8, 2007 |publisher=Media-Newswire.com}}

{{Cite news |author=Minkel |first=J. R. |date=May 16, 2007 |title=Spintronics Breaks the Silicon Barrier |url=http://www.sciam.com/article.cfm?articleId=959FBD96-E7F2-99DF-341F959A7DA2A292&chanId=sa013&modsrc=most_popular |access-date=December 30, 2007 |work=Scientific American}}

  • Scientists demonstrate a quantum state exchange between light and matter.

{{Cite news |author=Zyga |first=Lisa |date=May 22, 2007 |title=Scientists demonstrate quantum state exchange between light and matter |url=http://www.physorg.com/news99050442.html |url-status=dead |archive-url=https://web.archive.org/web/20080307093926/http://www.physorg.com/news99050442.html |archive-date=March 7, 2008 |access-date=December 30, 2007 |work=PhysOrg.com}}

{{Cite journal |last1=Dutt |first1=M. V. |last2=Childress |first2=L. |last3=Jiang |first3=L. |last4=Togan |first4=E. |last5=Maze |first5=J. |last6=Jelezko |first6=F. |last7=Zibrov |first7=A. S. |last8=Hemmer |first8=P. R |last9=Lukin |first9=M. D. |date=June 1, 2007 |title=Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond |journal=Science |volume=316 |issue=5829 |pages=1312–1316 |bibcode=2007Sci...316.....D |doi=10.1126/science.1139831 |pmid=17540898 |s2cid=20697722}}

  • Controlled NOT quantum gates on a pair of superconducting quantum bits are realized.

{{cite journal |last1=Plantenberg |first1=J. H. |last2=De Groot |first2=P. C. |last3=Harmans |first3=C. J. P. M. |last4=Mooij |first4=J. E. |date=June 14, 2007 |title=Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits |journal=Nature |volume=447 |issue=7146 |pages=836–839 |bibcode=2007Natur.447..836P |doi=10.1038/nature05896 |pmid=17568742 |s2cid=3054763}}

  • Scientists contain and study hundreds of individual atoms in 3D array.

{{Cite news |author=Inman |first=Mason |date=June 17, 2007 |title=Atom trap is a step towards a quantum computer |url=http://www.newscientisttech.com/article/dn12082-atom-trap-is-a-step-towards-a-quantum-computer-.html |access-date=December 30, 2007 |work=New Scientist}}

  • Nitrogen in a buckyball molecule is used in quantum computing.

{{Cite web |title=Nanotechnology and Emerging Technologies News from Nanowerk |url=https://www.nanowerk.com/ |access-date=2023-07-05 |website=www.nanowerk.com}}

  • A large number of electrons are quantum coupled.

{{Cite news |date=July 27, 2007 |title=Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers |url=https://www.sciencedaily.com/releases/2007/07/070726142010.htm |access-date=December 30, 2007 |work=Science Daily}}

{{Cite news |author=Marquit |first=Miranda |date=July 23, 2007 |title=Indium arsenide may provide clues to quantum information processing |url=http://www.physorg.com/news104418332.html |url-status=dead |archive-url=https://web.archive.org/web/20070926220146/http://www.physorg.com/news104418332.html |archive-date=September 26, 2007 |access-date=December 30, 2007 |work=PhysOrg.com}}

  • Atoms are quantum manipulated in laser light.

{{Cite news |date=July 25, 2007 |title=Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance |url=https://www.nist.gov/public_affairs/releases/quantum_gate.html |url-status=dead |archive-url=https://web.archive.org/web/20071218224341/http://www.nist.gov/public_affairs/releases/quantum_gate.html |archive-date=December 18, 2007 |access-date=December 30, 2007 |work=National Institute of Standards and Technology}}

  • Light pulses are used to control electron spins.

{{Cite news |author=Zyga |first=Lisa |date=August 15, 2007 |title=Ultrafast quantum computer uses optically controlled electrons |url=http://www.physorg.com/news106395871.html |url-status=dead |archive-url=https://web.archive.org/web/20080102004025/http://www.physorg.com/news106395871.html |archive-date=January 2, 2008 |access-date=December 30, 2007 |work=PhysOrg.com}}

  • Quantum effects are demonstrated across tens of nanometers.

{{Cite news |author=Bush |first=Steve |date=August 15, 2007 |title=Research points way to qubits on standard chips |url=http://www.electronicsweekly.com/Articles/2007/08/15/41988/research-points-way-to-qubits-on-standard-chips.htm |access-date=December 30, 2007 |work=Electronics Weekly}}

  • Light pulses are used to accelerate quantum computing development.

{{Cite news |date=August 17, 2007 |title=Computing Breakthrough Could Elevate Security To Unprecedented Levels |url=https://www.sciencedaily.com/releases/2007/08/070816143801.htm |access-date=December 30, 2007 |work=ScienceDaily}}

  • A quantum random access memory (RAM) blueprint is unveiled.

{{Cite news |author=Battersby |first=Stephen |date=August 21, 2007 |title=Blueprints drawn up for quantum computer RAM |url=https://www.newscientist.com/article/dn12516-blueprints-drawn-up-for-quantum-computer-ram.html |access-date=December 30, 2007 |work=New Scientist}}

  • A model of a quantum transistor is developed.

{{Cite news |date=August 26, 2007 |title=Photon-transistors for the supercomputers of the future |url=http://physorg.com/news107357370.html |url-status=dead |archive-url=https://web.archive.org/web/20080101165713/http://physorg.com/news107357370.html |archive-date=January 1, 2008 |access-date=December 30, 2007 |work=PhysOrg.com}}

  • Long distance entanglement is demonstrated.

{{Cite news |date=September 5, 2007 |title=Physicists establish "spooky" quantum communication |url=http://www.ns.umich.edu/htdocs/releases/story.php?id=6016 |url-status=dead |archive-url=https://web.archive.org/web/20071228220630/http://www.ns.umich.edu/htdocs/releases/story.php?id=6016 |archive-date=December 28, 2007 |access-date=December 30, 2007 |publisher=University of Michigan}}

  • Photonic quantum computing is used to factor a number by two independent labs.

{{Cite news |date=September 13, 2007 |title=Qubits poised to reveal our secrets |url=http://www.huliq.com/34160/qubits-poised-to-reveal-our-secrets |access-date=December 30, 2007 |work=huliq.com}}

  • A quantum bus is developed by two independent labs.

{{Cite news |author=Das |first=Saswato |date=September 26, 2007 |title=Quantum chip rides on superconducting bus |url=https://www.newscientist.com/article/dn12696-quantum-chip-rides-on-superconducting-bus.html |access-date=December 30, 2007 |work=New Scientist}}

  • A superconducting quantum cable is developed.

{{Cite news |date=September 27, 2007 |title=Superconducting Quantum Computing Cable Created |url=https://www.sciencedaily.com/releases/2007/09/070926172232.htm |access-date=December 30, 2007 |work=ScienceDaily}}

  • The transmission of qubits is demonstrated.

{{Cite news |author=Bush |first=Steve |date=October 11, 2007 |title=Qubit transmission signals quantum computing advance |url=http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm |url-status=dead |archive-url=https://web.archive.org/web/20071012144831/http://www.electronicsweekly.com/Articles/2007/10/11/42346/qubit+transmission+signals+quantum+computing+advance.htm |archive-date=October 12, 2007 |access-date=December 30, 2007 |work=Electronics Weekly}}

  • Superior qubit material is devised.

{{Cite news |author=Hodgin |first=Rick C. |date=October 8, 2007 |title=New material breakthrough brings quantum computers one step closer |url=http://www.tgdaily.com/content/view/34244/113/ |url-status=dead |archive-url=https://web.archive.org/web/20071212162540/http://www.tgdaily.com/content/view/34244/113/ |archive-date=December 12, 2007 |access-date=December 30, 2007 |work=TG Daily}}

  • A single-electron qubit memory is reported.

{{Cite news |date=October 19, 2007 |title=Single electron-spin memory with a semiconductor quantum dot |url=http://optics.org/cws/article/journals/31503 |access-date=December 30, 2007 |work=Optics.org}}

{{Cite news |author=Battersby |first=Stephen |date=November 7, 2007 |title='Light trap' is a step towards quantum memory |url=https://www.newscientist.com/channel/fundamentals/quantum-world/dn12887-light-trap-is-a-step-towards-quantum-memory-.html |access-date=December 30, 2007 |work=New Scientist}}

  • D-Wave Systems demonstrates use of a 28-qubit quantum annealing computer.{{Cite news |date=November 12, 2007 |title=World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference |url=http://www.nanowerk.com/news/newsid=3274.php |url-status=dead |archive-url=https://web.archive.org/web/20180830041346/https://www.nanowerk.com/news/newsid=3274.php |archive-date=August 30, 2018 |access-date=December 30, 2007 |work=Nanowerk.com}}
  • A new cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.

{{Cite news |date=December 12, 2007 |title=Desktop device generates and traps rare ultracold molecules |url=http://www.physorg.com/news116696579.html |url-status=dead |archive-url=https://web.archive.org/web/20071215075835/http://www.physorg.com/news116696579.html |archive-date=December 15, 2007 |access-date=December 31, 2007 |work=PhysOrg.com}}

  • A photonic quantum computer is demonstrated.

{{Cite news |author=Luke |first=Kim |date=December 19, 2007 |title=U of T scientists make quantum computing leap Research is step toward building first quantum computers |url=http://www.news.utoronto.ca/bin6/071219-3563.asp |url-status=dead |archive-url=https://web.archive.org/web/20071228170511/http://www.news.utoronto.ca/bin6/071219-3563.asp |archive-date=December 28, 2007 |access-date=December 31, 2007 |publisher=University of Toronto}}

  • Graphene quantum dot spin qubits are proposed.

{{Cite journal |last1=Trauzettel |first1=Björn |last2=Bulaev |first2=Denis V. |last3=Loss |first3=Daniel |last4=Burkard |first4=Guido |date=February 18, 2007 |title=Spin qubits in graphene quantum dots |journal=Nature Physics |volume=3 |issue=3 |pages=192–196 |arxiv=cond-mat/0611252 |bibcode=2007NatPh...3..192T |doi=10.1038/nphys544 |s2cid=119431314}}

=2008=

File:DWave 128chip.jpg

  • The HHL algorithm for solving linear equations is published.{{Cite journal |last1=Harrow |first1=Aram W. |last2=Hassidim |first2=Avinatan |last3=Lloyd |first3=Seth |year=2008 |title=Quantum algorithm for solving linear systems of equations |journal=Physical Review Letters |volume=103 |issue=15 |pages=150502 |arxiv=0811.3171 |bibcode=2009PhRvL.103o0502H |doi=10.1103/PhysRevLett.103.150502 |pmid=19905613 |s2cid=5187993}}
  • Graphene quantum dot qubits are described.

{{Cite news |author=Marquit |first=Miranda |date=January 15, 2008 |title=Graphene quantum dot may solve some quantum computing problems |url=http://www.physorg.com/news119632225.html |url-status=dead |archive-url=https://web.archive.org/web/20080117230333/http://www.physorg.com/news119632225.html |archive-date=January 17, 2008 |access-date=January 16, 2008}}

  • Scientists succeed in storing a quantum bit.

{{Cite news |author= |date=January 25, 2008 |title=Scientists succeed in storing quantum bit |url=http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=205918527 |access-date=February 5, 2008 |work=EE Times Europe}}

  • 3D qubit-qutrit entanglement is demonstrated.

{{Cite news |author=Zyga |first=Lisa |date=February 26, 2008 |title=Physicists demonstrate qubit-qutrit entanglement |url=http://www.physorg.com/news123244300.html |url-status=dead |archive-url=https://web.archive.org/web/20080229001836/http://www.physorg.com/news123244300.html |archive-date=February 29, 2008 |access-date=February 27, 2008 |work=PhysOrg.com}}

  • Analog quantum computing is devised.

{{Cite news |author= |date=February 26, 2008 |title=Analog logic for quantum computing |url=https://www.sciencedaily.com/releases/2008/02/080221101910.htm |access-date=February 27, 2008 |work=ScienceDaily}}

  • Control of quantum tunneling is devised.

{{Cite news |author=Kotala |first=Zenaida Gonzalez |date=March 5, 2008 |title=Future 'quantum computers' will offer increased efficiency... and risks |url=http://www.eurekalert.org/pub_releases/2008-03/uocf-fc030508.php |access-date=March 5, 2008 |work=Eurekalert.org}}

  • Entangled memory is developed.

{{Cite news |author=Kurzweil |first=Ray |date=March 6, 2008 |title=Entangled memory is a first |url=http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8142 |access-date=March 8, 2008}}

  • A superior NOT gate is developed.

{{Cite news |author=Fryer |first=Joann |date=March 27, 2008 |title=Silicon chips for optical quantum technologies |url=http://www.eurekalert.org/pub_releases/2008-03/uob-scf032608.php |access-date=March 29, 2008 |work=Eurekalert.org}}

{{Cite news |author=Kurzweil |first=Ray |date=April 7, 2008 |title=Qutrit breakthrough brings quantum computers closer |url=http://www.kurzweilai.net/news/frame.html?main=news_single.html?id%3D8354 |access-date=April 7, 2008}}

  • Quantum logic gate in optical fiber is reported.

{{Cite news |author=Greene |first=Kate |date=April 15, 2008 |title=Toward a quantum internet |url=http://www.technologyreview.com/Infotech/20565/?a=f |access-date=April 16, 2008 |work=Technology Review}}

{{Cite news |author= |date=April 24, 2008 |title=Scientists discover exotic quantum state of matter |url=http://physorg.com/news128261028.html |url-status=dead |archive-url=https://web.archive.org/web/20080430131534/http://physorg.com/news128261028.html |archive-date=April 30, 2008 |access-date=April 29, 2008 |publisher=Princeton University}}

  • Enduring spin states in quantum dots are reported.{{Cite news |author=Dumé |first=Belle |date=May 23, 2008 |title=Spin states endure in quantum dot |url=http://physicsworld.com/cws/article/news/34359 |url-status=dead |archive-url=https://web.archive.org/web/20080529004841/http://physicsworld.com/cws/article/news/34359 |archive-date=May 29, 2008 |access-date=June 3, 2008 |work=Physics World}}
  • Molecular magnets are proposed for quantum RAM.

{{Cite news |author=Lee |first=Chris |date=May 27, 2008 |title=Molecular magnets in soap bubbles could lead to quantum RAM |url=https://arstechnica.com/news.ars/post/20080527-molecular-magnets-in-soap-bubbles-could-lead-to-quantum-ram.html |access-date=June 3, 2008 |work=ARSTechnica}}

  • Quasiparticles offer hope of stable quantum computers.

{{Cite news |author=Weizmann Institute of Science |date=June 2, 2008 |title=Scientists find new 'quasiparticles' |url=http://physorg.com/news131631206.html |access-date=June 3, 2008 |work=PhysOrg.com}}

  • Image storage may have better storage of qubits is reported.

{{Cite news |author=Zyga |first=Lisa |date=June 23, 2008 |title=Physicists Store Images in Vapor |url=http://www.physorg.com/news133439288.html |url-status=dead |archive-url=https://web.archive.org/web/20080915130750/http://www.physorg.com/news133439288.html |archive-date=September 15, 2008 |access-date=June 26, 2008 |work=PhysOrg.com}}

  • Quantum entangled images are reported.

{{Cite news |author= |date=June 25, 2008 |title=Physicists Produce Quantum-Entangled Images |url=http://www.physorg.com/news133624014.html |url-status=dead |archive-url=https://web.archive.org/web/20080829225636/http://www.physorg.com/news133624014.html |archive-date=August 29, 2008 |access-date=June 26, 2008 |work=PhysOrg.com}}

  • Quantum state is intentionally altered in a molecule.{{Cite news |author=Tally |first=Steve |date=June 26, 2008 |title=Quantum computing breakthrough arises from unknown molecule |url=http://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html |url-status=dead |archive-url=https://web.archive.org/web/20190202103204/https://news.uns.purdue.edu/x/2008a/080626KlimeckArsenic.html |archive-date=February 2, 2019 |access-date=June 28, 2008 |publisher=Purdue University}}
  • Electron position is controlled in a silicon circuit.

{{Cite news |author=Rugani |first=Lauren |date=July 17, 2008 |title=Quantum Leap |url=http://www.technologyreview.com/Infotech/21086/ |access-date=July 17, 2008 |work=Technology Review}}

  • A superconducting electronic circuit pumps microwave photons.

{{Cite news |author= |date=August 5, 2008 |title=Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons |url=https://www.sciencedaily.com/releases/2008/08/080805150812.htm |access-date=August 6, 2008 |work=ScienceDaily}}

  • Amplitude spectroscopy is developed.

{{Cite news |author= |date=September 3, 2008 |title=New probe could aid quantum computing |url=http://www.physorg.com/news139665168.html |url-status=dead |archive-url=https://web.archive.org/web/20080905193420/http://www.physorg.com/news139665168.html |archive-date=September 5, 2008 |access-date=September 6, 2008 |work=PhysOrg.com}}

  • A superior quantum computer test is developed.

{{Cite news |author= |date=September 25, 2008 |title=Novel Process Promises To Kick-start Quantum Technology Sector |url=https://www.sciencedaily.com/releases/2008/09/080925144609.htm |access-date=October 16, 2008 |work=ScienceDaily}}

  • An optical frequency comb is devised.

{{Cite news |author=O'Brien |first=Jeremy L. |date=September 22, 2008 |title=Quantum computing over the rainbow |url=http://physics.aps.org/articles/v1/23 |access-date=October 16, 2008}}

{{Cite news |author= |date=October 20, 2008 |title=Relationships Between Quantum Dots – Stability and Reproduction |url=http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html |url-status=dead |archive-url=https://web.archive.org/web/20081022201107/http://www.scienceblog.com/cms/blog/624-relationships-between-quantum-dots-stability-and-reproduction-17599.html |archive-date=October 22, 2008 |access-date=October 20, 2008 |work=Science Blog}}

  • Hybrid qubit memory is developed.

{{Cite news |author=Schultz |first=Steven |date=October 22, 2008 |title=Memoirs of a qubit: Hybrid memory solves key problem for quantum computing |url=http://www.eurekalert.org/pub_releases/2008-10/pues-smt102208.php |access-date=October 23, 2008 |work=Eurekalert.com}}

  • A qubit is stored for over 1 second in an atomic nucleus.

{{Cite news |author= |date=October 23, 2008 |title=World's Smallest Storage Space ... the Nucleus of an Atom |url=https://www.nsf.gov/news/news_summ.jsp?cntn_id=112538&govDel=USNSF_51 |access-date=October 27, 2008 |work=National Science Foundation News}}

  • Faster electron spin qubit switching and reading is developed.

{{Cite news |author=Stober |first=Dan |date=November 20, 2008 |title=Stanford: Quantum computing spins closer |url=http://www.eurekalert.org/pub_releases/2008-11/su-sqc112008.php |access-date=November 22, 2008 |work=Eurekalert.com}}

  • The possibility of non-entanglement quantum computing is described.

{{Cite news |author=Marquit |first=Miranda |date=December 5, 2008 |title=Quantum computing: Entanglement may not be necessary |url=http://www.physorg.com/news147698804.html |url-status=dead |archive-url=https://web.archive.org/web/20081208091811/http://www.physorg.com/news147698804.html |archive-date=December 8, 2008 |access-date=December 9, 2008 |work=PhysOrg.com}}

  • D-Wave Systems claims to have produced a 128-qubit computer chip, though this claim had yet to be verified.{{Cite news |author= |author-link= |date=December 19, 2008 |title=Dwave System's 128 qubit chip has been made |url=http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html |url-status=dead |archive-url=https://web.archive.org/web/20081223060355/http://nextbigfuture.com/2008/12/dwave-systems-128-qubit-chip-has-been.html |archive-date=December 23, 2008 |access-date=December 20, 2008 |work=Next Big Future |df=mdy-all}}

=2009=

  • Carbon 12 is purified for longer coherence times.{{Cite news |author= |date=April 7, 2009 |title=Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing |url=http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html |url-status=dead |archive-url=https://web.archive.org/web/20090411055856/http://nextbigfuture.com/2009/04/element-six-is-global-leader-europe.html |archive-date=April 11, 2009 |access-date=May 19, 2009 |work=Next Big Future |df=mdy-all}}
  • The lifetime of qubits is extended to hundreds of milliseconds.

{{Cite news |author=Greene |first=Kate |date=April 23, 2009 |title=Extending the Life of Quantum Bits |url=https://www.technologyreview.com/2009/04/23/213539/extending-the-life-of-quantum-bits/ |access-date=June 1, 2020 |work=Technology Review}}

  • Improved quantum control of photons is reported.

{{Cite news |author= |date=May 29, 2009 |title=Researchers make breakthrough in the quantum control of light |url=http://www.physorg.com/news162814379.html |url-status=dead |archive-url=https://archive.today/20130131221049/http://www.physorg.com/news162814379.html |archive-date=January 31, 2013 |access-date=May 30, 2009 |work=PhysOrg.com}}

  • Quantum entanglement is demonstrated over 240 micrometres.

{{Cite news |author= |date=June 3, 2009 |title=Physicists demonstrate quantum entanglement in mechanical system |url=http://www.physorg.com/news163253992.html |url-status=dead |archive-url=https://archive.today/20130131084441/http://www.physorg.com/news163253992.html |archive-date=January 31, 2013 |access-date=June 13, 2009 |work=PhysOrg.com}}

  • Qubit lifetime is extended by a factor of 1000.

{{Cite news |author=Moore |first=Nicole Casai |date=June 24, 2009 |title=Lasers can lengthen quantum bit memory by 1,000 times |url=http://www.eurekalert.org/pub_releases/2009-06/uom-lcl062309.php |access-date=June 27, 2009 |work=Eurekalert.com}}

  • The first electronic quantum processor is created.

{{Cite news |author= |date=June 29, 2009 |title=First Electronic Quantum Processor Created |url=https://www.sciencedaily.com/releases/2009/06/090628171949.htm |access-date=June 29, 2009 |work=ScienceDaily}}

  • Six-photon graph state entanglement is used to simulate the fractional statistics of anyons living in artificial spin-lattice models.{{cite journal |last1=Lu |first1=C. Y. |last2=Gao |first2=W. B. |last3=Gühne |first3=O. |last4=Zhou |first4=X. Q. |last5=Chen |first5=Z. B. |last6=Pan |first6=J. W. |year=2009 |title=Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator |journal=Physical Review Letters |volume=102 |issue=3 |page=030502 |arxiv=0710.0278 |bibcode=2009PhRvL.102c0502L |doi=10.1103/PhysRevLett.102.030502 |pmid=19257336 |s2cid=11788852}}
  • A single-molecule optical transistor is devised.

{{Cite news |author=Borghino |first=Dario |date=July 6, 2009 |title=Quantum computer closer: Optical transistor made from single molecule |url=http://www.gizmag.com/optical-transistor-made-from-single-molecule/12157/ |access-date=July 8, 2009 |work=Gizmag}}

  • NIST reads and writes individual qubits.

{{Cite news |author=Johnson |first=R. Colin |date=July 8, 2009 |title=NIST advances quantum computing |url=http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=218401022 |access-date=July 9, 2009 |work=EE Times}}

  • NIST demonstrates multiple computing operations on qubits.

{{Cite news |author=Greene |first=Kate |date=August 7, 2009 |title=Scaling Up a Quantum Computer |url=http://www.technologyreview.com/computing/23137/ |access-date=August 8, 2009 |work=Technology Review}}

  • The first large-scale topological cluster state quantum architecture is developed for atom-optics.

{{Cite journal |last1=Devitt |first1=S. J. |last2=Fowler |first2=A. G. |last3=Stephens |first3=A. M. |last4=Greentree |first4=A. D. |last5=Hollenberg |first5=L. C. L. |last6=Munro |first6=W. J. |last7=Nemoto |first7=K. |author7-link=Kae Nemoto |date=August 11, 2009 |title=Architectural design for a topological cluster state quantum computer |journal=New Journal of Physics |volume=11 |issue=83032 |page=1221 |arxiv=0808.1782 |bibcode=2009NJPh...11h3032D |doi=10.1088/1367-2630/11/8/083032 |s2cid=56195929}}

  • A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions is shown.

{{Cite journal |last1=Home |first1=J. P. |last2=Hanneke |first2=D. |last3=Jost |first3=J. D. |last4=Amini |first4=J. M. |last5=Leibfried |first5=D. |last6=Wineland |first6=D. J. |date=September 4, 2009 |title=Complete Methods Set for Scalable Ion Trap Quantum Information Processing |journal=Science |volume=325 |issue=5945 |pages=1227–1230 |arxiv=0907.1865 |bibcode=2009Sci...325.1227H |doi=10.1126/science.1177077 |pmid=19661380 |s2cid=24468918}}

  • Researchers at University of Bristol, U.K., demonstrate Shor's algorithm on a silicon photonic chip.

{{Cite journal |last1=Politi |first1=A. |last2=Matthews |first2=J. C. |last3=O'Brien |first3=J. L. |year=2009 |title=Shor's Quantum Factoring Algorithm on a Photonic Chip |journal=Science |volume=325 |issue=5945 |page=1221 |arxiv=0911.1242 |bibcode=2009Sci...325.1221P |doi=10.1126/science.1173731 |pmid=19729649 |s2cid=17259222}}

  • Quantum Computing with an Electron Spin Ensemble is reported.{{Cite journal |last1=Wesenberg |first1=J. H. |last2=Ardavan |first2=A. |last3=Briggs |first3=G. A. D. |last4=Morton |first4=J. J. L. |last5=Schoelkopf |first5=R. J. |last6=Schuster |first6=D. I. |last7=Mølmer |first7=K. |year=2009 |title=Quantum Computing with an Electron Spin Ensemble |journal=Physical Review Letters |volume=103 |issue=7 |page=070502 |arxiv=0903.3506 |bibcode=2009PhRvL.103g0502W |doi=10.1103/PhysRevLett.103.070502 |pmid=19792625 |s2cid=6990125}}
  • A so-called photon machine gun is developed for quantum computing.

{{Cite news |author=Barras |first=Colin |date=September 25, 2009 |title=Photon 'machine gun' could power quantum computers |url=https://www.newscientist.com/article/mg20327275.700-photon-machine-gun-could-power-quantum-computers.html?DCMP=OTC-rss&nsref=online-news |access-date=September 26, 2009 |work=New Scientist}}

  • The first universal programmable quantum computer is unveiled.

{{Cite news |author= |date=November 15, 2009 |title=First universal programmable quantum computer unveiled |url=https://www.newscientist.com/article/dn18154-first-universal-programmable-quantum-computer-unveiled.html |access-date=November 16, 2009 |work=New Scientist}}

  • Scientists electrically control quantum states of electrons.

{{Cite news |author= |date=November 20, 2009 |title=UCSB physicists move 1 step closer to quantum computing |url=http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html |url-status=dead |archive-url=https://web.archive.org/web/20091123213145/http://www.scienceblog.com/cms/ucsb-physicists-move-1-step-closer-quantum-computing-27431.html |archive-date=November 23, 2009 |access-date=November 23, 2009 |work=ScienceBlog}}

  • Google collaborates with D-Wave Systems on image search technology using quantum computing.

{{Cite news |author=Hsu |first=Jeremy |date=December 11, 2009 |title=Google Demonstrates Quantum Algorithm Promising Superfast Search |url=http://www.popsci.com/technology/article/2009-12/google-algorithm-uses-quantum-computing-sort-images-faster-ever |access-date=December 14, 2009}}

  • A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations is demonstrated.{{Cite journal |last1=Harris |first1=R. |last2=Brito |first2=F. |last3=Berkley |first3=A. J. |last4=Johansson |first4=J. |last5=Johnson |first5=M. W. |last6=Lanting |first6=T. |last7=Bunyk |first7=P. |last8=Ladizinsky |first8=E. |last9=Bumble |first9=B. |last10=Fung |first10=A. |last11=Kaul |first11=A. |last12=Kleinsasser |first12=A. |last13=Han |first13=S. |year=2009 |title=Synchronization of multiple coupled rf-SQUID flux qubits |journal=New Journal of Physics |volume=11 |issue=12 |page=123022 |arxiv=0903.1884 |bibcode=2009NJPh...11l3022H |doi=10.1088/1367-2630/11/12/123022 |s2cid=54065717}}
  • Universal Ion Trap Quantum Computation with decoherence free qubits is realized.{{Cite journal |last1=Monz |first1=T. |last2=Kim |first2=K. |last3=Villar |first3=A. S. |last4=Schindler |first4=P. |last5=Chwalla |first5=M. |last6=Riebe |first6=M. |last7=Roos |first7=C. F. |last8=Häffner |first8=H. |last9=Hänsel |first9=W. |last10=Hennrich |first10=M. |last11=Blatt |first11=R |year=2009 |title=Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits |journal=Physical Review Letters |volume=103 |issue=20 |page=200503 |arxiv=0909.3715 |bibcode=2009PhRvL.103t0503M |doi=10.1103/PhysRevLett.103.200503 |pmid=20365970 |s2cid=7632319}}
  • The first chip-scale quantum computer is reported.{{cite web |date=November 29, 2019 |title=A decade of Physics World breakthroughs: 2009 – the first quantum computer |url=https://physicsworld.com/a/a-decade-of-physics-world-breakthroughs-2009-the-first-quantum-computer/ |website=Physics World}}

2010s

=2010=

  • Ions are trapped in an optical trap.

{{Cite news |author= |date=January 20, 2010 |title=Making Light of Ion Traps |url=http://www.technologyreview.com/blog/arxiv/24685/?nlid=2678 |access-date=January 21, 2010 |work=arXiv blog}}

  • An optical quantum computer with three qubits calculates the energy spectrum of molecular hydrogen to high precision.

{{Cite magazine |author=Petit |first=Charles |date=January 28, 2010 |title=Quantum Computer Simulates Hydrogen Molecule Just Right |url=https://www.wired.com/wiredscience/2010/01/quantum-computer-hydrogen-simulation/ |access-date=February 5, 2010 |magazine=Wired}}

  • The first germanium laser advances the state of optical computers.

{{Cite news |author=Hardesty |first=Larry |date=February 4, 2010 |title=First germanium laser brings us closer to 'optical computers' |url=http://www.physorg.com/news184493799.html |url-status=dead |archive-url=https://web.archive.org/web/20111224181702/http://www.physorg.com/news184493799.html |archive-date=December 24, 2011 |access-date=February 4, 2010}}

  • A single-electron qubit is developed

{{Cite news |author= |date=February 6, 2010 |title=Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors |url=https://www.sciencedaily.com/releases/2010/02/100205162953.htm |access-date=February 6, 2010 |work=Science Daily}}

  • The quantum state in a macroscopic object is reported.

{{Cite news |author=Palmer |first=Jason |date=March 17, 2010 |title=Team's quantum object is biggest by factor of billions |url=http://news.bbc.co.uk/2/hi/sci/tech/8570836.stm |access-date=March 20, 2010 |work=BBC News}}

  • A new quantum computer cooling method is developed.{{Cite news |author=University of Cambridge |title=Cambridge discovery could pave the way for quantum computing |url=https://go.gale.com/ps/i.do?id=GALE%7CA221455370&sid=sitemap&v=2.1&it=r&p=EAIM&sw=w&userGroupName=anon%7E3ab19270&aty=open-web-entry |access-date=March 18, 2010}}{{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}
  • Racetrack ion trap is developed.

{{Cite news |author= |date=April 1, 2010 |title=Racetrack Ion Trap Is a Contender in Quantum Computing Quest |url=https://www.sciencedaily.com/releases/2010/04/100401130336.htm |access-date=April 3, 2010 |work=ScienceDaily}}

  • Evidence for a Moore-Read state in the

u=5/2 quantum Hall plateau,{{Cite news |author=Rice University |date=April 21, 2010 |title=Bizarre matter could find use in quantum computers |url=https://phys.org/news/2010-04-bizarre-quantum-odd-electron-fault-tolerant.html |access-date=August 29, 2018}} which would be suitable for topological quantum computation is reported

  • A quantum interface between a single photon and a single atom is demonstrated.

{{Cite news |author=Vetsch |first=E. |display-authors=etal |date=May 27, 2010 |title=German physicists develop a quantum interface between light and atoms |url=http://www.physorg.com/news194169329.html |url-status=dead |archive-url=https://web.archive.org/web/20111219181729/http://www.physorg.com/news194169329.html |archive-date=December 19, 2011 |access-date=April 22, 2010}}

  • LED (light emitting diode) quantum entanglement is demonstrated.

{{Cite news |author=Dumé |first=Isabelle |date=June 5, 2010 |title=Entangling photons with electricity |url=https://physicsworld.com/a/entangling-photons-with-electricity/ |access-date=July 21, 2023 |work=Physics World}}

  • Multiplexed design increases the speed of transmission of quantum information through a quantum communications channel.

{{Cite journal |last1=Munro |first1=W. J. |last2=Harrison |first2=K. A. |last3=Stephens |first3=A. M. |last4=Devitt |first4=S. J. |last5=Nemoto |first5=K. |author5-link=Kae Nemoto |date=August 29, 2010 |title=From quantum multiplexing to high-performance quantum networking |journal=Nature Photonics |volume=4 |issue=11 |pages=792–796 |arxiv=0910.4038 |bibcode=2010NaPho...4..792M |doi=10.1038/nphoton.2010.213 |s2cid=119243884}}

  • A two-photon optical chip is reported.

{{Cite news |author=Kurzweil accelerating intelligence |date=September 17, 2010 |title=Two-photon optical chip enables more complex quantum computing |url=http://www.kurzweilai.net/two-photon-optical-chip-enables-more-complex-quantum-computing |access-date=September 17, 2010}}

  • Microfabricated planar ion traps are tested.{{cite web|url=https://www.sciencedaily.com/releases/2010/05/100526091044.htm|title=Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps|website=ScienceDaily|date=May 28, 2010|access-date=September 20, 2010}}{{cite web|url=http://www.gtri.gatech.edu/casestudy/microfabricated-planar-ion-traps|title=Quantum Future: Designing and Testing Microfabricated Planar Ion Traps|publisher=Georgia Tech Research Institute|access-date=September 20, 2010}}
  • A boson sampling technique is proposed by Aaronson and Arkhipov.{{cite conference |last1=Aaronson |first1=Scott |last2=Arkhipov |first2=Alex |year=2011 |title=Proceedings of the 43rd annual ACM symposium on Theory of computing – STOC '11 |conference=43rd Annual ACM Symposium on Theory of Computing |publisher=ACM Press |publication-place=New York, New York, USA |pages=333–342 |arxiv=1011.3245 |doi=10.1145/1993636.1993682 |isbn=978-1-4503-0691-1 |chapter=The Computational Complexity of Linear Optics}}
  • Quantum dot qubits are manipulated electrically, not magnetically.

{{Cite news |author=TU Delft |date=December 23, 2010 |title=TU scientists in Nature: Better control of building blocks for quantum computer |url=http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en |url-status=dead |archive-url=https://web.archive.org/web/20101224162118/http://www.tudelft.nl/live/pagina.jsp?id=2136915a-f72a-441a-8783-b0b0e91cb48f&lang=en |archive-date=December 24, 2010 |access-date=December 26, 2010}}

=2011=

  • Entanglement in a solid-state spin ensemble is reported{{Cite journal |doi=10.1038/nature09696|pmid=21248751|title=Entanglement in a solid-state spin ensemble|journal=Nature|volume=470|issue=7332|pages=69–72|year=2011|last1=Simmons|first1=Stephanie|last2=Brown|first2=Richard M|last3=Riemann|first3=Helge|last4=Abrosimov|first4=Nikolai V|last5=Becker|first5=Peter|last6=Pohl|first6=Hans-Joachim|last7=Thewalt|first7=Mike L. W|last8=Itoh|first8=Kohei M|last9=Morton|first9=John J. L|arxiv=1010.0107|bibcode=2011Natur.470...69S|s2cid=4322097}}
  • NOON photons in a superconducting quantum integrated circuit are reported.

{{Cite news |author=University of California, Santa Barbara, Office of Public Affairs |date=February 14, 2011 |title=International Team of Scientists Says It's High 'Noon' for Microwave Photons |url=http://www.ia.ucsb.edu/pa/display.aspx?pkey=2428 |access-date=February 16, 2011}}

  • A quantum antenna is described.

{{Cite news |author=Kurzweil Accelerating Intelligence |date=February 24, 2011 |title='Quantum antennas' enable exchange of quantum information between two memory cells |url=http://www.kurzweilai.net/quantum-antennas-enable-exchange-of-quantum-information-between-two-memory-cells |access-date=February 24, 2011}}

  • Multimode quantum interference is documented.{{cite journal |doi=10.1038/ncomms1228|pmid=21364563|pmc=3072100|title=Multimode quantum interference of photons in multiport integrated devices|journal=Nature Communications|volume=2|page=224|year=2011|last1=Peruzzo|first1=Alberto|last2=Laing|first2=Anthony|last3=Politi|first3=Alberto|last4=Rudolph|first4=Terry|last5=O'Brien|first5=Jeremy L|bibcode=2011NatCo...2..224P|arxiv=1007.1372}}
  • Magnetic Resonance applied to quantum computing is reported.

{{Cite news |author=KFC |date=March 7, 2011 |title=New Magnetic Resonance Technique Could Revolutionise Quantum Computing |url=https://www.technologyreview.com/2011/03/07/196521/new-magnetic-resonance-technique-could-revolutionise-quantum-computing/ |access-date=June 1, 2020}}

  • The quantum pen for single atoms is documented.

{{Cite news |last1=Weitenberg |first1=Christof |last2=Endres |first2=Manuel |last3=Sherson |first3=Jacob F. |last4=Cheneau |first4=Marc |last5=Schauß |first5=Peter |last6=Fukuhara |first6=Takeshi |last7=Bloch |first7=Immanuel |last8=Kuhr |first8=Stefan |name-list-style=amp |date=March 17, 2011 |title=A Quantum Pen for Single Atoms |url=http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html |url-status=dead |archive-url=https://web.archive.org/web/20110318143231/http://www.mpq.mpg.de/cms/mpq/en/news/press/11_03_17.html |archive-date=March 18, 2011 |access-date=March 19, 2011}}

  • Atomic "Racing Dual" is reported.{{Cite news |author= |date=March 21, 2011 |title=German research brings us one step closer to quantum computing |url=http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212 |url-status=dead |archive-url=https://web.archive.org/web/20121011161855/http://cordis.europa.eu/fetch?CALLER=EN_NEWS&ACTION=D&SESSION=&RCN=33212 |archive-date=October 11, 2012 |access-date=March 22, 2011 |work=Cordisnews}}
  • A 14-qubit register is reported.

{{Cite journal |last1=Monz |first1=T. |last2=Schindler |first2=P. |last3=Barreiro |first3=J. T. |last4=Chwalla |first4=M. |last5=Nigg |first5=D. |last6=Coish |first6=W. A. |last7=Harlander |first7=M. |last8=Hänsel |first8=W. |last9=Hennrich |first9=M. |last10=Blatt |first10=R. |year=2011 |title=14-Qubit Entanglement: Creation and Coherence |journal=Physical Review Letters |volume=106 |issue=13 |page=130506 |arxiv=1009.6126 |bibcode=2011PhRvL.106m0506M |doi=10.1103/PhysRevLett.106.130506 |pmid=21517367 |s2cid=8155660}}

  • D-Wave claims to have developed quantum annealing and introduces their product called D-Wave One. The company claims this is the first commercially available quantum computer.{{Cite news |author= |date=May 12, 2011 |title=Quantum-computing firm opens the box |url=http://physicsworld.com/cws/article/news/45960 |url-status=dead |archive-url=https://web.archive.org/web/20110515083848/http://physicsworld.com/cws/article/news/45960 |archive-date=May 15, 2011 |access-date=May 17, 2011 |work=Physicsworld.com}}
  • Repetitive error correction is demonstrated in a quantum processor.

{{cite news |author= |date=May 26, 2011 |title=Repetitive error correction demonstrated in a quantum processor |url=http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html |url-status=dead |archive-url=https://web.archive.org/web/20120107024333/http://www.physorg.com/news/2011-05-quantum-repetitive-error-processor.html |archive-date=January 7, 2012 |access-date=May 26, 2011 |newspaper=physorg.com}}

  • Diamond quantum computer memory is demonstrated.

{{cite news |author=University of California, Santa Barbara |date=June 27, 2011 |title=International Team Demonstrates Subatomic Quantum Memory in Diamond |url=http://www.ia.ucsb.edu/pa/display.aspx?pkey=2519 |access-date=June 29, 2011}}

  • Qmodes are developed.

{{cite news |author= |date=July 15, 2011 |title=Quantum computing breakthrough in the creation of massive numbers of entangled qubits |url=http://www.nanowerk.com/news/newsid=22133.php |access-date=July 18, 2011 |work=Nanowerk News}}

  • Decoherence is demonstrated as suppressed.

{{cite news |author= |date=July 20, 2011 |title=Scientists take the next major step toward quantum computing |url=http://www.nanowerk.com/news/newsid=22174.php |access-date=July 20, 2011 |work=Nanowerk News}}

  • Simplification of controlled operations is reported.

{{cite news |author= |date=August 2, 2011 |title=Dramatic simplification paves the way for building a quantum computer |url=http://www.nanowerk.com/news/newsid=22292.php |access-date=August 3, 2011 |work=Nanowerk News}}

  • Ions entangled using microwaves are documented.{{Cite journal |last1=Ospelkaus |first1=C. |last2=Warring |first2=U. |last3=Colombe |first3=Y. |last4=Brown |first4=K. R. |last5=Amini |first5=J. M. |last6=Leibfried |first6=D. |last7=Wineland |first7=D. J. |year=2011 |title=Microwave quantum logic gates for trapped ions |journal=Nature |volume=476 |issue=7359 |pages=181–184 |arxiv=1104.3573 |bibcode=2011Natur.476..181O |doi=10.1038/nature10290 |pmid=21833084 |s2cid=2902510}}
  • Practical error rates are achieved.

{{Cite news |author=Ost |first=Laura |date=August 30, 2011 |title=NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit |url=https://www.nist.gov/pml/div688/qubit-083011.cfm |access-date=September 3, 2011}}

{{Cite journal |last1=Mariantoni |first1=M. |last2=Wang |first2=H. |last3=Yamamoto |first3=T. |last4=Neeley |first4=M. |last5=Bialczak |first5=R. C. |last6=Chen |first6=Y. |last7=Lenander |first7=M. |last8=Lucero |first8=E. |last9=O'Connell |first9=A. D. |last10=Sank |first10=D. |last11=Weides |first11=M. |last12=Wenner |first12=J. |last13=Yin |first13=Y. |last14=Zhao |first14=J. |last15=Korotkov |first15=A. N. |date=September 1, 2011 |title=Implementing the Quantum von Neumann Architecture with Superconducting Circuits |journal=Science |volume=334 |issue=6052 |pages=61–65 |arxiv=1109.3743 |bibcode=2011Sci...334...61M |doi=10.1126/science.1208517 |pmid=21885732 |s2cid=11483576 |last16=Cleland |first16=A. N |last17=Martinis |first17=J. M}}

  • A quantum spin Hall topological insulator is reported.

{{Cite news

|last=Jablonski |first=Chris |title=One step closer to quantum computers |work=ZDnet

|url=https://www.zdnet.com/article/one-step-closer-to-quantum-computers/

|date=October 4, 2011

|access-date=August 29, 2018}}

  • The concept of two diamonds linked by quantum entanglement could help develop photonic processors is described.

{{Cite news |last1=Moskowitz |first1=Clara |author1-link=Clara Moskowitz |last2=Walmsley |first2=Ian |last3=Sprague |first3=Michael |date=December 2, 2011 |title=Two Diamonds Linked by Strange Quantum Entanglement |url=http://www.livescience.com/17264-quantum-entanglement-macroscopic-diamonds.html |access-date=December 2, 2011}}

=2012=

  • D-Wave claims a quantum computation using 84 qubits.

{{Cite journal |last1=Bian |first1=Z. |last2=Chudak |first2=F. |last3=MacReady |first3=W. G. |last4=Clark |first4=L. |last5=Gaitan |first5=F. |year=2013 |title=Experimental determination of Ramsey numbers with quantum annealing |journal=Physical Review Letters |volume=111 |issue=13 |page=130505 |arxiv=1201.1842 |bibcode=2013PhRvL.111m0505B |doi=10.1103/PhysRevLett.111.130505 |pmid=24116761 |s2cid=1303361}}

  • Physicists create a working transistor from a single atom.

{{Cite journal |last1=Fuechsle |first1=M. |last2=Miwa |first2=J. A. |last3=Mahapatra |first3=S. |last4=Ryu |first4=H. |last5=Lee |first5=S. |last6=Warschkow |first6=O. |last7=Hollenberg |first7=L. C. |last8=Klimeck |first8=G. |last9=Simmons |first9=M. Y. |date=February 19, 2012 |title=A single-atom transistor |journal=Nature Nanotechnology |volume=7 |issue=4 |pages=242–246 |bibcode=2012NatNa...7..242F |doi=10.1038/nnano.2012.21 |pmid=22343383 |s2cid=14952278}}

{{Cite news |author=Markoff |first=John |date=February 19, 2012 |title=Physicists Create a Working Transistor From a Single Atom |url=https://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html?partner=rss&emc=rss |access-date=February 19, 2012 |work=The New York Times}}

  • A method for manipulating the charge of nitrogen vacancy-centres in diamond is reported.{{Cite journal |last1=Grotz |first1=Bernhard |last2=Hauf |first2=Moritz V. |last3=Dankerl |first3=Markus |last4=Naydenov |first4=Boris |last5=Pezzagna |first5=Sébastien |last6=Meijer |first6=Jan |last7=Jelezko |first7=Fedor |last8=Wrachtrup |first8=Jörg |last9=Stutzmann |first9=Martin |last10=Reinhard |first10=Friedemann |last11=Garrido |first11=Jose A. |year=2012 |title=Charge state manipulation of qubits in diamond |journal=Nature Communications |volume=3 |page=729 |bibcode=2012NatCo...3..729G |doi=10.1038/ncomms1729 |pmc=3316888 |pmid=22395620}}
  • Creation of a 300 qubit/particle quantum simulator is reported.

{{Cite journal |last1=Britton |first1=J. W. |last2=Sawyer |first2=B. C. |last3=Keith |first3=A. C. |last4=Wang |first4=C. C. |last5=Freericks |first5=J. K. |last6=Uys |first6=H. |last7=Biercuk |first7=M. J. |last8=Bollinger |first8=J. J. |date=April 26, 2012 |title=Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins |journal=Nature |volume=484 |issue=7395 |pages=489–492 |arxiv=1204.5789 |bibcode=2012Natur.484..489B |doi=10.1038/nature10981 |pmid=22538611 |s2cid=4370334}}

{{Cite news |author=Sherriff |first=Lucy |title=300 atom quantum simulator smashes qubit record |url=https://www.zdnet.com/article/300-atom-quantum-simulator-smashes-qubit-record/ |access-date=February 9, 2015}}

  • Demonstration of topologically protected qubits with an eight-photon entanglement is reported; a robust approach to practical quantum computing.{{Cite journal |doi=10.1038/nature10770|pmid=22358838|title=Experimental demonstration of topological error correction|journal=Nature|volume=482|issue=7386|pages=489–494|year=2012|last1=Yao|first1=Xing-Can|last2=Wang|first2=Tian-Xiong|last3=Chen|first3=Hao-Ze|last4=Gao|first4=Wei-Bo|last5=Fowler|first5=Austin G|last6=Raussendorf|first6=Robert|last7=Chen|first7=Zeng-Bing|last8=Liu|first8=Nai-Le|last9=Lu|first9=Chao-Yang|last10=Deng|first10=You-Jin|last11=Chen|first11=Yu-Ao|last12=Pan|first12=Jian-Wei|arxiv=0905.1542|bibcode=2012Natur.482..489Y|s2cid=4307662}}
  • 1QB Information Technologies (1QBit) is founded; the world's first dedicated quantum computing software company.

{{Cite news

| title=1QBit Website

| author=1QBit

| url=http://www.1qbit.com/}}

  • The first design of a quantum repeater system without a need for quantum memories is reported.

{{Cite journal |last1=Munro |first1=W. J. |last2=Stephens |first2=A. M. |last3=Devitt |first3=S. J. |last4=Harrison |first4=K. A. |last5=Nemoto |first5=K. |author5-link=Kae Nemoto |date=October 14, 2012 |title=Quantum communication without the necessity of quantum memories |journal=Nature Photonics |volume=6 |issue=11 |pages=777–781 |arxiv=1306.4137 |bibcode=2012NaPho...6..777M |doi=10.1038/nphoton.2012.243 |s2cid=5056130}}

  • Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers is reported.

{{Cite journal |last1=Maurer |first1=P. C. |last2=Kucsko |first2=G. |last3=Latta |first3=C. |last4=Jiang |first4=L. |last5=Yao |first5=N. Y. |last6=Bennett |first6=S. D. |last7=Pastawski |first7=F. |last8=Hunger |first8=D. |last9=Chisholm |first9=N. |last10=Markham |first10=M. |last11=Twitchen |first11=D. J. |last12=Cirac |first12=J. I. |last13=Lukin |first13=M. D. |date=June 8, 2012 |title=Room-Temperature Quantum Bit Memory Exceeding One Second |url=http://nrs.harvard.edu/urn-3:HUL.InstRepos:12132060 |journal=Science |type=Submitted manuscript |volume=336 |pages=1283–1286 |bibcode=2012Sci...336.1283M |doi=10.1126/science.1220513 |pmid=22679092 |s2cid=2684102 |number=6086}}

{{cite news |author=Peckham |first=Matt |date=July 6, 2012 |title=Quantum Computing at Room Temperature – Now a Reality |url=https://techland.time.com/2012/07/06/quantum-computing-at-room-temperature-now-a-reality/ |access-date=August 5, 2012 |work=Magazine/Periodical |page=1 |agency=Time Magazine (Techland) Time Inc.}}

  • The theory of Bell-based randomness expansion with reduced assumption of measurement independence is reported.{{Cite journal |last1=Koh |first1=Dax Enshan |last2=Hall |first2=Michael J. W. |last3=Setiawan |last4=Pope |first4=James E. |last5=Marletto |first5=Chiara |last6=Kay |first6=Alastair |last7=Scarani |first7=Valerio |last8=Ekert |first8=Artur |year=2012 |title=Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion |journal=Physical Review Letters |volume=109 |issue=16 |page=160404 |arxiv=1202.3571 |bibcode=2012PhRvL.109p0404K |doi=10.1103/PhysRevLett.109.160404 |pmid=23350071 |s2cid=18935137}}
  • New low overhead method for fault-tolerant quantum logic is developed called lattice surgery.

{{Cite journal |last1=Horsman |first1=C. |last2=Fowler |first2=A. G. |last3=Devitt |first3=S. J. |last4=Van Meter |first4=R. |date=December 7, 2012 |title=Surface code quantum computing by lattice surgery |journal=New J. Phys. |volume=14 |issue=12 |page=123011 |arxiv=1111.4022 |bibcode=2012NJPh...14l3011H |doi=10.1088/1367-2630/14/12/123011 |s2cid=119212756}}

=2013=

  • Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) is demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.{{cite web | url=https://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record | title=Researchers smash through quantum computer storage record | publisher=The Verge | website=Webzine | date=November 14, 2013 | access-date=November 20, 2013 | author=Kastrenakes, Jacob}}
  • Extension of time for a qubit maintained in superimposed state for ten times longer than what has ever been achieved before is reported.{{cite web| url=http://welldonestuff.com/quantum-computer-breakthrough-2013/| title=Quantum Computer Breakthrough 2013| date=November 24, 2013| access-date=October 2, 2018| archive-date=October 2, 2018| archive-url=https://web.archive.org/web/20181002141518/http://welldonestuff.com/quantum-computer-breakthrough-2013/| url-status=dead}}
  • The first resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols is developed for factoring.

{{Cite journal |last1=Devitt |first1=S. J. |last2=Stephens |first2=A. M. |last3=Munro |first3=W. J. |last4=Nemoto |first4=K. |author4-link=Kae Nemoto |date=October 10, 2013 |title=Requirements for fault-tolerant factoring on an atom-optics quantum computer |journal=Nature Communications |volume=4 |page=2524 |arxiv=1212.4934 |bibcode=2013NatCo...4.2524D |doi=10.1038/ncomms3524 |pmid=24088785 |s2cid=7229103}}

=2014=

  • Documents leaked by Edward Snowden confirm the Penetrating Hard Targets project,{{Cite web |url=https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/ |title=Penetrating Hard Targets project |access-date=September 16, 2017 |archive-date=August 30, 2017 |archive-url=https://web.archive.org/web/20170830105417/https://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/ |url-status=dead }} by which the US National Security Agency sought to develop a quantum computing capability for cryptography purposes.{{Cite web|url=https://www.kurzweilai.net/nsa-seeks-to-develop-quantum-computer-to-crack-nearly-every-kind-of-encryption|title=NSA seeks to develop quantum computer to crack nearly every kind of encryption « Kurzweil}}[https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html NSA seeks to build quantum computer that could crack most types of encryption – Washington Post].{{Cite magazine|url=https://nation.time.com/2014/01/02/the-nsa-is-building-a-computer-to-crack-almost-any-code/|title=The NSA Is Building a Computer to Crack Almost Any Code|first=Eliana|last=Dockterman|magazine=Time |date=January 2, 2014|via=nation.time.com}}
  • Researchers in Japan and Austria publish the first large-scale quantum computing architecture for a diamond-based system.

{{Cite journal |last1=Nemoto |first1=K. |author1-link=Kae Nemoto |last2=Trupke |first2=M. |last3=Devitt |first3=S. J. |last4=Stephens |first4=A. M. |last5=Scharfenberger |first5=B. |last6=Buczak |first6=K. |last7=Nobauer |first7=T. |last8=Everitt |first8=M. S. |last9=Schmiedmayer |first9=J. |last10=Munro |first10=W. J. |date=August 4, 2014 |title=Photonic architecture for scalable quantum information processing in diamond |journal=Physical Review X |volume=4 |issue=3 |page=031022 |arxiv=1309.4277 |bibcode=2014PhRvX...4c1022N |doi=10.1103/PhysRevX.4.031022 |s2cid=118418371}}

  • Scientists at the University of Innsbruck perform quantum computations on a topologically encoded qubit which is encoded in entangled states distributed over seven trapped-ion qubits.{{cite journal |last1=Nigg |first1=D. |last2=Müller |first2=M. |last3=Martinez |first3=M. A. |last4=Schindler |first4=P. |last5=Hennrich |first5=M. |last6=Monz |first6=T. |last7=Martin-Delgado |first7=M. A. |last8=Blatt |first8=R. |date=July 18, 2014 |title=Quantum computations on a topologically encoded qubit |journal=Science |volume=345 |issue=6194 |pages=302–305 |arxiv=1403.5426 |bibcode=2014Sci...345..302N |doi=10.1126/science.1253742 |pmid=24925911 |s2cid=9677048}}
  • Scientists transfer data by quantum teleportation over a distance of {{convert|10|ft|m|abbr=off|sp=us}} with zero percent error rate; a vital step towards a quantum Internet.{{cite news|last=Markoff |first=John |title=Scientists Report Finding Reliable Way to Teleport Data |url=https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html |date=May 29, 2014 |work=The New York Times |access-date=May 29, 2014}}{{cite journal |last1=Pfaff |first1=W. |last2=Hensen |first2=B. J. |last3=Bernien |first3=H. |last4=Van Dam |first4=S. B. |last5=Blok |first5=M. S. |last6=Taminiau |first6=T. H. |last7=Tiggelman |first7=M. J. |last8=Schouten |first8=R. N. |last9=Markham |first9=M. |last10=Twitchen |first10=D. J. |last11=Hanson |first11=R. |date=May 29, 2014 |title=Unconditional quantum teleportation between distant solid-state quantum bits |journal=Science |volume=345 |issue=6196 |pages=532–535 |arxiv=1404.4369 |bibcode=2014Sci...345..532P |doi=10.1126/science.1253512 |pmid=25082696 |s2cid=2190249}}

=2015=

  • Optically addressable nuclear spins in a solid with a six-hour coherence time are documented.{{Cite journal |last1=Zhong |first1=Manjin |last2=Hedges |first2=Morgan P. |last3=Ahlefeldt |first3=Rose L. |last4=Bartholomew |first4=John G. |last5=Beavan |first5=Sarah E. |last6=Wittig |first6=Sven M. |last7=Longdell |first7=Jevon J. |last8=Sellars |first8=Matthew J. |year=2015 |title=Optically addressable nuclear spins in a solid with a six-hour coherence time |journal=Nature |volume=517 |issue=7533 |pages=177–180 |bibcode=2015Natur.517..177Z |doi=10.1038/nature14025 |pmid=25567283 |s2cid=205241727}}
  • Quantum information encoded by simple electrical pulses is documented.

{{Cite news |date=April 13, 2015 |title=Breakthrough opens door to affordable quantum computers |url=http://newsroom.unsw.edu.au/news/science-tech/breakthrough-opens-door-affordable-quantum-computers |access-date=April 16, 2015}}

  • Quantum error detection code using a square lattice of four superconducting qubits is documented.{{cite journal |last1=Córcoles |first1=A. D. |last2=Magesan |first2=Easwar |last3=Srinivasan |first3=Srikanth J. |last4=Cross |first4=Andrew W. |last5=Steffen |first5=M. |last6=Gambetta |first6=Jay M. |last7=Chow |first7=Jerry M. |year=2015 |title=Demonstration of a quantum error detection code using a square lattice of four superconducting qubits |journal=Nature Communications |volume=6 |page=6979 |arxiv=1410.6419 |bibcode=2015NatCo...6.6979C |doi=10.1038/ncomms7979 |pmc=4421819 |pmid=25923200}}
  • D-Wave Systems Incorporated announce on June 22 that it had broken the 1,000-qubit barrier.{{Cite news |date=June 22, 2015 |title=D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier |url=http://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier |url-status=dead |archive-url=https://web.archive.org/web/20180115184711/https://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier |archive-date=January 15, 2018 |access-date=June 22, 2015}}
  • A two-qubit silicon logic gate is successfully developed.

October 6, 2015

{{Cite news

| title=Crucial hurdle overcome in quantum computing

| url=http://www.newsroom.unsw.edu.au/news/science-tech/crucial-hurdle-overcome-quantum-computing

| access-date=October 6, 2015}}

=2016=

  • Physicists led by Rainer Blatt join forces with scientists at the Massachusetts Institute of Technology (MIT), led by Isaac Chuang, to efficiently implement Shor's algorithm in an ion-trap-based quantum computer.{{Cite journal |last1=Monz |first1=T. |last2=Nigg |first2=D. |last3=Martinez |first3=E. A. |last4=Brandl |first4=M. F. |last5=Schindler |first5=P. |last6=Rines |first6=R. |last7=Wang |first7=S. X. |last8=Chuang |first8=I. L. |last9=Blatt |first9=R. |display-authors=etal |date=March 4, 2016 |title=Realization of a scalable Shor algorithm |journal=Science |volume=351 |issue=6277 |pages=1068–1070 |arxiv=1507.08852 |bibcode=2016Sci...351.1068M |doi=10.1126/science.aad9480 |pmid=26941315 |s2cid=17426142}}
  • IBM releases the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing.

{{Cite journal |last1=Devitt |first1=S. J. |date=September 29, 2016 |title=Performing quantum computing experiments in the cloud |journal=Physical Review A |volume=94 |issue=3 |page=032329 |arxiv=1605.05709 |bibcode=2016PhRvA..94c2329D |doi=10.1103/PhysRevA.94.032329 |s2cid=119217150}}

{{Cite journal |last1=Alsina |first1=D. |last2=Latorre |first2=J. I. |year=2016 |title=Experimental test of Mermin inequalities on a five-qubit quantum computer |journal=Physical Review A |volume=94 |issue=1 |page=012314 |arxiv=1605.04220 |bibcode=2016PhRvA..94a2314A |doi=10.1103/PhysRevA.94.012314 |s2cid=119189277}}

  • Google, using an array of 9 superconducting qubits developed by the Martinis group and UCSB, simulates a hydrogen molecule.{{Cite journal |last1=o'Malley |first1=P. J. J. |last2=Babbush |first2=R. |last3=Kivlichan |first3=I. D. |last4=Romero |first4=J. |last5=McClean |first5=J. R. |last6=Barends |first6=R. |last7=Kelly |first7=J. |last8=Roushan |first8=P. |last9=Tranter |first9=A. |last10=Ding |first10=N. |last11=Campbell |first11=B. |last12=Chen |first12=Y. |last13=Chen |first13=Z. |last14=Chiaro |first14=B. |last15=Dunsworth |first15=A. |display-authors=etal |date=July 18, 2016 |title=Scalable Quantum Simulation of Molecular Energies |journal=Physical Review X |volume=6 |issue=3 |page=031007 |arxiv=1512.06860 |bibcode=2016PhRvX...6c1007O |doi=10.1103/PhysRevX.6.031007 |s2cid=4884151 |last16=Fowler |first16=A. G |last17=Jeffrey |first17=E |last18=Lucero |first18=E |last19=Megrant |first19=A |last20=Mutus |first20=J. Y |last21=Neeley |first21=M |last22=Neill |first22=C |last23=Quintana |first23=C |last24=Sank |first24=D |last25=Vainsencher |first25=A |last26=Wenner |first26=J |last27=White |first27=T. C |last28=Coveney |first28=P. V |last29=Love |first29=P. J |last30=Neven |first30=H}}
  • Scientists in Japan and Australia invent a quantum version of a Sneakernet communications system.

{{Cite journal |last1=Devitt |first1=S. J. |last2=Greentree |first2=A. D. |last3=Stephens |first3=A. M. |last4=Van Meter |first4=R. |date=November 2, 2016 |title=High-speed quantum networking by ship |journal=Scientific Reports |volume=6 |page=36163 |arxiv=1605.05709 |bibcode=2016NatSR...636163D |doi=10.1038/srep36163 |pmc=5090252 |pmid=27805001}}

=2017=

  • D-Wave Systems Incorporated announce general commercial availability of the D-Wave 2000Q quantum annealer, which it claims has 2000 qubits.{{cite web|url=http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order|title=D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order {{!}} D-Wave Systems|website=www.dwavesys.com|access-date=January 26, 2017|archive-date=January 27, 2017|archive-url=https://web.archive.org/web/20170127044404/http://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order|url-status=dead}}
  • A blueprint for a microwave trapped ion quantum computer is published.{{Cite journal |title=Blueprint for a microwave trapped ion quantum computer |journal=Science Advances|volume=3 |issue=2 |page=e1601540 |date=February 1, 2017

|doi=10.1126/sciadv.1601540 |pmid=28164154 |pmc=5287699 |last1=Lekitsch|first1=B|last2=Weidt|first2=S|last3=Fowler|first3=A. G|last4=Mølmer|first4=K|last5=Devitt|first5=S. J|last6=Wunderlich|first6=C|last7=Hensinger|first7=W. K|bibcode=2017SciA....3E1540L|arxiv=1508.00420}}

  • IBM unveils a 17-qubit quantum computer—and a better way of benchmarking it.{{Cite journal|author=Meredith Rutland Bauer |date=May 17, 2017 |title=IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet

|url=https://www.vice.com/en/article/ibm-17-qubit-quantum-processor-computer-google/ |journal=Motherboard}}

  • Scientists build a microchip that generates two entangled qudits each with 10 states, for 100 dimensions total.{{cite web|url=https://spectrum.ieee.org/qudits-the-real-future-of-quantum-computing|title=Qudits: The Real Future of Quantum Computing?|website=IEEE Spectrum|access-date=June 29, 2017|date=June 28, 2017}}
  • Microsoft revealed Q#, a quantum programming language integrated with its Visual Studio development environment. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on Azure.{{cite web|url=https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/|title=Microsoft makes play for next wave of computing with quantum computing toolkit|website=arstechnica.com|access-date=October 5, 2017|date=September 25, 2017}}
  • IBM reveals a working 50-qubit quantum computer that maintains its quantum state for 90 microseconds.{{cite web|url=https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/|title=IBM Raises the Bar with a 50-Qubit Quantum Computer|website=MIT Technology Review|access-date=December 13, 2017}}
  • The first teleportation using a satellite, connecting ground stations over a distance of 1400 km apart is announced.{{Cite journal|last1=Ren|first1=Ji-Gang|last2=Xu|first2=Ping|last3=Yong|first3=Hai-Lin|last4=Zhang|first4=Liang|last5=Liao|first5=Sheng-Kai|last6=Yin|first6=Juan|last7=Liu|first7=Wei-Yue|last8=Cai|first8=Wen-Qi|last9=Yang|first9=Meng|last10=Li|first10=Li|last11=Yang|first11=Kui-Xing|date=2017-08-09|title=Ground-to-satellite quantum teleportation|url=https://www.nature.com/articles/nature23675/|journal=Nature|language=en|volume=549|issue=7670|pages=70–73|doi=10.1038/nature23675|pmid=28825708|issn=1476-4687|arxiv=1707.00934|bibcode=2017Natur.549...70R|s2cid=4468803}} Previous experiments were at Earth, at shorter distances.

=2018=

  • John Preskill introduces the concept of noisy intermediate-scale quantum (NISQ) era.{{Cite journal |last=Preskill |first=John |date=2018-08-06 |title=Quantum Computing in the NISQ era and beyond |url=https://quantum-journal.org/papers/q-2018-08-06-79/ |journal=Quantum |language=en |volume=2 |pages=79 |doi=10.22331/q-2018-08-06-79 |issn=2521-327X|arxiv=1801.00862 |bibcode=2018Quant...2...79P }}
  • MIT scientists report the discovery of a new triple-photon form of light.{{cite web |last=Hignett |first=Katherine |title=Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution |url=http://www.newsweek.com/photons-light-physics-808862 |date=February 16, 2018 |website=Newsweek |access-date=February 17, 2018 }}{{cite journal |title=Observation of three-photon bound states in a quantum nonlinear medium |date=February 16, 2018 |journal=Science |volume=359 |issue=6377 |pages=783–786 |doi=10.1126/science.aao7293 |pmid=29449489 |pmc=6467536 |arxiv=1709.01478 |bibcode=2018Sci...359..783L |last1=Liang |first1=Q. Y |last2=Venkatramani |first2=A. V |last3=Cantu |first3=S. H |last4=Nicholson |first4=T. L |last5=Gullans |first5=M. J |last6=Gorshkov |first6=A. V |last7=Thompson |first7=J. D |last8=Chin |first8=C |last9=Lukin |first9=M. D |last10=Vuletić |first10=V }}
  • Oxford researchers successfully use a trapped-ion technique, where they place two charged atoms in a state of quantum entanglement to speed up logic gates by a factor of 20 to 60 times, as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.{{cite news | url=https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html |archive-url=https://ghostarchive.org/archive/20220507/https://www.independent.co.uk/life-style/gadgets-and-tech/news/quantum-computing-logic-gates-oxford-university-breakthrough-latest-discovery-a8235281.html |archive-date=May 7, 2022 |url-access=subscription |url-status=live | title=Scientists make major quantum computing breakthrough| website=Independent.co.uk| date=March 2018}}
  • QuTech successfully tests a silicon-based 2-spin-qubit processor.{{cite news |last1=Giles |first1=Martin |title=Old-fashioned silicon might be the key to building ubiquitous quantum computers |url=https://www.technologyreview.com/s/610273/old-fashioned-silicon-might-be-the-key-to-building-ubiquitous-quantum-computers/ |access-date=July 5, 2018 |work=MIT Technology Review |date=February 15, 2018}}{{Cite journal |last1=Watson |first1=T. F. |last2=Philips |first2=S. G. J. |last3=Kawakami |first3=E. |last4=Ward |first4=D. R. |last5=Scarlino |first5=P. |last6=Veldhorst |first6=M. |last7=Savage |first7=D. E. |last8=Lagally |first8=M. G. |last9=Friesen |first9=Mark |last10=Coppersmith |first10=S. N. |last11=Eriksson |first11=M. A. |last12=Vandersypen |first12=L. M. K. |date=29 March 2018 |title=A programmable two-qubit quantum processor in silicon |url=https://www.nature.com/articles/nature25766 |journal=Nature |language=en |volume=555 |issue=7698 |pages=633–637 |doi=10.1038/nature25766 |pmid=29443962 |arxiv=1708.04214 |bibcode=2018Natur.555..633W |issn=1476-4687}}
  • Google announces the creation of a 72-qubit quantum chip, called "Bristlecone",{{cite web |url=https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer |website=Science News |author=Emily Conover |title=Google moves toward quantum supremacy with 72-qubit computer |date=March 5, 2018 |access-date=August 28, 2018}} achieving a new record.
  • Intel announces the fabrication and testing of silicon-based spin-qubit processors manufactured in the company's D1D fab in Oregon.{{cite news |last1=Forrest |first1=Conner |title=Why Intel's smallest spin qubit chip could be a turning point in quantum computing |url=https://www.techrepublic.com/article/why-intels-smallest-spin-qubit-chip-could-be-a-turning-point-in-quantum-computing/ |access-date=July 12, 2018 |work=TechRepublic |date=June 12, 2018}}{{Cite book |last1=Pillarisetty |first1=R. |last2=Thomas |first2=N. |last3=George |first3=H.C. |last4=Singh |first4=K. |last5=Roberts |first5=J. |last6=Lampert |first6=L. |last7=Amin |first7=P. |last8=Watson |first8=T.F. |last9=Zheng |first9=G. |last10=Torres |first10=J. |last11=Metz |first11=M. |last12=Kotlyar |first12=R. |last13=Keys |first13=P. |last14=Boter |first14=J.M. |last15=Dehollain |first15=J.P. |chapter=Qubit Device Integration Using Advanced Semiconductor Manufacturing Process Technology |date=17 January 2019 |title=2018 IEEE International Electron Devices Meeting (IEDM) |chapter-url=https://ieeexplore.ieee.org/document/8614624 |publisher=IEEE |pages=6.3.1–6.3.4 |doi=10.1109/IEDM.2018.8614624 |isbn=978-1-7281-1987-8|url=http://resolver.tudelft.nl/uuid:97ec7db9-4b61-4a03-ac98-7e77cc2eebbf }}
  • Intel confirms development of a 49-qubit superconducting test chip, called "Tangle Lake".{{cite web |last1=Hsu |first1=Jeremy |title=CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy |url=https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy |publisher=Institute of Electrical and Electronics Engineers |access-date=July 5, 2018 |date=January 9, 2018}}
  • Japanese researchers demonstrate universal holonomic quantum gates.{{Cite journal |title=Universal holonomic quantum gates over geometric spin qubits with polarised microwaves |date=August 13, 2018 |journal=Nature Communications |volume=9 |page=3227 |number=3227 |doi=10.1038/s41467-018-05664-w |pmid=30104616 |pmc=6089953 |last1=Nagata |first1=K |last2=Kuramitani |first2=K |last3=Sekiguchi |first3=Y |last4=Kosaka |first4=H |bibcode=2018NatCo...9.3227N }}
  • An integrated photonic platform for quantum information with continuous variables is documented.{{cite journal|last1= Lenzini |first1= Francesco |title= Integrated photonic platform for quantum information with continuous variables |journal=Science Advances |volume= 4 |issue= 12 |pages= eaat9331 |date= December 7, 2018 |doi= 10.1126/sciadv.aat9331 |pmid= 30539143 |pmc= 6286167 |arxiv= 1804.07435 |bibcode= 2018SciA....4.9331L |doi-access= free }}
  • On December 17, 2018, the company IonQ introduces the first commercial trapped-ion quantum computer, with a program length of over 60 two-qubit gates, 11 fully connected qubits, 55 addressable pairs, one-qubit gate error of <0.03% and two-qubit gate error of <1.0%.{{Cite web|url=https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/|title=Ion-based commercial quantum computer is a first|date=December 17, 2018|website=Physics World}}{{cite web | url=https://ionq.com/ |title = IonQ}}
  • On December 21, 2018, the US National Quantum Initiative Act was signed into law by US President Donald Trump, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the United States.{{cite web|url=https://www.govtrack.us/congress/bills/115/hr6227|title=H.R. 6227 (115th)|author=115th Congress (2018)|date=June 26, 2018|work=Legislation|publisher=GovTrack.us|access-date=February 11, 2019|quote=National Quantum Initiative Act}}{{cite web|url=https://www.technologyreview.com/the-download/612679/president-trump-has-signed-a-12-billon-law-to-boost-us-quantum-tech/|title=President Trump has signed a $1.2 billon law to boost US quantum tech|website=MIT Technology Review|access-date=February 11, 2019}}{{cite web|url=https://thestack.com/data-centre/2018/12/18/us-national-quantum-initiative-act/|title=US National Quantum Initiative Act passed unanimously|date=December 18, 2018|website=The Stack|access-date=February 11, 2019}}

=2019=

{{See also|2019 in science}}

File:IBM Q system (Fraunhofer 2).jpg (2019), the first circuit-based commercial quantum computer]]

  • IBM unveils its first commercial quantum computer, the IBM Q System One,{{cite web|url=https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/|title=IBM unveils its first commercial quantum computer|last=Aron|first=Jacob|date=January 8, 2019|website=New Scientist|access-date=January 8, 2019}} designed by UK-based Map Project Office and Universal Design Studio and manufactured by Goppion.{{cite web|url=https://techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-quantum-computer/|title=IBM unveils its first commercial quantum computer|website=TechCrunch|date=January 8, 2019|access-date=February 18, 2019}}
  • Austrian physicists demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor.{{cite journal |title=Self-verifying variational quantum simulation of lattice models |date=May 15, 2019 |journal=Science |doi=10.1038/s41586-019-1177-4 |volume=569 |issue=7756 | pages=355–360 |bibcode=2019Natur.569..355K |arxiv=1810.03421 |pmid=31092942 |last1=Kokail |first1=C |last2=Maier |first2=C |last3=Van Bijnen |first3=R |last4=Brydges |first4=T |last5=Joshi |first5=M. K |last6=Jurcevic |first6=P |last7=Muschik |first7=C. A |last8=Silvi |first8=P |last9=Blatt |first9=R |last10=Roos |first10=C |last11=Zoller |first11=P |s2cid=53595106 |display-editors=etal}}
  • Griffith University, University of New South Wales (UNSW), Sydney, Australia, and UTS, in partnership with seven universities in the United States, develop noise cancelling for quantum bits via machine learning, taking quantum noise in a quantum chip down to 0%.{{cite web |author=UNSW Media |date=2019-05-23 |title='Noise-cancelling headphones' for quantum computers: international collaboration launched |url=https://newsroom.unsw.edu.au/news/science-tech/noise-cancelling-headphones%E2%80%99-quantum-computers-international-collaboration#:~:text=A%20new%20project%20to%20develop,quantum%20building%20blocks%2C%20or%20qubits.&text=Morello%27s%20team%20was%20the%20first,information%20in%20a%20silicon%20chip |access-date=2022-04-16 |website=UNSW Newsroom |publisher=University of New South Wales}}{{cite web |date=May 23, 2019 |title=Cancelling quantum noise |url=https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/cancelling-quantum-noise}}
  • Quantum Darwinism is observed in diamond at room temperature.{{cite journal |title=Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers |date=Oct 1, 2019 |journal=Physical Review Letters |doi=10.1103/PhysRevLett.123.140402 |volume=123 |issue=140402 |arxiv=1809.10456|last1=Unden |first1=T. |last2=Louzon |first2=D. |last3=Zwolak |first3=M. |last4=Zurek |first4=W. H. |last5=Jelezko |first5=F.|page=140402 |pmid=31702205 |pmc=7003699 |bibcode=2019PhRvL.123n0402U |display-editors=etal}}{{cite journal |title=Quantum Darwinism seen in diamond traps |date=Sep 13, 2019 |journal=Science |doi=10.1126/science.365.6458.1070 |volume=365 |issue=6458|last1=Cho |first1=A.|page=1070 |pmid=31515367 |bibcode=2019Sci...365.1070C |s2cid=202567042 |display-editors=etal}}
  • Google reveals its Sycamore processor, consisting of 53 qubits. A paper by Google's quantum computer research team is briefly available in late September 2019, claiming the project had reached quantum supremacy.{{cite web|url=https://www.engadget.com/2019/09/23/google-quantum-supremacy/|title=Google may have taken a step towards quantum computing 'supremacy' (updated)|website=Engadget|date=September 23, 2019 |access-date=September 24, 2019}}{{cite web|url=https://www.theverge.com/2019/9/23/20879485/google-quantum-supremacy-qubits-nasa|title=Google may have just ushered in an era of 'quantum supremacy'|last=Porter|first=Jon|date=September 23, 2019|website=The Verge|access-date=September 24, 2019}}{{cite web|url=https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17 |archive-url=https://ghostarchive.org/archive/20221210/https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17 |archive-date=December 10, 2022 |url-access=subscription |url-status=live|title=Google claims to have reached quantum supremacy|last=Murgia, Waters|first=Madhumita, Richard|date=September 20, 2019|website=Financial Times|access-date=September 24, 2019}} Google also develops a cryogenic chip for controlling qubits from within a dilution refrigerator.{{cite web |title=Google Builds Circuit to Solve One of Quantum Computing's Biggest Problems – IEEE Spectrum |url=https://spectrum.ieee.org/google-team-builds-circuit-to-solve-one-of-quantum-computings-biggest-problems}}
  • University of Science and Technology of China researchers demonstrate boson sampling with 14 detected photons.{{cite web |last1=Garisto |first1=Daniel |title=Quantum Computer Made from Photons Achieves a New Record |url=https://www.scientificamerican.com/article/quantum-computer-made-from-photons-achieves-a-new-record/ |website=Scientific American |access-date=June 30, 2021 |language=en}}

2020s

=2020=

{{See also|2020 in science|Timeline of computing 2020–present|2020 in philosophy}}

  • 20 April – UNSW Sydney develops a way of producing 'hot qubits' – quantum devices that operate at 1.5 kelvin.{{cite web|url=https://newsroom.unsw.edu.au/news/science-tech/hot-qubits-made-sydney-break-one-biggest-constraints-practical-quantum-computers|title = Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers| work=UNSW Newsroom |date = April 16, 2020 | author1=z8826307 }}
  • 11 March – UNSW perform electric nuclear resonance to control single atoms in electronic devices.{{cite web|url=https://newsroom.unsw.edu.au/news/science-tech/engineers-crack-58-year-old-puzzle-way-quantum-breakthrough|title = Engineers crack 58-year-old puzzle on way to quantum breakthrough| work=UNSW Newsroom |date = March 12, 2020 | author1=z8826307 }}
  • 23 April – University of Tokyo and Australian scientists create and successfully test a solution to the quantum wiring problem, creating a 2D structure for qubits. Such structure can be built using existing integrated circuit technology and has considerably lower cross-talk.{{cite web|url=https://eurekalert.org/pub_releases/2020-04/tuos-wtq042320.php|title = Wiring the quantum computer of the future: A novel simple build with existing technology}}
  • 16 January – Quantum physicists report the first direct splitting of one photon into three using spontaneous parametric down-conversion which may have applications in quantum technology.{{cite web |title=Quantum researchers able to split one photon into three |url=https://phys.org/news/2020-02-quantum-photon.html |website=phys.org |access-date=9 March 2020 |language=en-us}}{{cite journal |last1=Chang |first1=C. W. Sandbo |last2=Sabín |first2=Carlos |last3=Forn-Díaz |first3=P. |last4=Quijandría |first4=Fernando |last5=Vadiraj |first5=A. M. |last6=Nsanzineza |first6=I. |last7=Johansson |first7=G. |last8=Wilson |first8=C. M. |title=Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity |journal=Physical Review X |date=16 January 2020 |volume=10 |issue=1 |page=011011 |doi=10.1103/PhysRevX.10.011011 |arxiv=1907.08692 |bibcode=2020PhRvX..10a1011C |doi-access=free }}
  • 11 February – Quantum engineers report that they created artificial atoms in silicon quantum dots for quantum computing and that artificial atoms with a higher number of electrons can be more stable qubits than previously thought possible. Enabling silicon-based quantum computers may make it possible to reuse the manufacturing technology of "classical" modern-day computer chips among other advantages.{{cite news |title=Artificial atoms create stable qubits for quantum computing |url=https://phys.org/news/2020-02-artificial-atoms-stable-qubits-quantum.html |website=phys.org |access-date=9 March 2020 |language=en-us}}{{cite journal |last1=Leon |first1=R. C. C. |last2=Yang |first2=C. H. |last3=Hwang |first3=J. C. C. |last4=Lemyre |first4=J. Camirand |last5=Tanttu |first5=T. |last6=Huang |first6=W. |last7=Chan |first7=K. W. |last8=Tan |first8=K. Y. |last9=Hudson |first9=F. E. |last10=Itoh |first10=K. M. |last11=Morello |first11=A. |last12=Laucht |first12=A. |last13=Pioro-Ladrière |first13=M. |last14=Saraiva |first14=A. |last15=Dzurak |first15=A. S. |title=Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot |journal=Nature Communications |date=11 February 2020 |volume=11 |issue=1 |page=797 |doi=10.1038/s41467-019-14053-w |pmid=32047151 |pmc=7012832 |arxiv=1902.01550 |bibcode=2020NatCo..11..797L |language=en |issn=2041-1723}}
  • 14 February – Quantum physicists develop a novel single-photon source which may allow bridging of semiconductor-based quantum-computers that use photons by converting the state of an electron spin to the polarisation of a photon. They showed that they can generate a single photon in a controlled way without the need for randomly formed quantum dots or structural defects in diamonds.{{cite news |title=Producing single photons from a stream of single electrons |url=https://phys.org/news/2020-02-photons-stream-electrons.html |website=phys.org |access-date=8 March 2020 |language=en-us}}{{cite journal |last1=Hsiao |first1=Tzu-Kan |last2=Rubino |first2=Antonio |last3=Chung |first3=Yousun |last4=Son |first4=Seok-Kyun |last5=Hou |first5=Hangtian |last6=Pedrós |first6=Jorge |last7=Nasir |first7=Ateeq |last8=Éthier-Majcher |first8=Gabriel |last9=Stanley |first9=Megan J. |last10=Phillips |first10=Richard T. |last11=Mitchell |first11=Thomas A. |last12=Griffiths |first12=Jonathan P. |last13=Farrer |first13=Ian |last14=Ritchie |first14=David A. |last15=Ford |first15=Christopher J. B. |title=Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode |journal=Nature Communications |date=14 February 2020 |volume=11 |issue=1 |page=917 |doi=10.1038/s41467-020-14560-1 |pmid=32060278 |pmc=7021712 |arxiv=1901.03464 |bibcode=2020NatCo..11..917H |language=en |issn=2041-1723}}
  • 25 February – Scientists visualize a quantum measurement: by taking snapshots of ion states at different times of measurement via coupling of a trapped ion qutrit to the photon environment, they showed that the changes of the degrees of superpositions, and therefore of probabilities of states after measurement, happens gradually under the measurement influence.{{cite news |title=Scientists 'film' a quantum measurement |url=https://phys.org/news/2020-02-scientists-quantum.html |website=phys.org |access-date=9 March 2020 |language=en-us}}{{cite journal |last1=Pokorny |first1=Fabian |last2=Zhang |first2=Chi |last3=Higgins |first3=Gerard |last4=Cabello |first4=Adán |last5=Kleinmann |first5=Matthias |last6=Hennrich |first6=Markus |title=Tracking the Dynamics of an Ideal Quantum Measurement |journal=Physical Review Letters |date=25 February 2020 |volume=124 |issue=8 |page=080401 |doi=10.1103/PhysRevLett.124.080401 |pmid=32167322 |arxiv=1903.10398 |bibcode=2020PhRvL.124h0401P |s2cid=85501331 }}
  • File:IQM Quantum Computer Espoo Finland.jpg2 March – Scientists report achieving repeated quantum nondemolition measurements of an electron's spin in a silicon quantum dot: measurements that do not change the electron's spin in the process.{{cite news |title=Scientists measure electron spin qubit without demolishing it |url=https://phys.org/news/2020-03-scientists-electron-qubit-demolishing.html |access-date=5 April 2020 |work=phys.org |language=en-us}}{{cite journal |last1=Yoneda |first1=J. |last2=Takeda |first2=K. |last3=Noiri |first3=A. |last4=Nakajima |first4=T. |last5=Li |first5=S. |last6=Kamioka |first6=J. |last7=Kodera |first7=T. |last8=Tarucha |first8=S. |title=Quantum non-demolition readout of an electron spin in silicon |journal=Nature Communications |date=2 March 2020 |volume=11 |issue=1 |page=1144 |doi=10.1038/s41467-020-14818-8 |pmid=32123167 |pmc=7052195 |arxiv=1910.11963 |bibcode=2020NatCo..11.1144Y |language=en |issn=2041-1723}}
  • 11 March – Quantum engineers report to have controlled the nucleus of a single atom using only electric fields. This was first suggested to be possible in 1961 and may be used for silicon quantum computers that use single-atom spins without needing oscillating magnetic fields. This may be especially useful for nanodevices, for precise sensors of electric and magnetic fields, as well as for fundamental inquiries into quantum nature.{{cite news |title=Engineers crack 58-year-old puzzle on way to quantum breakthrough |url=https://phys.org/news/2020-03-year-old-puzzle-quantum-breakthrough.html |access-date=5 April 2020 |work=phys.org |language=en-us}}{{cite journal |last1=Asaad |first1=Serwan |last2=Mourik |first2=Vincent |last3=Joecker |first3=Benjamin |last4=Johnson |first4=Mark A. I. |last5=Baczewski |first5=Andrew D. |last6=Firgau |first6=Hannes R. |last7=Mądzik |first7=Mateusz T. |last8=Schmitt |first8=Vivien |last9=Pla |first9=Jarryd J. |last10=Hudson |first10=Fay E. |last11=Itoh |first11=Kohei M. |last12=McCallum |first12=Jeffrey C. |last13=Dzurak |first13=Andrew S. |last14=Laucht |first14=Arne |last15=Morello |first15=Andrea |title=Coherent electrical control of a single high-spin nucleus in silicon |journal=Nature |date=March 2020 |volume=579 |issue=7798 |pages=205–209 |doi=10.1038/s41586-020-2057-7 |pmid=32161384 |arxiv=1906.01086 |bibcode=2020Natur.579..205A |s2cid=174797899 }}
  • 19 March – A US Army laboratory announces that its scientists analysed a Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies—from {{nowrap|0 to 10^12 Hz}} (the spectrum to 0.3 mm wavelength). The Rydberg sensor may potentially be used to detect communications signals as it could reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.{{Cite web |last=Laboratory |first=The Army Research |title=Scientists create quantum sensor that covers entire radio frequency spectrum |url=https://phys.org/news/2020-03-scientists-quantum-sensor-entire-radio.html |access-date=2024-04-14 |website=phys.org |language=en}}{{cite journal |last1=Meyer |first1=David H |last2=Castillo |first2=Zachary A |last3=Cox |first3=Kevin C |last4=Kunz |first4=Paul D |title=Assessment of Rydberg atoms for wideband electric field sensing |journal=Journal of Physics B: Atomic, Molecular and Optical Physics |date=10 January 2020 |volume=53 |issue=3 |page=034001 |doi=10.1088/1361-6455/ab6051 |arxiv=1910.00646 |bibcode=2020JPhB...53c4001M |s2cid=203626886 |issn=0953-4075}}
  • 23 March – Researchers report that they corrected for signal loss in a prototype quantum node that can catch, store and entangle bits of quantum information. Their concepts could be used for key components of quantum repeaters in quantum networks and extend their longest possible range.{{cite news |title=Researchers demonstrate the missing link for a quantum internet |url=https://phys.org/news/2020-03-link-quantum-internet.html |access-date=7 April 2020 |work=phys.org |language=en-us}}{{cite journal |last1=Bhaskar |first1=M. K. |last2=Riedinger |first2=R. |last3=Machielse |first3=B. |last4=Levonian |first4=D. S. |last5=Nguyen |first5=C. T. |last6=Knall |first6=E. N. |last7=Park |first7=H. |last8=Englund |first8=D. |last9=Lončar |first9=M. |last10=Sukachev |first10=D. D. |last11=Lukin |first11=M. D. |title=Experimental demonstration of memory-enhanced quantum communication |journal=Nature |date=April 2020 |volume=580 |issue=7801 |pages=60–64 |doi=10.1038/s41586-020-2103-5 |pmid=32238931 |arxiv=1909.01323 |bibcode=2020Natur.580...60B |s2cid=202539813 }}
  • 15 April – Researchers demonstrate a proof-of-concept silicon quantum processor unit cell which works at 1.5 kelvin – many times warmer than common quantum processors that are being developed. The finding may enable the integration of classical control electronics with a qubit array and substantially reduce costs. The cooling requirements necessary for quantum computing have been called one of the toughest roadblocks in the field.{{cite news |last1=Delbert |first1=Caroline |title=Hot Qubits Could Deliver a Quantum Computing Breakthrough |url=https://www.popularmechanics.com/science/a32170397/hot-qubits-quantum-computing-breakthrough/ |access-date=16 May 2020 |work=Popular Mechanics |date=17 April 2020}}{{cite news |date=15 April 2020 |title='Hot' qubits crack quantum computing temperature barrier – ABC News |url=https://www.abc.net.au/news/science/2020-04-16/hot-qubits-crack-quantum-computing-temperature-barrier/12132400 |access-date=16 May 2020 |work=www.abc.net.au |language=en-AU}}{{cite news |title=Hot qubits break one of the biggest constraints to practical quantum computers |url=https://phys.org/news/2020-04-hot-qubits-biggest-constraints-quantum.html |access-date=16 May 2020 |work=phys.org |language=en}}{{cite journal |last1=Yang |first1=C. H. |last2=Leon |first2=R. C. C. |last3=Hwang |first3=J. C. C. |last4=Saraiva |first4=A. |last5=Tanttu |first5=T. |last6=Huang |first6=W. |last7=Camirand Lemyre |first7=J. |last8=Chan |first8=K. W. |last9=Tan |first9=K. Y. |last10=Hudson |first10=F. E. |last11=Itoh |first11=K. M. |last12=Morello |first12=A. |last13=Pioro-Ladrière |first13=M. |last14=Laucht |first14=A. |last15=Dzurak |first15=A. S. |title=Operation of a silicon quantum processor unit cell above one kelvin |journal=Nature |date=April 2020 |volume=580 |issue=7803 |pages=350–354 |doi=10.1038/s41586-020-2171-6 |pmid=32296190 |arxiv=1902.09126 |bibcode=2020Natur.580..350Y |s2cid=119520750 }}
  • 16 April – Scientists prove the existence of the Rashba effect in bulk perovskites. Previously researchers have hypothesized that the materials' extraordinary electronic, magnetic and optical properties – which make it a commonly used material for solar cells and quantum electronics – are related to this effect which to date had not been proven to be present in the material.{{cite news |title=New discovery settles long-standing debate about photovoltaic materials |url=https://phys.org/news/2020-04-discovery-long-standing-debate-photovoltaic-materials.html |access-date=17 May 2020 |work=phys.org |language=en}}{{cite journal |last1=Liu |first1=Z. |last2=Vaswani |first2=C. |last3=Yang |first3=X. |last4=Zhao |first4=X. |last5=Yao |first5=Y. |last6=Song |first6=Z. |last7=Cheng |first7=D. |last8=Shi |first8=Y. |last9=Luo |first9=L. |last10=Mudiyanselage |first10=D.-H. |last11=Huang |first11=C. |last12=Park |first12=J.-M. |last13=Kim |first13=R. H. J. |last14=Zhao |first14=J. |last15=Yan |first15=Y. |last16=Ho |first16=K.-M. |last17=Wang |first17=J. |title=Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite {\mathrm{CH}}_{3}{\mathrm{NH}}_{3}{\mathrm{PbI}}_{3} |journal=Physical Review Letters |date=16 April 2020 |volume=124 |issue=15 |pages=157401 |doi=10.1103/PhysRevLett.124.157401 |pmid=32357060 |s2cid=214606050 |doi-access=free |arxiv=1905.12373 }}
  • 8 May – Researchers report to have developed a proof-of-concept of a quantum radar using quantum entanglement and microwaves which may potentially be useful for the development of improved radar systems, security scanners and medical imaging systems.{{cite news |title=Scientists demonstrate quantum radar prototype |url=https://phys.org/news/2020-05-scientists-quantum-radar-prototype.html |access-date=12 June 2020 |work=phys.org |language=en}}{{cite news |date=12 May 2020 |title='Quantum radar' uses entangled photons to detect objects |url=https://newatlas.com/physics/quantum-radar-entangled-photons/ |access-date=12 June 2020 |work=New Atlas}}{{cite journal |last1=Barzanjeh |first1=S. |last2=Pirandola |first2=S. |last3=Vitali |first3=D. |last4=Fink |first4=J. M. |title=Microwave quantum illumination using a digital receiver |journal=Science Advances |date=1 May 2020 |volume=6 |issue=19 |pages=eabb0451 |doi=10.1126/sciadv.abb0451 |pmid=32548249 |pmc=7272231 |arxiv=1908.03058 |bibcode=2020SciA....6..451B |doi-access=free }}
  • 12 May – Researchers report to have developed a method to selectively manipulate a layered manganite's correlated electrons' spin state while leaving its orbital state intact using femtosecond X-ray laser pulses. This may indicate that orbitronics – using variations in the orientations of orbitals – may be used as the basic unit of information in novel information technology devices.{{cite news |title=Scientists break the link between a quantum material's spin and orbital states |url=https://phys.org/news/2020-05-scientists-link-quantum-material-orbital.html |access-date=12 June 2020 |work=phys.org |language=en}}{{cite journal |last1=Shen |first1=L. |last2=Mack |first2=S. A. |last3=Dakovski |first3=G. |last4=Coslovich |first4=G. |last5=Krupin |first5=O. |last6=Hoffmann |first6=M. |last7=Huang |first7=S.-W. |last8=Chuang |first8=Y-D. |last9=Johnson |first9=J. A. |last10=Lieu |first10=S. |last11=Zohar |first11=S. |last12=Ford |first12=C. |last13=Kozina |first13=M. |last14=Schlotter |first14=W. |last15=Minitti |first15=M. P. |last16=Fujioka |first16=J. |last17=Moore |first17=R. |last18=Lee |first18=W-S. |last19=Hussain |first19=Z. |last20=Tokura |first20=Y. |last21=Littlewood |first21=P. |last22=Turner |first22=J. J. |title=Decoupling spin–orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation |journal=Physical Review B |date=12 May 2020 |volume=101 |issue=20 |page=201103 |doi=10.1103/PhysRevB.101.201103 |arxiv=1912.10234 |bibcode=2020PhRvB.101t1103S |doi-access=free }}
  • 19 May – Researchers report to have developed the first integrated silicon on-chip low-noise single-photon source compatible with large-scale quantum photonics.{{cite news |title=Photon discovery is a major step toward large-scale quantum technologies |url=https://phys.org/news/2020-05-photon-discovery-major-large-scale-quantum.html |access-date=14 June 2020 |work=phys.org |language=en}}{{cite web |title=Physicists develop integrated photon source for macro quantum-photonics |url=https://optics.org/news/11/5/44 |website=optics.org |access-date=14 June 2020}}{{cite journal |last1=Paesani |first1=S. |last2=Borghi |first2=M. |last3=Signorini |first3=S. |last4=Maïnos |first4=A. |last5=Pavesi |first5=L. |last6=Laing |first6=A. |title=Near-ideal spontaneous photon sources in silicon quantum photonics |journal=Nature Communications |date=19 May 2020 |volume=11 |issue=1 |page=2505 |doi=10.1038/s41467-020-16187-8 |pmid=32427911 |pmc=7237445 |arxiv=2005.09579 |bibcode=2020NatCo..11.2505P |doi-access=free }}
  • 11 June – Scientists report the generation of rubidium Bose–Einstein condensates (BECs) in the Cold Atom Laboratory aboard the International Space Station under microgravity which could enable improved research of BECs and quantum mechanics, whose physics are scaled to macroscopic scales in BECs, support long-term investigations of few-body physics, support the development of techniques for atom–wave interferometry and atom lasers and verified the successful operation of the laboratory.{{cite journal |last1=Lachmann |first1=Maike D. |last2=Rasel |first2=Ernst M. |title=Quantum matter orbits Earth |journal=Nature |date=11 June 2020 |volume=582 |issue=7811 |pages=186–187 |doi=10.1038/d41586-020-01653-6 |pmid=32528088 |bibcode=2020Natur.582..186L |doi-access=free }}{{cite news |title=Quantum 'fifth state of matter' observed in space for first time |url=https://phys.org/news/2020-06-quantum-state-space.html |access-date=4 July 2020 |work=phys.org |language=en}}{{cite journal |last1=Aveline |first1=David C. |last2=Williams |first2=Jason R. |last3=Elliott |first3=Ethan R. |last4=Dutenhoffer |first4=Chelsea |last5=Kellogg |first5=James R. |last6=Kohel |first6=James M. |last7=Lay |first7=Norman E. |last8=Oudrhiri |first8=Kamal |last9=Shotwell |first9=Robert F. |last10=Yu |first10=Nan |last11=Thompson |first11=Robert J. |title=Observation of Bose–Einstein condensates in an Earth-orbiting research lab |journal=Nature |date=June 2020 |volume=582 |issue=7811 |pages=193–197 |doi=10.1038/s41586-020-2346-1 |pmid=32528092 |bibcode=2020Natur.582..193A |s2cid=219568565 }}
  • 15 June – Scientists report the development of the smallest synthetic molecular motor, consisting of 12 atoms and a rotor of 4 atoms, shown to be capable of being powered by an electric current using an electron scanning microscope and moving with very low amounts of energy due to quantum tunneling.{{cite news |title=The smallest motor in the world |url=https://phys.org/news/2020-06-smallest-motor-world.html |access-date=4 July 2020 |work=phys.org |language=en}}{{cite news |title=Nano-motor of just 16 atoms runs at the boundary of quantum physics |url=https://newatlas.com/physics/nano-motor-quantum-physics/ |access-date=4 July 2020 |work=New Atlas |date=17 June 2020}}{{Cite journal|last1=Stolz|first1=Samuel|last2=Gröning|first2=Oliver|last3=Prinz|first3=Jan|last4=Brune|first4=Harald|last5=Widmer|first5=Roland|date=2020-06-15|title=Molecular motor crossing the frontier of classical to quantum tunneling motion|journal=Proceedings of the National Academy of Sciences|volume=117|issue=26|pages=14838–14842|language=en|doi=10.1073/pnas.1918654117|issn=0027-8424|pmid=32541061|pmc=7334648|bibcode=2020PNAS..11714838S |doi-access=free}}
  • 17 June – Quantum scientists report the development of a system that entangled two photon quantum communication nodes through a microwave cable that can send information in between without the photons being sent through, or occupying, the cable. On 12 June it was reported that they also, for the first time, entangled two phonons as well as erase information from their measurement after the measurement had been completed using delayed-choice quantum erasure.{{cite news |title=New techniques improve quantum communication, entangle phonons |url=https://phys.org/news/2020-06-techniques-quantum-entangle-phonons.html |access-date=5 July 2020 |work=phys.org |language=en}}{{cite news |last1=Schirber |first1=Michael |title=Quantum Erasing with Phonons |url=https://physics.aps.org/articles/v13/95 |access-date=5 July 2020 |work=Physics |date=12 June 2020 |language=en}}{{cite journal |last1=Chang |first1=H.-S. |last2=Zhong |first2=Y. P. |last3=Bienfait |first3=A. |last4=Chou |first4=M.-H. |last5=Conner |first5=C. R. |last6=Dumur |first6=É. |last7=Grebel |first7=J. |last8=Peairs |first8=G. A. |last9=Povey |first9=R. G. |last10=Satzinger |first10=K. J. |last11=Cleland |first11=A. N. |title=Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System |journal=Physical Review Letters |date=17 June 2020 |volume=124 |issue=24 |page=240502 |doi=10.1103/PhysRevLett.124.240502 |pmid=32639797 |arxiv=2005.12334 |bibcode=2020PhRvL.124x0502C |s2cid=218889298 }}{{cite journal |last1=Bienfait |first1=A. |last2=Zhong |first2=Y. P. |last3=Chang |first3=H.-S. |last4=Chou |first4=M.-H. |last5=Conner |first5=C. R. |last6=Dumur |first6=É. |last7=Grebel |first7=J. |last8=Peairs |first8=G. A. |last9=Povey |first9=R. G. |last10=Satzinger |first10=K. J. |last11=Cleland |first11=A. N. |title=Quantum Erasure Using Entangled Surface Acoustic Phonons |journal=Physical Review X |date=12 June 2020 |volume=10 |issue=2 |page=021055 |doi=10.1103/PhysRevX.10.021055 |arxiv=2005.09311 |bibcode=2020PhRvX..10b1055B |doi-access=free }}
  • 18 June – Honeywell announces a quantum computer with a quantum volume of 64, the highest at the time.{{cite web | url=https://www.zdnet.com/article/honeywell-claims-to-have-worlds-highest-performing-quantum-computer-according-to-ibms-benchmark | title=Honeywell claims to have world's highest performing quantum computer according to IBM's benchmark | website=ZDNet }}
  • 13 August – Universal coherence protection is reported to have been achieved in a solid-state spin qubit, a modification that allows quantum systems to stay operational (or "coherent") for 10,000 times longer than before.{{cite news |title=UChicago scientists discover way to make quantum states last 10,000 times longer|url=https://www.anl.gov/article/uchicago-scientists-discover-way-to-make-quantum-states-last-10000-times-longer|date=13 August 2020|access-date=14 August 2020 |work=Argonne National Laboratory}}{{cite journal | last1=Miao | first1=Kevin C. | last2=Blanton | first2=Joseph P. | last3=Anderson | first3=Christopher P. | last4=Bourassa | first4=Alexandre | last5=Crook | first5=Alexander L. | last6=Wolfowicz | first6=Gary | last7=Abe | first7=Hiroshi | last8=Ohshima | first8=Takeshi | last9=Awschalom | first9=David D. | title=Universal coherence protection in a solid-state spin qubit | journal=Science | date=2020-05-12 | volume=369 | issue=6510 | pages=1493–1497 | doi=10.1126/science.abc5186 | pmid=32792463 | arxiv=2005.06082v1 | bibcode=2020Sci...369.1493M | s2cid=218613907 }}
  • 26 August – Scientists report that ionizing radiation from environmental radioactive materials and cosmic rays may substantially limit the coherence times of qubits if they are not adequately shielded.{{cite news |title=Quantum computers may be destroyed by high-energy particles from space |url=https://www.newscientist.com/article/2252933-quantum-computers-may-be-destroyed-by-high-energy-particles-from-space/ |access-date=7 September 2020 |work=New Scientist}}{{cite news |title=Cosmic rays may soon stymie quantum computing |url=https://phys.org/news/2020-08-cosmic-rays-stymie-quantum.html |access-date=7 September 2020 |work=phys.org |language=en}}{{cite journal |last1=Vepsäläinen |first1=Antti P. |last2=Karamlou |first2=Amir H. |last3=Orrell |first3=John L. |last4=Dogra |first4=Akshunna S. |last5=Loer |first5=Ben |last6=Vasconcelos |first6=Francisca |last7=Kim |first7=David K. |last8=Melville |first8=Alexander J. |last9=Niedzielski |first9=Bethany M. |last10=Yoder |first10=Jonilyn L. |last11=Gustavsson |first11=Simon |last12=Formaggio |first12=Joseph A. |last13=VanDevender |first13=Brent A. |last14=Oliver |first14=William D. |title=Impact of ionizing radiation on superconducting qubit coherence |journal=Nature |date=August 2020 |volume=584 |issue=7822 |pages=551–556 |doi=10.1038/s41586-020-2619-8 |pmid=32848227 |arxiv=2001.09190 |bibcode=2020Natur.584..551V |s2cid=210920566 |url=https://www.nature.com/articles/s41586-020-2619-8 |access-date=7 September 2020 |language=en |issn=1476-4687}}
  • File:Google Sycamore Chip 002.png28 August – Quantum engineers working for Google report the largest chemical simulation on a quantum computer – a Hartree–Fock approximation with a Sycamore computer paired with a classical computer that analyzed results to provide new parameters for a 12-qubit system.{{cite news |title=Google conducts largest chemical simulation on a quantum computer to date |url=https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html |access-date=7 September 2020 |work=phys.org |language=en}}{{cite news |last1=Savage |first1=Neil |title=Google's Quantum Computer Achieves Chemistry Milestone |url=https://www.scientificamerican.com/article/googles-quantum-computer-achieves-chemistry-milestone/ |access-date=7 September 2020 |work=Scientific American |language=en}}{{cite journal |title=Hartree–Fock on a superconducting qubit quantum computer |journal=Science |date=28 August 2020 |volume=369 |issue=6507 |pages=1084–1089 |doi=10.1126/science.abb9811 |pmid=32855334 |url=https://www.science.org/doi/10.1126/science.abb9811 |access-date=7 September 2020 |language=en |issn=0036-8075|last1=Arute |first1=Frank |collaboration=Google AI Quantum Collaborators |arxiv=2004.04174 |bibcode=2020Sci...369.1084. |s2cid=215548188 }}
  • 2 September – Researchers present an eight-user city-scale quantum communication network, located in Bristol, England, using already deployed fibres without active switching or trusted nodes.{{cite news |title=Multi-user communication network paves the way towards the quantum internet |url=https://physicsworld.com/a/multi-user-communication-network-paves-the-way-towards-the-quantum-internet/ |access-date=8 October 2020 |work=Physics World |date=8 September 2020}}{{cite journal |last1=Joshi |first1=Siddarth Koduru |last2=Aktas |first2=Djeylan |last3=Wengerowsky |first3=Sören |last4=Lončarić |first4=Martin |last5=Neumann |first5=Sebastian Philipp |last6=Liu |first6=Bo |last7=Scheidl |first7=Thomas |last8=Lorenzo |first8=Guillermo Currás |last9=Samec |first9=Željko |last10=Kling |first10=Laurent |last11=Qiu |first11=Alex |last12=Razavi |first12=Mohsen |last13=Stipčević |first13=Mario |last14=Rarity |first14=John G. |last15=Ursin |first15=Rupert |date=1 September 2020 |title=A trusted node–free eight-user metropolitan quantum communication network |journal=Science Advances |language=en |volume=6 |issue=36 |pages=eaba0959 |arxiv=1907.08229 |bibcode=2020SciA....6..959J |doi=10.1126/sciadv.aba0959 |issn=2375-2548 |pmc=7467697 |pmid=32917585 |doi-access=free}} 50x50px Text and images are available under a Creative Commons Attribution 4.0 International License.
  • 9 September – Xanadu offers a cloud quantum computing service, using a photonic quantum computer.{{cite web |title=First Photonic Quantum Computer on the Cloud – IEEE Spectrum |url=https://spectrum.ieee.org/photonic-quantum}}
  • {{anchor|#10.1038/s41567-020-1031-5}}21 September – Researchers report the achievement of quantum entanglement between the motion of a millimetre-sized mechanical oscillator and a disparate distant spin system of a cloud of atoms.{{cite news |title=Quantum entanglement realized between distant large objects |url=https://phys.org/news/2020-09-quantum-entanglement-distant-large.html |access-date=9 October 2020 |work=phys.org |language=en}}{{cite journal |last1=Thomas |first1=Rodrigo A. |last2=Parniak |first2=Michał |last3=Østfeldt |first3=Christoffer |last4=Møller |first4=Christoffer B. |last5=Bærentsen |first5=Christian |last6=Tsaturyan |first6=Yeghishe |last7=Schliesser |first7=Albert |last8=Appel |first8=Jürgen |last9=Zeuthen |first9=Emil |last10=Polzik |first10=Eugene S. |title=Entanglement between distant macroscopic mechanical and spin systems |journal=Nature Physics |date=21 September 2020 |volume=17 |issue=2 |pages=228–233 |doi=10.1038/s41567-020-1031-5 |url=https://www.nature.com/articles/s41567-020-1031-5 |access-date=9 October 2020 |language=en |issn=1745-2481|arxiv=2003.11310 |s2cid=214641162 }}
  • 3 December – Chinese researchers claim to have achieved quantum supremacy, using a photonic peak 76-qubit system (43 average) known as Jiuzhang, which performed calculations at 100 trillion times the speed of classical supercomputers.{{cite news|url=http://global.chinadaily.com.cn/a/202012/04/WS5fc96deba31024ad0ba99abf.html|work=China Daily|title=Chinese team unveils exceedingly fast quantum computer |date=4 December 2020|access-date=5 December 2020}}{{cite magazine|url=https://www.wired.com/story/china-stakes-claim-quantum-supremacy/|magazine=Wired|title=China Stakes Its Claim to Quantum Supremacy |date=3 December 2020|access-date=5 December 2020}}{{cite journal |last1=Zhong |first1=Han-Sen |last2=Wang |first2=Hui |last3=Deng |first3=Yu-Hao |last4=Chen |first4=Ming-Cheng |last5=Peng |first5=Li-Chao |last6=Luo |first6=Yi-Han |last7=Qin |first7=Jian |last8=Wu |first8=Dian |last9=Ding |first9=Xing |last10=Hu |first10=Yi |last11=Hu |first11=Peng |last12=Yang |first12=Xiao-Yan |last13=Zhang |first13=Wei-Jun |last14=Li |first14=Hao |last15=Li |first15=Yuxuan |last16=Jiang |first16=Xiao |last17=Gan |first17=Lin |last18=Yang |first18=Guangwen |last19=You |first19=Lixing |last20=Wang |first20=Zhen |last21=Li |first21=Li |last22=Liu |first22=Nai-Le |last23=Lu |first23=Chao-Yang |last24=Pan |first24=Jian-Wei |title=Quantum computational advantage using photons |journal=Science |date=18 December 2020 |volume=370 |issue=6523 |pages=1460–1463 |doi=10.1126/science.abe8770 |pmid=33273064 |url=https://www.science.org/doi/full/10.1126/science.abe8770 |access-date=22 January 2021 |language=en |issn=0036-8075|arxiv=2012.01625 |bibcode=2020Sci...370.1460Z |s2cid=227254333 }}
  • 29 October – Honeywell introduces a subscription for a quantum computing service, known as quantum computing as a service, with an ion trap quantum computer.{{cite web | url=https://www.zdnet.com/article/honeywell-introduces-quantum-computing-as-a-service-with-subscription-offering/#ftag=CAD-00-10aag7e | title=Honeywell introduces quantum computing as a service with subscription offering | website=ZDNet }}
  • 12 December – At the IEEE International Electron Devices Meeting (IEDM), IMEC shows an RF multiplexer chip that operates at temperatures as low as a few millikelvins, designed for quantum computers. Researchers from the Chalmers University of Technology report the development of a cryogenic low-noise amplifier (LNA) for amplifying signals from qubits, made of indium phosphide (InP) high-electron-mobility transistors (HEMTs).{{cite web |title=Three Frosty Innovations for Better Quantum Computers – IEEE Spectrum |url=https://spectrum.ieee.org/three-super-cold-devices-quantum-computers}}
  • 21 December – Publication of research of "counterfactual quantum communication" – whose first achievement was reported in 2017 – by which information can be exchanged without any physical particle traveling between observers and without quantum teleportation.{{cite news |title=Scientists Achieve Direct Counterfactual Quantum Communication For The First Time |url=https://futurism.com/scientists-achieve-direct-counterfactual-quantum-communication-for-the-first-time |access-date=16 January 2021 |work=Futurism |language=en}} The research suggests that this is based on some form of relation between the properties of modular angular momentum.{{cite news |title=Elementary particles part ways with their properties |url=https://phys.org/news/2020-12-elementary-particles-ways-properties.html |access-date=16 January 2021 |work=phys.org |language=en}}{{cite news |last1=McRae |first1=Mike |title=In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin |url=https://www.sciencealert.com/schrodinger-s-cat-gets-a-cheshire-grin-in-a-mind-bending-quantum-physics-analysis |access-date=16 January 2021 |work=ScienceAlert |language=en-gb}}{{cite journal |last1=Aharonov |first1=Yakir |last2=Rohrlich |first2=Daniel |title=What Is Nonlocal in Counterfactual Quantum Communication? |journal=Physical Review Letters |date=21 December 2020 |volume=125 |issue=26 |page=260401 |doi=10.1103/PhysRevLett.125.260401 |pmid=33449741 |arxiv=2011.11667 |bibcode=2020PhRvL.125z0401A |s2cid=145994494 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260401 |access-date=16 January 2021}} 50px Available under [https://creativecommons.org/licenses/by/4.0/ CC BY 4.0].

=2021=

  • 6 January – Chinese researchers report that they have built the world's largest integrated quantum communication network, combining over 700 optical fibers with two QKD-ground-to-satellite links for a total distance between nodes of the network of up to ~4,600 km.{{cite news |title=The world's first integrated quantum communication network |url=https://phys.org/news/2021-01-world-quantum-network.html |access-date=11 February 2021 |work=phys.org |language=en}}{{cite journal |last1=Chen |first1=Yu-Ao |last2=Zhang |first2=Qiang |last3=Chen |first3=Teng-Yun |last4=Cai |first4=Wen-Qi |last5=Liao |first5=Sheng-Kai |last6=Zhang |first6=Jun |last7=Chen |first7=Kai |last8=Yin |first8=Juan |last9=Ren |first9=Ji-Gang |last10=Chen |first10=Zhu |last11=Han |first11=Sheng-Long |last12=Yu |first12=Qing |last13=Liang |first13=Ken |last14=Zhou |first14=Fei |last15=Yuan |first15=Xiao |last16=Zhao |first16=Mei-Sheng |last17=Wang |first17=Tian-Yin |last18=Jiang |first18=Xiao |last19=Zhang |first19=Liang |last20=Liu |first20=Wei-Yue |last21=Li |first21=Yang |last22=Shen |first22=Qi |last23=Cao |first23=Yuan |last24=Lu |first24=Chao-Yang |last25=Shu |first25=Rong |last26=Wang |first26=Jian-Yu |last27=Li |first27=Li |last28=Liu |first28=Nai-Le |last29=Xu |first29=Feihu |last30=Wang |first30=Xiang-Bin |last31=Peng |first31=Cheng-Zhi |last32=Pan |first32=Jian-Wei |title=An integrated space-to-ground quantum communication network over 4,600 kilometres |journal=Nature |date=January 2021 |volume=589 |issue=7841 |pages=214–219 |doi=10.1038/s41586-020-03093-8 |pmid=33408416 |bibcode=2021Natur.589..214C |s2cid=230812317 |url=https://www.nature.com/articles/s41586-020-03093-8 |access-date=11 February 2021 |language=en |issn=1476-4687}}
  • 13 January – Austrian researchers report the first realization of an entangling gate between two logical qubits encoded in topological quantum error-correction codes using a trapped-ion quantum computer with 10 ions.{{cite news |title=Error-protected quantum bits entangled for the first time |url=https://phys.org/news/2021-01-error-protected-quantum-bits-entangled.html |access-date=30 August 2021 |work=phys.org |language=en}}{{cite journal |last1=Erhard |first1=Alexander |last2=Poulsen Nautrup |first2=Hendrik |last3=Meth |first3=Michael |last4=Postler |first4=Lukas |last5=Stricker |first5=Roman |last6=Stadler |first6=Martin |last7=Negnevitsky |first7=Vlad |last8=Ringbauer |first8=Martin |last9=Schindler |first9=Philipp |last10=Briegel |first10=Hans J. |last11=Blatt |first11=Rainer |last12=Friis |first12=Nicolai |last13=Monz |first13=Thomas |title=Entangling logical qubits with lattice surgery |journal=Nature |date=January 2021 |volume=589 |issue=7841 |pages=220–224 |doi= 10.1038/s41586-020-03079-6 |pmid=33442044 |arxiv=2006.03071 |bibcode=2021Natur.589..220E |s2cid= 219401398 |url= https://www.nature.com/articles/s41586-020-03079-6 |access-date=30 August 2021 |language=en |issn=1476-4687}}
  • 15 January – Researchers in China report the successful transmission of entangled photons between drones, used as nodes for the development of mobile quantum networks or flexible network extensions, marking the first work in which entangled particles were sent between two moving devices.{{cite news |title=Using drones to create local quantum networks |url=https://phys.org/news/2021-01-drones-local-quantum-networks.html |access-date=12 February 2021 |work=phys.org |language=en}}{{cite journal |last1=Liu |first1=Hua-Ying |last2=Tian |first2=Xiao-Hui |last3=Gu |first3=Changsheng |last4=Fan |first4=Pengfei |last5=Ni |first5=Xin |last6=Yang |first6=Ran |last7=Zhang |first7=Ji-Ning |last8=Hu |first8=Mingzhe |last9=Guo |first9=Jian |last10=Cao |first10=Xun |last11=Hu |first11=Xiaopeng |last12=Zhao |first12=Gang |last13=Lu |first13=Yan-Qing |last14=Gong |first14=Yan-Xiao |last15=Xie |first15=Zhenda |last16=Zhu |first16=Shi-Ning |title=Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes |journal=Physical Review Letters |date=15 January 2021 |volume=126 |issue=2 |page=020503 |doi=10.1103/PhysRevLett.126.020503 |pmid=33512193 |bibcode=2021PhRvL.126b0503L |s2cid=231761406 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.020503 |access-date=12 February 2021}}
  • 27 January – BMW announces the use of a quantum computer for the optimization of supply chains.{{cite web | url=https://www.zdnet.com/article/bmw-explores-quantum-computing-to-boost-supply-chain-efficiencies/#ftag=CAD-00-10aag7e | title=BMW explores quantum computing to boost supply chain efficiencies | website=ZDNet }}
  • 28 January – Swiss and German researchers report the development of a highly efficient single-photon source for quantum information technology with a system of gated quantum dots in a tunable microcavity which captures photons released from excited "artificial atoms".{{cite news |title=Physicists develop record-breaking source for single photons |url=https://phys.org/news/2021-01-physicists-record-breaking-source-photons.html |access-date=12 February 2021 |work=phys.org |language=en}}{{cite journal |last1=Tomm |first1=Natasha |last2=Javadi |first2=Alisa |last3=Antoniadis |first3=Nadia Olympia |last4=Najer |first4=Daniel |last5=Löbl |first5=Matthias Christian |last6=Korsch |first6=Alexander Rolf |last7=Schott |first7=Rüdiger |last8=Valentin |first8=Sascha René |last9=Wieck |first9=Andreas Dirk |last10=Ludwig |first10=Arne |last11=Warburton |first11=Richard John |title=A bright and fast source of coherent single photons |journal=Nature Nanotechnology |date=28 January 2021 |volume=16 |issue=4 |pages=399–403 |doi=10.1038/s41565-020-00831-x |pmid=33510454 |url=https://www.nature.com/articles/s41565-020-00831-x |access-date=12 February 2021 |language=en |issn=1748-3395|arxiv=2007.12654 |bibcode=2021NatNa..16..399T |s2cid=220769410 }}
  • 3 February – Microsoft starts offering a cloud quantum computing service, called Azure Quantum.{{cite web | url=https://www.cnet.com/tech/computing/microsoft-opens-its-azure-quantum-computer-cloud-service-to-the-public/ | title=You can now try out a quantum computer with Microsoft's Azure cloud service }}
  • 5 February – Researchers demonstrate a first prototype of quantum-logic gates for distributed quantum computers.{{cite news |title=Quantum systems learn joint computing |url=https://phys.org/news/2021-02-quantum-joint.html |access-date=7 March 2021 |work=phys.org |language=en}}{{cite journal |last1=Daiss |first1=Severin |last2=Langenfeld |first2=Stefan |last3=Welte |first3=Stephan |last4=Distante |first4=Emanuele |last5=Thomas |first5=Philip |last6=Hartung |first6=Lukas |last7=Morin |first7=Olivier |last8=Rempe |first8=Gerhard |title=A quantum-logic gate between distant quantum-network modules |journal=Science |date=5 February 2021 |volume=371 |issue=6529 |pages=614–617 |doi=10.1126/science.abe3150 |pmid=33542133 |url=https://www.science.org/doi/10.1126/science.abe3150 |access-date=7 March 2021 |language=en |issn=0036-8075|arxiv=2103.13095 |bibcode=2021Sci...371..614D |s2cid=231808141 }}
  • 11 March – Honeywell announces a quantum computer with a quantum volume of 512.{{cite web | url=https://www.zdnet.com/article/quantum-computing-honeywell-just-quadrupled-the-power-of-its-computer/ | title=Quantum computing: Honeywell just quadrupled the power of its computer | website=ZDNet }}
  • 13 April – In a preprint, an astronomer describes for the first time how one could search for quantum communication transmissions sent by extraterrestrial intelligence using existing telescope and receiver technology. He also provides arguments for why future searches of SETI should also target interstellar quantum communications.{{cite news |title=We could detect alien civilizations through their interstellar quantum communication |url=https://phys.org/news/2021-04-alien-civilizations-interstellar-quantum.html |access-date=9 May 2021 |work=phys.org |language=en}}{{cite journal |last1=Hippke |first1=Michael |title=Searching for Interstellar Quantum Communications |journal=The Astronomical Journal |date=13 April 2021|volume=162 |issue=1 |page=1 |doi=10.3847/1538-3881/abf7b7 |arxiv=2104.06446 |bibcode=2021AJ....162....1H |s2cid=233231350 |doi-access=free }}
  • 7 May – Two studies complement research published September 2020 by quantum-entangling two mechanical oscillators.{{cite news |title=Vibrating drumheads are entangled quantum mechanically |url=https://physicsworld.com/a/vibrating-drumheads-are-entangled-quantum-mechanically/ |access-date=14 June 2021 |work=Physics World |date=2021-05-17}}{{cite journal |last1=Lépinay |first1=Laure Mercier de |last2=Ockeloen-Korppi |first2=Caspar F. |last3=Woolley |first3=Matthew J. |last4=Sillanpää |first4=Mika A. |title=Quantum mechanics–free subsystem with mechanical oscillators |journal=Science |date=2021-05-07 |volume=372 |issue=6542 |pages=625–629 |doi=10.1126/science.abf5389 |pmid=33958476 |arxiv=2009.12902 |bibcode=2021Sci...372..625M |hdl=1959.4/unsworks_79394 |s2cid=221971015 |url=https://www.science.org/doi/10.1126/science.abf5389 |access-date=14 June 2021 |language=en |issn=0036-8075}}{{cite journal |last1=Kotler |first1=Shlomi |last2=Peterson |first2=Gabriel A. |last3=Shojaee |first3=Ezad |last4=Lecocq |first4=Florent |last5=Cicak |first5=Katarina |last6=Kwiatkowski |first6=Alex |last7=Geller |first7=Shawn |last8=Glancy |first8=Scott |last9=Knill |first9=Emanuel |last10=Simmonds |first10=Raymond W. |last11=Aumentado |first11=José |last12=Teufel |first12=John D. |title=Direct observation of deterministic macroscopic entanglement |journal=Science |date=2021-05-07 |volume=372 |issue=6542 |pages=622–625 |doi=10.1126/science.abf2998 |pmid=33958475 |arxiv=2004.05515 |bibcode=2021Sci...372..622K |s2cid=233872863 |url=https://www.science.org/doi/10.1126/science.abf2998 |access-date=14 June 2021 |language=en |issn=0036-8075}}
  • 8 June – Researchers from Toshiba achieve quantum communications over optical fibres exceeding 600 km in length, a world-record distance.{{cite news |title=TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION |url=https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/toshiba-announces-breakthrough-in-long-distance-quantum-communication |date=12 June 2021 |work=Toshiba|access-date=12 June 2021 }}{{cite news |title=Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber |url=https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/ |date=8 June 2021 |work=ZDNet|access-date=12 June 2021 }}{{cite journal |last1=Pittaluga |first1=Mirko |last2=Minder |first2=Mariella |last3=Lucamarini |first3=Marco |last4=Sanzaro |first4=Mirko |last5=Woodward |first5=Robert I. |last6=Li |first6=Ming-Jun |last7=Yuan |first7=Zhiliang |last8=Shields |first8=Andrew J. |title=600-km repeater-like quantum communications with dual-band stabilization |journal=Nature Photonics |date=July 2021 |volume=15 |issue=7 |pages=530–535 |doi=10.1038/s41566-021-00811-0 |arxiv=2012.15099 |bibcode=2021NaPho..15..530P |s2cid=229923162 |url=https://www.nature.com/articles/s41566-021-00811-0 |access-date=19 July 2021 |language=en |issn=1749-4893}}

File:Simplified scale model of the quantum computing demonstrator housed in two 19-inch racks with major components labeled.png

  • 17 June – Austrian, German and Swiss researchers present a quantum computing demonstrator fitting into two standard 19-inch racks, the world's first quality standards-meeting compact quantum computer.{{cite news |title=Quantum computer is smallest ever, claim physicists |url=https://physicsworld.com/a/quantum-computer-is-smallest-ever-claim-physicists/ |access-date=11 July 2021 |work=Physics World |date=7 July 2021}}{{cite journal |last1=Pogorelov |first1=I. |last2=Feldker |first2=T. |last3=Marciniak |first3=Ch. D. |last4=Postler |first4=L. |last5=Jacob |first5=G. |last6=Krieglsteiner |first6=O. |last7=Podlesnic |first7=V. |last8=Meth |first8=M. |last9=Negnevitsky |first9=V. |last10=Stadler |first10=M. |last11=Höfer |first11=B. |last12=Wächter |first12=C. |last13=Lakhmanskiy |first13=K. |last14=Blatt |first14=R. |last15=Schindler |first15=P. |last16=Monz |first16=T. |title=Compact Ion-Trap Quantum Computing Demonstrator |journal=PRX Quantum |date=17 June 2021 |volume=2 |issue=2 |page=020343 |doi=10.1103/PRXQuantum.2.020343 |s2cid=231719119 |url=https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020343 |access-date=11 July 2021|arxiv=2101.11390 |bibcode=2021PRXQ....2b0343P }}
  • 29 June – IBM demonstrates quantum advantage.{{cite web | url=https://www.zdnet.com/article/ibm-researchers-demonstrate-the-advantage-that-quantum-computers-have-over-classical-computers/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a | title=IBM researchers demonstrate the advantage that quantum computers have over classical computers | website=ZDNet }}
  • 1 July – Rigetti develops a method to join several quantum processor chips together.{{cite web | url=https://www.zdnet.com/article/quantum-computing-this-new-approach-could-be-the-fastest-path-to-real-applications/?ftag=TRE-03-10aaa6b&bhid=28974009886604832149562936007498&mid=13420444&cid=2193388821&eh=70013a02f0e22ff3dec6ccb58d5e95e4e57150473218ab3ecaf4d84e5143828a | title=Bigger quantum computers, faster: This new idea could be the quickest route to real world apps | website=ZDNet }}
  • 7 July – American researchers present a programmable quantum simulator that can operate with 256 qubits,{{cite news |title=Harvard-led physicists take big step in race to quantum computing |url=https://scienmag.com/harvard-led-physicists-take-big-step-in-race-to-quantum-computing/ |access-date=14 August 2021 |work=Scienmag: Latest Science and Health News |date=9 July 2021}}{{cite journal |last1=Ebadi |first1=Sepehr |last2=Wang |first2=Tout T. |last3=Levine |first3=Harry |last4=Keesling |first4=Alexander |last5=Semeghini |first5=Giulia |last6=Omran |first6=Ahmed |last7=Bluvstein |first7=Dolev |last8=Samajdar |first8=Rhine |last9=Pichler |first9=Hannes |last10=Ho |first10=Wen Wei |last11=Choi |first11=Soonwon |last12=Sachdev |first12=Subir |last13=Greiner |first13=Markus |last14=Vuletić |first14=Vladan |last15=Lukin |first15=Mikhail D. |title=Quantum phases of matter on a 256-atom programmable quantum simulator |journal=Nature |date=July 2021 |volume=595 |issue=7866 |pages=227–232 |doi=10.1038/s41586-021-03582-4 |pmid=34234334 |arxiv=2012.12281 |bibcode=2021Natur.595..227E |s2cid=229363764 |language=en |issn=1476-4687}} and on the same date and journal another team presents a quantum simulator of 196 Rydeberg atoms trapped in optical tweezers.{{Cite journal|last1=Scholl|first1=Pascal|last2=Schuler|first2=Michael|last3=Williams|first3=Hannah J.|last4=Eberharter|first4=Alexander A.|last5=Barredo|first5=Daniel|last6=Schymik|first6=Kai-Niklas|last7=Lienhard|first7=Vincent|last8=Henry|first8=Louis-Paul|last9=Lang|first9=Thomas C.|last10=Lahaye|first10=Thierry|last11=Läuchli|first11=Andreas M.|date=7 July 2021|title=Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms|url=https://www.nature.com/articles/s41586-021-03585-1|journal=Nature|language=en|volume=595|issue=7866|pages=233–238|doi=10.1038/s41586-021-03585-1|pmid=34234335|arxiv=2012.12268|bibcode=2021Natur.595..233S|s2cid=229363462|issn=1476-4687}}
  • 25 October – Chinese researchers report that they have developed the world's fastest programmable quantum computers. The photon-based Jiuzhang 2 is claimed to calculate a task in one millisecond, that otherwise would have taken a conventional computer 30 trillion years to complete. Additionally, Zuchongzhi 2 is a 66-qubit programmable superconducting quantum computer that was claimed to be the world's fastest quantum computer that can run a calculation task one million times more complex than Google's Sycamore, as well as being 10 million times faster.{{cite web|date=2021-10-28|title=China quantum computers are 1 million times more powerful Google's|url=https://techhq.com/2021/10/china-has-quantum-computers-that-are-a-million-times-more-powerful-than-googles/|access-date=2021-11-16|website=TechHQ|language=en-US}}{{cite web|date=2021-11-03|title=China's quantum computing efforts surpasses the West's again|url=https://techwireasia.com/2021/11/chinas-quantum-computing-efforts-surpasses-the-wests-yet-again/|access-date=2021-11-16|website=Tech Wire Asia|language=en-US}}{{See also|Quantum supremacy#Progress in the 21st century}}
  • 11 November – The first simulation of baryons on a quantum computer is reported by University of Waterloo, Canada.{{cite news |title=Canadian researchers achieve first quantum simulation of baryons |url=https://uwaterloo.ca/news/media/canadian-researchers-achieve-first-quantum-simulation |date=11 November 2021 |work=University of Waterloo |access-date=12 November 2021 }}{{cite journal |last1=Atas |first1=Yasar Y. |last2=Zhang |first2=Jinglei |last3=Lewis |first3=Randy |last4=Jahanpour |first4=Amin |last5=Haase |first5=Jan F. |last6=Muschik |first6=Christine A. |title=SU(2) hadrons on a quantum computer via a variational approach |journal=Nature Communications |date=11 November 2021 |volume=12 |issue=1 |page=6499 |doi=10.1038/s41467-021-26825-4 |pmid=34764262 |pmc=8586147 |bibcode=2021NatCo..12.6499A |language=en |issn=2041-1723}}
  • 16 November – IBM claims that it has created a 127-quantum bit processor, 'IBM Eagle', which according to a report is the most powerful quantum processor known. According to the report, the company had not yet published an academic paper describing its metrics, performance or abilities.{{cite news |title=IBM creates largest ever superconducting quantum computer |url=https://www.newscientist.com/article/2297583-ibm-creates-largest-ever-superconducting-quantum-computer/ |access-date=12 February 2022 |work=New Scientist}}{{cite web|title=IBM Unveils Breakthrough 127-Qubit Quantum Processor|url=https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor|access-date=2022-01-12|website=IBM Newsroom|language=en-us}}

=2022=

  • 18 January – Europe's first quantum annealer with more than 5,000 qubits is presented in Jülich, Germany.{{cite news|date=18 January 2022|title=Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich|url=https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/|work=HPC Wire|access-date=20 January 2022|archive-date=20 January 2022|archive-url=https://web.archive.org/web/20220120070625/https://www.hpcwire.com/off-the-wire/europes-first-quantum-computer-with-more-than-5k-qubits-launched-at-julich/|url-status=live}}
  • 24 March – The first prototype, photonic, quantum memristive device, for neuromorphic (quantum-) computers and artificial neural networks, that is "able to produce memristive dynamics on single-photon states through a scheme of measurement and classical feedback" is invented.{{cite news |title=Artificial neurons go quantum with photonic circuits |url=https://phys.org/news/2022-03-artificial-neurons-quantum-photonic-circuits.html |access-date=19 April 2022 |work=University of Vienna |language=en}}{{cite journal |last1=Spagnolo |first1=Michele |last2=Morris |first2=Joshua |last3=Piacentini |first3=Simone |last4=Antesberger |first4=Michael |last5=Massa |first5=Francesco |last6=Crespi |first6=Andrea |last7=Ceccarelli |first7=Francesco |last8=Osellame |first8=Roberto |last9=Walther |first9=Philip |title=Experimental photonic quantum memristor |journal=Nature Photonics |date=April 2022 |volume=16 |issue=4 |pages=318–323 |doi=10.1038/s41566-022-00973-5 |arxiv=2105.04867 |bibcode=2022NaPho..16..318S |s2cid=234358015 |language=en |issn=1749-4893}}
  • 29 March - Researchers at Intel and Delft University of Technology publish data on the first qubits fabricated on 300 mm wafers in a semiconductor manufacturing facility using all-optical lithography and fully industrial processing.{{Cite journal |last1=Zwerver |first1=A. M. J. |last2=Krähenmann |first2=T. |last3=Watson |first3=T. F. |last4=Lampert |first4=L. |last5=George |first5=H. C. |last6=Pillarisetty |first6=R. |last7=Bojarski |first7=S. A. |last8=Amin |first8=P. |last9=Amitonov |first9=S. V. |last10=Boter |first10=J. M. |last11=Caudillo |first11=R. |last12=Correas-Serrano |first12=D. |last13=Dehollain |first13=J. P. |last14=Droulers |first14=G. |last15=Henry |first15=E. M. |last16=Kotlyar |first16=R. |last17=Lodari |first17=M. |last18=Luthi |first18=F. |last19=Michalak |first19=D. J. |last20=Mueller |first20=B. K. |last21=Neyens |first21=S. |last22=Roberts |first22=J. |last23=Samkharadze |first23=N. |last24=Zheng |first24=G. |last25=Zietz |first25=O. K. |last26=Scappucci |first26=G. |last27=Vandersypen |first27=L. M. K. |last28=Clarke|first28=J. S. |date=29 March 2022 |title=Qubits made by advanced semiconductor manufacturing |url=https://wwwnature.com/articles/s41928-022-00727-9 |journal=Nature Electronics |language=en |volume=5 |issue=3 |pages=184–190 |doi=10.1038/s41928-022-00727-9 |issn=2520-1131|arxiv=2101.12650 }}
  • 14 April – The Quantinuum System Model H1-2 doubles its performance claiming to be the first commercial quantum computer to pass quantum volume 4096.{{Cite web |url=https://www.quantinuum.com/pressrelease/quantinuum-announces-quantum-volume-4096-achievement |title=Quantinuum Announces Quantum Volume 4096 Achievement |date=2022-04-14 |access-date=2022-05-02 |website=www.quantinuum.com}}
  • 26 May – A universal set of computational operations on fault-tolerant quantum bits is demonstrated by a team of experimental physicists in Innsbruck, Austria.{{cite web |last1=Universität Innsbruck |title=Error-Free Quantum Computing Gets Real |url=https://www.uibk.ac.at/en/newsroom/2022/error-free-quantum-computing-gets-real/ |website=www.uibk.ac.at |date=May 27, 2022 |access-date=13 February 2023 |language=en}}
  • 22 June – The world's first quantum computer integrated circuit is demonstrated.{{cite web | url=https://www.sciencealert.com/a-huge-step-forward-in-quantum-computing-was-just-announced-the-first-ever-quantum-circuit |title=A Huge Step Forward in Quantum Computing Was Just Announced: The First-Ever Quantum Circuit |work=Science Alert | date=22 June 2022| access-date=23 June 2022}}{{cite journal |last1=Kiczynski |first1=M. |last2=Gorman |first2=S. K. |last3=Geng |first3=H. |last4=Donnelly |first4=M. B. |last5=Chung |first5=Y. |last6=He |first6=Y. |last7=Keizer |first7=J. G. |last8=Simmons |first8=M. Y. |title=Engineering topological states in atom-based semiconductor quantum dots |journal=Nature |date=June 2022 |volume=606 |issue=7915 |pages=694–699 |doi=10.1038/s41586-022-04706-0 |pmid=35732762 |pmc=9217742 |bibcode=2022Natur.606..694K |language=en |issn=1476-4687}}
  • Press release: {{cite web | url=https://newsroom.unsw.edu.au/news/science-tech/unsw-quantum-scientists-deliver-world%E2%80%99s-first-integrated-circuit-atomic-scale |title=UNSW quantum scientists deliver world's first integrated circuit at the atomic scale |work=University of New South Wales | date=23 June 2022| access-date=23 June 2022 |author1=z3525214 }}
  • 28 June – Physicists report that interstellar quantum communication by other civilizations could be possible and may be advantageous, identifying some potential challenges and factors for detecting such. They may use, for example, X-ray photons for remotely established quantum communications and quantum teleportation as the communication mode.{{cite news |last1=Conover |first1=Emily |title=Aliens could send quantum messages to Earth, calculations suggest |url=https://www.sciencenews.org/article/alien-quantum-communication-extraterrestrial-communication-signal |access-date=13 July 2022 |work=Science News |date=5 July 2022}}{{cite journal |last1=Berera |first1=Arjun |last2=Calderón-Figueroa |first2=Jaime |title=Viability of quantum communication across interstellar distances |journal=Physical Review D |date=28 June 2022 |volume=105 |issue=12 |pages=123033 |doi=10.1103/PhysRevD.105.123033|arxiv=2205.11816|bibcode=2022PhRvD.105l3033B |s2cid=249017926 }}
  • 21 July – A universal qudit quantum processor is demonstrated with trapped ions.{{cite web |last1=Universität Innsbruck |title=Quantum computer works with more than zero and one |url=https://www.uibk.ac.at/en/newsroom/2022/quantum-computer-works-with-more-than-zero-and-one/ |website=www.uibk.ac.at |date=July 21, 2022 |access-date=13 February 2023 |language=en}}
  • 15 August – Nature Materials publishes the first work showing optical initialization and coherent control of nuclear spin qubits in 2D materials (an ultrathin hexagonal boron nitride).{{cite web|url=https://phys.org/news/2022-08-2d-array-electron-nuclear-qubits.amp|title=2D array of electron and nuclear spin qubits opens new frontier in quantum science|author=Purdue University|publisher=Phys.org|date=August 15, 2022}}
  • 24 August – Nature publishes the first research related to a set of 14 photons entangled with high efficiency and in a defined way.{{cite journal|url=https://phys.org/news/2022-08-physicists-entangle-dozen-photons-efficiently.amp|title=Physicists entangle more than a dozen photons efficiently|author=Max Planck Society|journal=Nature |publisher=Phys.org|

doi=10.1038/s41586-022-04987-5|

date=August 24, 2022|volume=608 |issue=7924 |pages=677–681 |pmid=36002484 |pmc=9402438 |arxiv=2205.12736 |bibcode=2022Natur.608..677T |access-date=August 25, 2022}}

  • 26 August – Created photon pairs at several different frequencies using optical ultra-thin resonant metasurfaces made up of arrays of nanoresonators is reported.{{cite web|url=https://phys.org/news/2022-08-metasurfaces-possibilities-quantum.amp|title=Metasurfaces offer new possibilities for quantum research|first1=Florian|last1=Ritter|author2=Max Planck Society|publisher=Phys.org}}
  • 29 August – Physicists at the Max Planck Institute for Quantum Optics deterministically generate entangled graph states of up to 14 photons using a trapped rubidium atom in an optical cavity.{{cite web |author=McRae |first=Mike |date=August 31, 2022 |title=Quantum Physicists Set New Record For Entangling Photons Together |url=https://www.sciencealert.com/quantum-physicists-set-new-record-for-entangling-photons-together |work=Science Alert}}
  • 2 September – Researchers from The University of Tokyo and other Japanese institutions develop a systematic method that applies optimal control theory (GRAPE algorithm) to identify the theoretically optimal sequence from among all conceivable quantum operation sequences. It is necessary to complete the operations within the time that the coherent quantum state is maintained.{{cite web|url=https://phys.org/news/2022-09-method-systematically-optimal-quantum-sequences.amp|title=New method to systematically find optimal quantum operation sequences for quantum computers|author=National Institute of Information and Communications Technology|publisher=Phys.org|date=September 2, 2022|access-date=September 8, 2023|archive-date=September 4, 2022|archive-url=https://archive.today/20220904164853/https://phys.org/news/2022-09-method-systematically-optimal-quantum-sequences.amp|url-status=bot: unknown}}
  • 30 September – Researchers at University of New South Wales, Australia, achieve a coherence time of two milliseconds, 100 times higher than the previous benchmark in the same quantum processor.{{cite journal |author=University of New South Wales |date=September 30, 2022 |title=For the longest time: Quantum computing engineers set new standard in silicon chip performance |url=https://phys.org/news/2022-09-longest-quantum-standard-silicon-chip.amp |url-status=bot: unknown |journal=Science Advances |location=Australia |publisher=Phys.org |volume=7 |issue=33 |doi=10.1126/sciadv.abg9158 |pmc=8363148 |pmid=34389538 |archive-url=https://archive.today/20221001222634/https://phys.org/news/2022-09-longest-quantum-standard-silicon-chip.amp |archive-date=October 1, 2022 |access-date=September 8, 2023}}
  • 9 November – IBM presents its 433-qubit 'Osprey' quantum processor, the successor to its Eagle system.{{cite web |title=IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two |url=https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two |access-date=10 November 2022 |date=9 November 2022 |work=IBM}}{{cite web |title=IBM unveils its 433 qubit Osprey quantum computer |url=https://techcrunch.com/2022/11/09/ibm-unveils-its-433-qubit-osprey-quantum-computer/ |access-date=10 November 2022 |date=9 November 2022 |work=Tech Crunch}}
  • 1 December – The world's first portable quantum computer enters into commerce in Japan. With three variants, topping out at 3 qubits, they are meant for education. They are based on nuclear magnetic resonance (NMR), "NMR has extremely limited scaling capabilities" and dimethylphosphite.{{cite web |title=SpinQ Introduces Trio of Portable Quantum Computers |date=December 15, 2022 |url=https://www.tomshardware.com/news/spinq-introduces-trio-of-portable-quantum-computers |access-date=15 December 2022}}{{cite web|url=https://tech.news.am/eng/news/510/worlds-first-portable-quantum-computers-on-sale-in-japan-prices-start-at-$8700.html|title=World's first portable quantum computers on sale in Japan: Prices start at $8,700}}{{cite web|url=https://www.futuroprossimo.it/2021/06/amperage-mini-yacht-elettrico-con-terrazza-fotovoltaica-e-sauna-vabbe|title=Il futuro è ora: I primi computer quantistici portatili arrivano sul mercato |trans-title=The future is now: The first portable quantum computers hit the market|date=May 19, 2023 |language=it}}

=2023=

  • 3 February – At the University of Innsbruck, researchers entangle two ions over a distance of 230 meters.{{cite web |last1=Universität Innsbruck |title=Entangled atoms across the Innsbruck quantum network |url=https://www.uibk.ac.at/en/newsroom/2023/entangled-atoms-across-the-innsbruck-quantum-network/ |website=www.uibk.ac.at |date=February 3, 2023 |access-date=13 February 2023 |language=en}}
  • 8 February – Alpine Quantum Technologies (AQT) demonstrates a quantum volume of 128 on its 19-inch rack-compatible quantum computer system PINE – a new record in Europe.{{cite web |last1= |date=8 February 2023 |title=State of Quantum Computing in Europe: AQT pushing performance with a Quantum Volume of 128 |url=https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/ |access-date=13 February 2023 |website=AQT {{!}} ALPINE QUANTUM TECHNOLOGIES}}
  • 17 February – Fusion-based quantum computation is proposed.{{Cite journal |last1=Bartolucci |first1=Sara |last2=Birchall |first2=Patrick |last3=Bombín |first3=Hector |last4=Cable |first4=Hugo |last5=Dawson |first5=Chris |last6=Gimeno-Segovia |first6=Mercedes |last7=Johnston |first7=Eric |last8=Kieling |first8=Konrad |last9=Nickerson |first9=Naomi |last10=Pant |first10=Mihir |last11=Pastawski |first11=Fernando |last12=Rudolph |first12=Terry |last13=Sparrow |first13=Chris |date=2023-02-17 |title=Fusion-based quantum computation |journal=Nature Communications |language=en |volume=14 |issue=1 |page=912 |doi=10.1038/s41467-023-36493-1 |issn=2041-1723 |pmc=9938229 |pmid=36805650|bibcode=2023NatCo..14..912B }}
  • 27 March – India's first quantum computing-based telecom network link is inaugurated.{{cite news|url=https://economictimes.indiatimes.com/industry/telecom/telecom-news/indias-first-quantum-computing-based-telecom-network-link-now-operational-ashwini-vaishnaw/articleshow/99026697.cms|title=India's first quantum computing-based telecom network link now operational: Ashwini Vaishnaw|newspaper=The Economic Times |date=March 27, 2023}}
  • 14 June – IBM computer scientists report that a quantum computer produced better results for a physics problem than a conventional supercomputer.{{cite news |last=Chang |first=Kenneth |date=14 June 2023 |title=Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer. |url=https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html |url-status=live |archive-url=https://archive.today/20230614151835/https://www.nytimes.com/2023/06/14/science/ibm-quantum-computing.html |archive-date=14 June 2023 |access-date=15 June 2023 |work=The New York Times}}{{cite journal |author=Kim, Youngseok |display-authors=et al. |title=Evidence for the utility of quantum computing before fault tolerance |date=14 June 2023 |journal=Nature |volume=618 |issue=7965 |pages=500–505 |doi=10.1038/s41586-023-06096-3 |pmid=37316724 |pmc=10266970 |bibcode=2023Natur.618..500K }}
  • 21 June – Microsoft declares that it is working on a topological quantum computer based on Majorana fermions, with the aim of arriving within 10 years at a computer capable of carrying out at least one million operations per second with an error rate of one operation every 1,000 billion (corresponding to 11 uninterrupted days of calculation).{{cite web |author=Lardinois |first=Frederic |date=June 21, 2023 |title=Microsoft expects to build a quantum supercomputer within 10 years |url=https://techcrunch.com/2023/06/21/microsoft-expects-to-build-a-quantum-supercomputer-within-10-years/?guccounter=1&guce_referrer=aHR0cHM6Ly9lZGdlOS5od3VwZ3JhZGUuaXQv&guce_referrer_sig=AQAAACXAB0qvUPp2WTkuGfdLz7J6WL84C0dFSnA7-JlfcbG-NlUc5Wr_rDCfeBFqRnEGLozBpwYqrxqWUim6CgPzx5HnmrvLTOgBuO9C3fptgIUZ2JvHF1205F6FgMmcC-qSSHXDFx_aNts3TXoSyHy7ovW9ixtgT47y8ID7RHz8bMUj |publisher=Tech Crunch}}
  • 13 October – Researchers at TU Darmstadt publish the first experimental demonstration of a qubit array with more than 1,000 qubits:{{cite journal|title=Logical quantum processor based on reconfigurable atom arrays|date=2024|doi=10.1038/s41586-023-06927-3 |arxiv=2312.03982 |last1=Bluvstein |first1=Dolev |last2=Evered |first2=Simon J. |last3=Geim |first3=Alexandra A. |last4=Li |first4=Sophie H. |last5=Zhou |first5=Hengyun |last6=Manovitz |first6=Tom |last7=Ebadi |first7=Sepehr |last8=Cain |first8=Madelyn |last9=Kalinowski |first9=Marcin |last10=Hangleiter |first10=Dominik |last11=Bonilla Ataides |first11=J. Pablo |last12=Maskara |first12=Nishad |last13=Cong |first13=Iris |last14=Gao |first14=Xun |last15=Sales Rodriguez |first15=Pedro |last16=Karolyshyn |first16=Thomas |last17=Semeghini |first17=Giulia |last18=Gullans |first18=Michael J. |last19=Greiner |first19=Markus |last20=Vuletić |first20=Vladan |last21=Lukin |first21=Mikhail D. |journal=Nature |volume=626 |issue=7997 |pages=58–65 |pmid=38056497 |pmc=10830422 |bibcode=2024Natur.626...58B }}{{Cite journal |last1=Pause |first1=L. |last2=Sturm |first2=L. |last3=Mittenbühler |first3=M. |last4=Amann |first4=S. |last5=Preuschoff |first5=T. |last6=Schäffner |first6=D. |last7=Schlosser |first7=S. |last8=Birkl |first8=G. |title=Supercharged two-dimensional tweezer array with more than 1000 atomic qubits |url=https://opg.optica.org/optica/abstract.cfm?URI=optica-11-2-222 |journal=Optica |date=2024 |volume=11 |issue=2 |pages=222–226 |doi=10.1364/OPTICA.513551|arxiv=2310.09191 |bibcode=2024Optic..11..222P }} A 3,000-site atomic array based on a 2D configuration of optical tweezers{{Cite journal |last1=Dumke |first1=R. |last2=Volk |first2=M. |last3=Müther |first3=T. |last4=Buchkremer |first4=F. B. J. |last5=Birkl |first5=G. |last6=Ertmer |first6=W. |date=August 8, 2002 |title=Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits |url=https://link.aps.org/doi/10.1103/PhysRevLett.89.097903 |journal=Physical Review Letters |volume=89 |issue=9 |pages=097903 |doi=10.1103/PhysRevLett.89.097903|pmid=12190441 |arxiv=quant-ph/0110140 |bibcode=2002PhRvL..89i7903D }} holds up to 1,305 atomic qubits.
  • 24 October – Atom Computing announces that it has "created a 1,225-site atomic array, currently populated with 1,180 qubits",{{cite web |date=October 24, 2023 |title=Quantum startup Atom Computing first to exceed 1,000 qubits |url=https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/ |location=Boulder, Colorado}} based on Rydberg atoms.{{cite web |author=Russell |first=John |date=October 24, 2023 |title=Atom Computing Wins the Race to 1000 Qubits |url=https://www.hpcwire.com/2023/10/24/atom-computing-wins-the-race-to-1000-qubits/ |publisher=HPC Wire}}
  • 4 December – IBM presents its 1121-qubit 'Condor' quantum processor, the successor to its Osprey and Eagle systems.{{Cite web |last=McDowell |first=Steve |title=IBM Advances Quantum Computing with New Processors & Platforms |url=https://www.forbes.com/sites/stevemcdowell/2023/12/05/ibm-advances-quantum-computing-with-new-processors--platforms/ |access-date=2023-12-27 |website=Forbes |language=en}}{{Cite web |title=IBM Quantum Computing Blog {{!}} The hardware and software for the era of quantum utility is here |url=https://www.ibm.com/quantum/blog/quantum-roadmap-2033 |access-date=2023-12-27 |website=www.ibm.com |language=en}} The Condor system was the culmination of IBM's multi-year 'Roadmap to Quantum Advantage' seeking to break the 1,000 qubit threshold.{{Cite web |date=2021-02-09 |title=IBM's roadmap for scaling quantum technology |url=https://research.ibm.com/blog/ibm-quantum-roadmap |access-date=2023-12-27 |website=IBM Research Blog |language=en-US}}
  • 6 December – A group led by Misha Lukin at Harvard University realises a programmable quantum processor based on logical qubits using reconfigurable neutral atom arrays.{{Cite journal |title=Logical quantum processor based on reconfigurable atom arrays |journal=Nature |date=2024 |doi=10.1038/s41586-023-06927-3 |language=en-US |last1=Bluvstein |first1=Dolev |last2=Evered |first2=Simon J. |last3=Geim |first3=Alexandra A. |last4=Li |first4=Sophie H. |last5=Zhou |first5=Hengyun |last6=Manovitz |first6=Tom |last7=Ebadi |first7=Sepehr |last8=Cain |first8=Madelyn |last9=Kalinowski |first9=Marcin |last10=Hangleiter |first10=Dominik |last11=Bonilla Ataides |first11=J. Pablo |last12=Maskara |first12=Nishad |last13=Cong |first13=Iris |last14=Gao |first14=Xun |last15=Sales Rodriguez |first15=Pedro |last16=Karolyshyn |first16=Thomas |last17=Semeghini |first17=Giulia |last18=Gullans |first18=Michael J. |last19=Greiner |first19=Markus |last20=Vuletić |first20=Vladan |last21=Lukin |first21=Mikhail D. |volume=626 |issue=7997 |pages=58–65 |pmid=38056497 |pmc=10830422 |arxiv=2312.03982 |bibcode=2024Natur.626...58B }}

= 2024 =

  • 14 February – Researchers at UNSW Sydney demonstrated control {{cite web |title=Fundamental Quantum Technologies Laboratory|url=https://www.unsw.edu.au/research/fqt/our-research/high-dimensional-nuclear-spins-in-silicon1|website=UNSW }} of antimony-based materials, including antimonides, in quantum computing. These materials enable high-dimensional Schrödinger-cat quantum states (qudits), with enhanced scalability and error resilience, utilizing the nucleus spin of 123Sb antimony embedded in silicon nanoelectronics.{{cite journal |last=Yu |first=Xi |display-authors=et al. |year=2025 |title=Schrödinger cat states of a nuclear spin qudit in silicon |journal=Nature Physics |volume=21 |issue=3 |pages=362–367 |doi=10.1038/s41567-024-02745-0 |arxiv=2405.15494 |bibcode=2025NatPh..21..362Y }}{{cite journal |author=Fernández de Fuentes, I., Botzem, T., Johnson, M.A.I.|display-authors=et al. |year=2024 |title=Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields|journal=Nat Commun |volume=15|issue=1380|page=1380 |doi=10.1038/s41467-024-45368-y|pmid=38355747 |pmc=11258329 |arxiv=2306.07453|bibcode=2024NatCo..15.1380F }}
  • 21 February – UCL researchers achieved 97% precision in placing single arsenic atoms in silicon lattices using scanning tunneling microscopy, enabling scalable, low-error qubit arrays for quantum computing.{{cite journal |last=Stock |first=Taylor J. Z. |display-authors=et al. |title=Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication |journal=Advanced Materials |date=21 February 2024 |volume=36 |issue=24 |doi=10.1002/adma.202312282 |pmid=38380859 |arxiv=2311.05752 |bibcode=2024AdM....3612282S }}
  • 25 February – Researchers at the California Institute of Technology demonstrated multiplexed entanglement generation in quantum network nodes, entangling remote quantum memories using multiple distinct emitters. By embedding ytterbium atoms in yttrium orthovanadate (YVO₄) crystals and coupling them to optical cavities, they enabled parallel transmission of entangled photons, scaling the entanglement rate with the number of qubits.{{cite journal |last=Krutyanskiy |first=Vladislav |display-authors=et al. |date=27 February 2025 |title=Multiplexed entanglement of multi-emitter quantum network nodes |journal=Nature |volume=638 |issue=8050 |pages=54–59 |doi=10.1038/s41586-024-08537-z |pmid=40011776 |bibcode=2025Natur.639...54R }}
  • 12 March – Physicists at EPFL directly observed dissipative phase transitions (DPTs) in a superconducting Kerr resonator. Their experiment confirmed both first- and second-order DPTs, revealing critical slowing down and metastability effects, which could lead to more stable quantum computing and ultra-sensitive quantum sensors.{{cite journal |last=Beaulieu |first=Guillaume |display-authors=et al. |title=Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator |journal=Nature |volume=16 |issue=1954 |date=10 March 2025 |page=1954 |doi=10.1038/s41467-025-56830-w |pmid=40064847 |pmc=11893805 |bibcode=2025NatCo..16.1954B }}
  • 1 May – Researchers at Intel show data using a cryogenic 300-mm wafer prober to collect high-volume data on hundreds of industry-manufactured spin qubit devices at 1.6 K. Devices were characterized in the single electrons across full wafers with high yield.{{Cite journal |last1=Neyens |first1=Samuel |last2=Zietz |first2=Otto K. |last3=Watson |first3=Thomas F. |last4=Luthi |first4=Florian |last5=Nethwewala |first5=Aditi |last6=George |first6=Hubert C. |last7=Henry |first7=Eric |last8=Islam |first8=Mohammad |last9=Wagner |first9=Andrew J. |last10=Borjans |first10=Felix |last11=Connors |first11=Elliot J. |last12=Corrigan |first12=J. |last13=Curry |first13=Matthew J. |last14=Keith |first14=Daniel |last15=Kotlyar |first15=Roza |last16=Lampert |first16=L. |last17=Madzik |first17=M. T. |last18=Millard |first18=K.|last19=Mohiyaddin |first19=F. A. |last20=Pellerano |first20=S. |last21=Pillarisetty |first21=R. |last22=Ramsey |first22=M. |last23=Savytskyy |first23=R. |last24=Schaal |first24=S. |last25=Zheng |first25=G. |last26=Ziegler |first26=J. |last27=Bishop |first27=N. C. |last28=Bojarski

|first28=S. |last29=Roberts |first29=J. |last30=Clarke |first30=J.S. |date=1 May 2024 |title=Probing single electrons across 300-mm spin qubit wafers |journal=Nature |language=en |volume=629 |issue=8010 |pages=80–85 |doi=10.1038/s41586-024-07275-6 |issn=1476-4687 |pmc=11062914 |pmid=38693414|arxiv=2307.04812 |bibcode=2024Natur.629...80N }}

  • 8 May – Researchers deterministically fuse small quantum states into states with up to eight qubits.{{Cite journal |last1=Thomas |first1=Philip |last2=Ruscio |first2=Leonardo |last3=Morin |first3=Olivier |last4=Rempe |first4=Gerhard |date=2024-05-16 |title=Fusion of deterministically generated photonic graph states |journal=Nature |language=en |volume=629 |issue=8012 |pages=567–572 |doi=10.1038/s41586-024-07357-5 |issn=0028-0836 |pmc=11096110 |pmid=38720079|arxiv=2403.11950 |bibcode=2024Natur.629..567T }}
  • 10 May – Researchers from Google and the Paul Scherrer Institute developed a new hybrid digital-analog quantum simulator, combining the strengths of both techniques. This innovation enhanced the precision and flexibility of quantum computing while enabling more accurate modeling of complex quantum processes.{{cite journal |last=Andersen |first=T.I. |display-authors=et al. |date=5 February 2025 |title=Thermalization and criticality on an analogue–digital quantum simulator |journal=Nature |volume=638 |issue=8049 |pages=79–85 |doi=10.1038/s41586-024-08460-3 |pmid=39910386 |pmc=11798852 |arxiv=2405.17385 |bibcode=2025Natur.638...79A }}{{efn|Publisher received: 10 May 2024}}
  • 30 May – Researchers at Photonic and Microsoft perform a teleported CNOT gate between qubits physically separated by 40 meters, confirming remote quantum entanglement between T-centers.{{cite web |date=May 30, 2024 |title=Photonic Inc. Demonstrates Distributed Entanglement Between Two Modules Separated by 40 Meters of Fiber |url=https://quantumcomputingreport.com/photonic-inc-demonstrates-distributed-entanglement-between-two-modules-separated-by-40-meters-of-fiber/ |access-date=3 September 2024 |website=www.quantumcomputingreport.com |language=en}}
  • 30 June – Researchers from Oxford University successfully linked two quantum processors via an optical fiber network, enabling distributed quantum computing by demonstrating quantum entanglement between distant qubits, paving the way for scalable modular quantum computers and the development of a quantum internet.{{cite journal |last=Main |first=D. |display-authors=et al. |title=Distributed quantum computing across an optical network link |journal=Nature |date=5 February 2025 |volume=638 |issue=8050 |pages=383–388 |doi=10.1038/s41586-024-08404-x |pmid=39910308 |pmc=11821536 |arxiv=2407.00835 |bibcode=2025Natur.638..383M }}
  • 5 August – Research from Brown University discovered fractional excitons in bilayer graphene under the fractional quantum Hall effect, expanding excitonic understanding and quantum computing potential.{{cite journal |last=Zhang |first=Naiyuan J. |display-authors=et al. |year=2025 |title=Excitons in the fractional quantum Hall effect |journal=Nature |volume=637 |issue=8045 |pages=327–332 |doi=10.1038/s41586-024-08274-3 |pmid=39780005 |arxiv=2407.18224 |bibcode=2025Natur.637..327Z }}
  • 26 August – Researchers at Northwestern University successfully teleported a quantum state of light over {{convert|30|km}} of fiber optic cable carrying conventional internet traffic, demonstrating the feasibility of integrating quantum communication into existing networks.{{cite journal |last=Thomas |first=Jordan M. |display-authors=et al. |title=Quantum teleportation coexisting with classical communications in optical fiber |journal=Optica |date=2024 |volume=11 |issue=12 |pages=1700–1707 |doi=10.1364/OPTICA.540362 |arxiv=2404.10738 |bibcode=2024Optic..11.1700T }}
  • 29 August – Researchers at Empa successfully constructed a one-dimensional alternating Heisenberg model using synthetic nanographenes, confirming century-old quantum physics predictions. Their work marked a significant step toward real-world quantum technologies such as ultra-fast computing and unbreakable encryption.{{cite journal |last=Zhao |first=Chenxiao |display-authors=et al. |title=Spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains |journal=Nature |date=2025 |volume=24 |issue=5 |pages=722–727 |doi=10.1038/s41563-025-02166-1 |doi-access=free |pmid=40087538 |pmc=12048352 |arxiv=2408.10045 |bibcode=2025NatMa..24..722Z }}
  • 2 December – Physicists observed quantum entanglement within individual protons, demonstrating that entanglement, a key concept in quantum computing, extended to the subatomic level, revealing the complex interdependence of quarks and gluons within protons.{{cite journal |last=Hentschinski |first=Martin |display-authors=et al. |year=2024 |title=QCD evolution of entanglement entropy |journal=IOP Publishing |volume=87 |issue=12 |doi=10.1088/1361-6633/ad910b |pmid=39527914 |arxiv=2408.01259 |bibcode=2024RPPh...87l0501H }}
  • 9 December – Google Quantum AI announced Willow, the first quantum processor where error-corrected qubits get exponentially better as they get bigger. Willow performed a standard benchmark computation in under five minutes that would take today's fastest supercomputers 10 septillion years.{{cite journal |title=Quantum error correction below the surface code threshold|journal=Nature |date=Dec 9, 2024 |doi=10.1038/s41586-024-08449-y |language=en |last1=Acharya |first1=Rajeev |last2=Abanin |first2=Dmitry A. |last3=Aghababaie-Beni |first3=Laleh |last4=Aleiner |first4=Igor |last5=Andersen |first5=Trond I. |last6=Ansmann |first6=Markus |last7=Arute |first7=Frank |last8=Arya |first8=Kunal |last9=Asfaw |first9=Abraham |last10=Astrakhantsev |first10=Nikita |last11=Atalaya |first11=Juan |last12=Babbush |first12=Ryan |last13=Bacon |first13=Dave |last14=Ballard |first14=Brian |last15=Bardin |first15=Joseph C. |last16=Bausch |first16=Johannes |last17=Bengtsson |first17=Andreas |last18=Bilmes |first18=Alexander |last19=Blackwell |first19=Sam |last20=Boixo |first20=Sergio |last21=Bortoli |first21=Gina |last22=Bourassa |first22=Alexandre |last23=Bovaird |first23=Jenna |last24=Brill |first24=Leon |last25=Broughton |first25=Michael |last26=Browne |first26=David A. |last27=Buchea |first27=Brett |last28=Buckley |first28=Bob B. |last29=Buell |first29=David A. |last30=Burger |first30=Tim |volume=638 |issue=8052 |pages=920–926 |pmid=39653125 |pmc=11864966 |arxiv=2408.13687 |display-authors=1 }}{{Cite web |last=Leswing |first=Kif |date=2024-12-10 |title=Alphabet shares jump 6% after Google touts 'breakthrough' quantum chip |url=https://www.cnbc.com/2024/12/10/alphabet-shares-jump-5percent-after-google-touts-breakthrough-quantum-chip-.html |access-date=2024-12-25 |website=CNBC |language=en}}
  • 15 December – Researchers at Oak Ridge National Laboratory in collaboration with EPB and the University of Tennessee, achieve transmission of entangled quantum signals with 100% uptime through a commercial fiber-optic network for over 30 hours using automatic polarization compensation to prevent disruptions from environmental factors.{{cite web|url=https://scitechdaily.com/quantum-networking-breakthrough-as-entangled-photons-transmit-without-interruption-for-30-hours/|website=scitechdaily.com|title=Quantum Networking Breakthrough As Entangled Photons Transmit Without Interruption for 30+ Hours|publisher=OAK RIDGE NATIONAL LABORATORY|date=12 February 2025|access-date=16 February 2025|url-status=live|archive-url=https://archive.today/20250213090157/https://scitechdaily.com/quantum-networking-breakthrough-as-entangled-photons-transmit-without-interruption-for-30-hours/|archive-date=13 February 2025}}{{cite journal |last1=Chapman |first1=Joseph C.|last2=Alshowkan |first2= Muneer|last3=Reaz|first3=Kazi |last4=Li|first4=Tian |last5=Kiran|first5=Mariam |year=2024 |title=Continuous automatic polarization channel stabilization from heterodyne detection of coexisting dim reference signals |publisher=OPTICA PUBLISHING GROUP|journal=Optics Express |volume=32 |issue=26 |pages=47589–47619 |doi=10.1364/OE.543704 |arxiv=2411.15135 |bibcode=2024OExpr..3247589C }}{{efn|Scitechdaily (OAK RIDGE NATIONAL LABORATORY) indicates publication date 15 December 2024}}
  • 25 December - Researchers at Intel demonstrate a test chip with 12 spin-qubits fabricated using immersion and extreme ultraviolet lithography (EUV), along with other standard high-volume manufacturing (HVM) processes.{{Cite journal |last1=George |first1=Hubert C. |last2=Mądzik |first2=Mateusz T. |last3=Henry |first3=Eric M. |last4=Wagner |first4=Andrew J. |last5=Islam |first5=Mohammad M. |last6=Borjans |first6=Felix |last7=Connors |first7=Elliot J. |last8=Corrigan |first8=J. |last9=Curry |first9=Matthew |last10=Harper |first10=Michael K. |last11=Keith |first11=Daniel |last12=Lampert |first12=Lester |last13=Luthi |first13=Florian |last14=Mohiyaddin |first14=Fahd A. |last15=Murcia |first15=Sandra |date=2025-01-15 |title=12-Spin-Qubit Arrays Fabricated on a 300 mm Semiconductor Manufacturing Line |journal=Nano Letters |volume=25 |issue=2 |pages=793–799 |doi=10.1021/acs.nanolett.4c05205 |issn=1530-6984 |pmc=11741134 |pmid=39721970|bibcode=2025NanoL..25..793G }} This doubles the number of spin qubits published in September 2022.{{Cite journal |last1=Philips |first1=Stephan G. J. |last2=Mądzik |first2=Mateusz T. |last3=Amitonov |first3=Sergey V. |last4=de Snoo |first4=Sander L. |last5=Russ |first5=Maximilian |last6=Kalhor |first6=Nima |last7=Volk |first7=Christian |last8=Lawrie |first8=William I. L. |last9=Brousse |first9=Delphine |last10=Tryputen |first10=Larysa |last11=Wuetz |first11=Brian Paquelet |last12=Sammak |first12=Amir |last13=Veldhorst |first13=Menno |last14=Scappucci |first14=Giordano |last15=Vandersypen |first15=Lieven M. K. |date=15 July 2022 |title=Universal control of a six-qubit quantum processor in silicon |journal=Nature |language=en |volume=609 |issue=7929 |pages=919–924 |doi=10.1038/s41586-022-05117-x |issn=1476-4687 |pmc=9519456 |pmid=36171383|arxiv=2202.09252 |bibcode=2022Natur.609..919P }}

= 2025 =

  • 7 January – Researchers at Osaka Metropolitan University derived a simplified formula for quantum entanglement entropy, allowing for easier analysis of entanglement in strongly correlated electron systems. Their study identified unexpected quantum behaviors in nanoscale artificial magnetic materials and highlighted the role of quantum relative entropy in the Kondo effect.{{cite journal |last1=Nishikawa |first1=Yunori |last2=Yoshioka |first2=Tomoki |title=Quantum entanglement in a pure state of strongly correlated quantum impurity systems |journal=Physical Review B |date=7 January 2025 |volume=111 |issue=3 |page=035112 |doi=10.1103/PhysRevB.111.035112 |arxiv=2404.18387 |bibcode=2025PhRvB.111c5112N }}
  • 14 February – Researchers (Björkman et al.) used transmon qubits to demonstrate a virtual-state process of the Landau-Zener-Stückelberg-Majorana (LZSM) transition.{{Cite journal|last1=Björkman|first1=Isak |last2=Kuzmanović|first2=Marko|last3=Paraoanu|first3=Gheorghe Sorin |date=14 February 2025|title=Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect|journal=Phys. Rev. Lett.|volume=134|issue=60602|page=060602 |doi=10.1103/PhysRevLett.134.060602|pmid=40021142 |arxiv=2402.10833 |bibcode=2025PhRvL.134f0602B |via=Ville Heirola (Aalto University): scitechdaily.com/a-1932-discovery-is-rewriting-the-future-of-quantum-computing/ (February 22, 2025)}}{{cite journal | doi=10.5169/seals-110177 |doi-access=free | date=1932 | last1=Stueckelberg | first1=E.C.G. | title=Theorie der unelastischen Stösse zwischen Atomen | journal=Helvetica Physica Acta | volume=5 | issue=VI | page=369 }}
  • [https://archive.org/details/nasa_techdoc_19720003957 English translation]{{Cite journal|last1=Ivakhnenko|first1=Oleh V. |last2=Shevchenko|first2=Sergey N.|last3=Nori|first3=Franco|date=2023 |title=Nonadiabatic Landau-Zener-Stückelberg-Majorana transitions, dynamics, and interference|journal=Phys. Rep.|volume=995|pages=1–89 |doi=10.1016/j.physrep.2022.10.002 |arxiv=2203.16348|bibcode=2023PhR...995....1I }}{{Cite journal|last1=Zener|first1=Clarence|date=1 September 1932|title=Non-adiabatic crossing of energy levels|journal=Proc. R. Soc. Lond. A |volume=137|issue=833 |pages=696–702 |doi=10.1098/rspa.1932.0165|publisher=royalsocietypublishing.org|bibcode=1932RSPSA.137..696Z |via=Björkman, Kuzmanović, Paraoanu doi:10.1103/PhysRevLett.134.060602 }} Their experiment significantly suppressed the AC Stark shift, improving control over quantum state transitions.{{Cite journal|last1=Nguyen|first1=Bich Ha|date=4 November 2010|title=Lamb and ac Stark shifts in cavity quantum electrodynamics|journal=Advances in Natural Sciences: Nanoscience and Nanotechnology|volume=1|issue=3|page=035008 |doi=10.1088/2043-6262/1/3/035008|bibcode=2010ANSNN...1c5008N |doi-access=free}}
  • 19 February – Microsoft announced Majorana 1, the first quantum processing unit based on a topological core.{{Cite web |title=Massive Microsoft Quantum Computer Breakthrough Uses New State Of Matter |url=https://www.forbes.com/sites/johnkoetsier/2025/02/19/massive-microsoft-quantum-computer-breakthrough-uses-new-state-of-matter/ |date=19 Feb 2025 |last1=Koetsier |first1=John |access-date=2025-02-19 |website=Forbes |language=en-US}} The research created a new class of materials called topoconductors, which use topological superconductivity to control hardware-protected topological qubits and determined fermion parity in Majorana zero modes.{{Cite web |title=Powerful quantum computers in years not decades, says Microsoft |url=https://www.bbc.com/news/articles/cj3e3252gj8o|date=19 Feb 2025 |last1=Vallance |first1=Chris |access-date=2025-02-26 |website=BBC}}{{cite journal |last1=Aghaee |first1=Morteza |title=Interferometric single-shot parity measurement in InAs–Al hybrid devices |date= 19 Feb 2025 |journal=Nature |volume=638 |issue=8051 |pages=651–655 |doi=10.1038/s41586-024-08445-2 |pmid=39972225 |pmc=11839464 |arxiv=2401.09549 |bibcode=2025Natur.638..651M }}
  • 27 February - Amazon announced{{Cite web |title=Amazon announces Ocelot quantum chip |url=https://www.amazon.science/blog/amazon-announces-ocelot-quantum-chip |access-date=2025-03-13 |website=Amazon Science |date=27 February 2025 |language=en}} a quantum computing processor prototype, nicknamed "Ocelot", that utilizes cat qubits for bosonic quantum error correction.{{Cite journal |first1=Kyungjoo|last1=Noh|first2=Harald|last2=Putterman|first3=Shahriar|last3=Aghaeimeibodi|first4=Menyoung|last4=Lee|collaboration=Amazon Center for Quantum Computing |date=2025-02-26 |title=Hardware-efficient quantum error correction via concatenated bosonic qubits |journal=Nature |volume=638 |issue=8052 |language=en |pages=927–935 |doi=10.1038/s41586-025-08642-7 |pmid=40011723 |pmc=11864976 |arxiv=2409.13025 |bibcode=2025Natur.638..927P |issn=1476-4687}}
  • 26 March — Researchers at JPMorganChase and Quantinuum announce the realization of certified randomness, generating publicly certifiable bits using a trapped-ion quantum processor. {{Cite journal |last1=Liu |first1=Minzhao |last2=Shaydulin |first2=Ruslan |last3=Niroula |first3=Pradeep |last4=DeCross |first4=Matthew |last5=Hung |first5=Shih-Han |last6=Kon |first6=Wen Yu |last7=Cervero-Martín |first7=Enrique |last8=Chakraborty |first8=Kaushik |last9=Amer |first9=Omar |last10=Aaronson |first10=Scott |last11=Acharya |first11=Atithi |last12=Alexeev |first12=Yuri |last13=Berg |first13=K. Jordan |last14=Chakrabarti |first14=Shouvanik |last15=Curchod |first15=Florian |last16=Dreiling |first16=Joan |last17=Erickson |first17=Neal |last18=Foltz |first18=Cameron |last19=Foss-Feig |first19=Michael |last20=Hayes |first20=David |last21=Humble |first21=Travis |last22=Kumar |first22=Niraj |last23=Larson |first23=Jeffrey |last24=Lykov |first24=Danylo |last25=Mills |first25=Michael |last26=Moses |first26=Steven |last27=Neyenhuis |first27=Brian |last28=Eloul |first28=Shaltiel |last29=Siegfried |first29=Peter |last30=Walker |first30=James |last31=Lim |first31=Charles |last32=Pistoia |first32=Marco |date=2025-04-10 |title=Certified randomness using a trapped-ion quantum processor |journal=Nature |language=en |volume=640 |issue=8058 |pages=343–348 |doi=10.1038/s41586-025-08737-1 |pmid=40140579 |issn=1476-4687|pmc=11981928 |arxiv=2503.20498 |bibcode=2025Natur.640..343L }}{{Cite web |last=Niroula |first=Pradeep |date=2025-03-26 |title=Certified Randomness from a Quantum Computer |url=https://pradeepniroula.com/certified-randomness/ |access-date=2025-04-20 |website=Bits & Qubits |language=en}}

See also

Notes

{{notelist}}

References

{{Reflist|30em}}

{{History of physics}}

{{Quantum computing|state=expanded}}

{{Quantum mechanics topics}}

{{Timelines of computing}}

{{DEFAULTSORT:Timeline Of Quantum Computing}}

Category:Quantum computing

Quantum

Quantum

Category:Quantum information science