Crystallographic point group

{{Short description|Classification system for crystals}}

In crystallography, a crystallographic point group is a three-dimensional point group whose symmetry operations are compatible with a three-dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of crystallographic point groups to 32 (from an infinity of general point groups). These 32 groups are the same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms. In 1867 Axel Gadolin, who was unaware of the previous work of Hessel, found the crystallographic point groups independently using stereographic projection to represent the symmetry elements of the 32 groups.{{cite book |last1=Authier |first1=André |title=Early days of X-ray crystallography |date=2015 |publisher=Oxford University Press |location=Oxford |isbn=9780198754053 |doi=10.1093/acprof:oso/9780199659845.003.0012 |chapter=12. The Birth and Rise of the Space-Lattice Concept |url=https://academic.oup.com/book/8011/chapter/153381347 |url-access=registration |access-date=24 December 2024}}{{rp|page=379}}

In the classification of crystals, to each space group is associated a crystallographic point group by "forgetting" the translational components of the symmetry operations, that is, by turning screw rotations into rotations, glide reflections into reflections and moving all symmetry elements into the origin. Each crystallographic point group defines the (geometric) crystal class of the crystal.

The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect.

Notation

The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, mineralogists, and physicists.

For the correspondence of the two systems below, see crystal system.

=Schoenflies notation=

{{main|Schoenflies notation}}

{{details|Point groups in three dimensions}}

In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following:

  • Cn (for cyclic) indicates that the group has an n-fold rotation axis. Cnh is Cn with the addition of a mirror (reflection) plane perpendicular to the axis of rotation. Cnv is Cn with the addition of n mirror planes parallel to the axis of rotation.
  • S2n (for Spiegel, German for mirror) denotes a group with only a 2n-fold rotation-reflection axis.
  • Dn (for dihedral, or two-sided) indicates that the group has an n-fold rotation axis plus n twofold axes perpendicular to that axis. Dnh has, in addition, a mirror plane perpendicular to the n-fold axis. Dnd has, in addition to the elements of Dn, mirror planes parallel to the n-fold axis.
  • The letter T (for tetrahedron) indicates that the group has the symmetry of a tetrahedron. Td includes improper rotation operations, T excludes improper rotation operations, and Th is T with the addition of an inversion.
  • The letter O (for octahedron) indicates that the group has the symmetry of an octahedron, with (Oh) or without (O) improper operations (those that change handedness).

Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space.

class="wikitable"
n

! 1

! 2

! 3

! 4

! 6

Cn

| C1

| C2

| C3

| C4

| C6

Cnv

| C1v=C1h

| C2v

| C3v

| C4v

| C6v

Cnh

| C1h

| C2h

| C3h

| C4h

| C6h

Dn

| D1=C2

| D2

| D3

| D4

| D6

Dnh

| D1h=C2v

| D2h

| D3h

| D4h

| D6h

Dnd

| D1d=C2h

| D2d

| D3d

|style="background:silver"| D4d

|style="background:silver"| D6d

S2n

| S2

| S4

| S6

|style="background:silver"| S8

|style="background:silver"| S12

D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups.

= Hermann–Mauguin notation=

{{main|Hermann–Mauguin notation}}

An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are

class=wikitable

! Crystal family

! Crystal system

!colspan=7|Group names

colspan=2|Cubic

|23|| m{{overline|3}}|| || 432|| {{overline|4}}3m|| m{{overline|3}}m ||

rowspan=2|Hexagonal

!Hexagonal

|6|| {{overline|6}}|| 6m|| 622|| 6mm|| {{overline|6}}m2|| 6/mmm

Trigonal

|3|| {{overline|3}}|| || 32|| 3m|| {{overline|3}}m ||

colspan=2|Tetragonal

|4||{{overline|4}}|| 4m|| 422|| 4mm|| {{overline|4}}2m||4/mmm

colspan=2|Orthorhombic

| || || ||222|| || mm2|| mmm

colspan=2|Monoclinic

|2|| || 2m|| || m|| ||

colspan=2|Triclinic

|1|| {{overline|1}} || || || || ||

{{clear}}

=The correspondence between different notations=

class="wikitable"
rowspan=2|Crystal family

!rowspan=2|Crystal system

!colspan=2|Hermann-Mauguin

!rowspan=2|Shubnikov{{cite web |url=http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/ |title=(International Tables) Abstract |access-date=2011-11-25 |url-status=dead |archive-url=https://archive.today/20130704042455/http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/ |archive-date=2013-07-04 }}

!rowspan=2|Schoenflies

!rowspan=2|Orbifold

!rowspan=2|Coxeter

!rowspan=2|Order

align=center

!(full)

!(short)

align=center

! rowspan="2" colspan="2"|Triclinic

111\ C111[ ]+1
align=center

| {{overline|1}}

{{overline|1}}\tilde{2}Ci = S2×[2+,2+]2
align=center

!rowspan="3" colspan="2"| Monoclinic

222\ C222[2]+2
align=center

| m

mm\ Cs = C1h*[ ]2
align=center

| \tfrac{2}{m}

2/m2:m\ C2h2*[2,2+]4
align=center

!rowspan="3" colspan="2"| Orthorhombic

2222222:2\ D2 = V222[2,2]+4
align=center

| mm2

mm22 \cdot m\ C2v*22[2]4
align=center

| \tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}

mmmm \cdot 2:m\ D2h = Vh*222[2,2]8
align=center

! rowspan="7" colspan="2"|Tetragonal

444\ C444[4]+4
align=center

| {{overline|4}}

{{overline|4}}\tilde{4}S4[2+,4+]4
align=center

| \tfrac{4}{m}

4/m4:m\ C4h4*[2,4+]8
align=center

|422

4224:2\ D4422[4,2]+8
align=center

|4mm

4mm4 \cdot m\ C4v*44[4]8
align=center

| {{overline|4}}2m

{{overline|4}}2m\tilde{4}\cdot mD2d = Vd2*2[2+,4]8
align=center

| \tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}

4/mmmm \cdot 4:m\ D4h*422[4,2]16
align=center

!rowspan="12"|Hexagonal

!rowspan="5"|Trigonal

333\ C333[3]+3
align=center

|{{overline|3}}

{{overline|3}}\tilde{6}C3i = S6[2+,6+]6
align=center

| 32

323:2\ D3322[3,2]+6
align=center

| 3m

3m3 \cdot m\ C3v*33[3]6
align=center

| {{overline|3}}\tfrac{2}{m}

{{overline|3}}m\tilde{6}\cdot mD3d2*3[2+,6]12
align=center

! rowspan="7"|Hexagonal

666\ C666[6]+6
align=center

| {{overline|6}}

{{overline|6}}3:m\ C3h3*[2,3+]6
align=center

| \tfrac{6}{m}

6/m6:m\ C6h6*[2,6+]12
align=center

| 622

6226:2\ D6622[6,2]+12
align=center

| 6mm

6mm6 \cdot m\ C6v*66[6]12
align=center

| {{overline|6}}m2

{{overline|6}}m2m \cdot 3:m\ D3h*322[3,2]12
align=center

| \tfrac{6}{m}\tfrac{2}{m}\tfrac{2}{m}

6/mmmm \cdot 6:m\ D6h*622[6,2]24
align=center

!rowspan="5" colspan="2"|Cubic

23233/2\ T332[3,3]+12
align=center

| \tfrac{2}{m}{{overline|3}}

m{{overline|3}}\tilde{6}/2Th3*2[3+,4]24
align=center

| 432

4323/4\ O432[4,3]+24
align=center

| {{overline|4}}3m

{{overline|4}}3m3/\tilde{4}Td*332[3,3]24
align=center

| \tfrac{4}{m}{{overline|3}}\tfrac{2}{m}

m{{overline|3}}m\tilde{6}/4Oh*432[4,3]48

Isomorphisms

{{See also|Crystal structure#Crystal systems}}

Many of the crystallographic point groups share the same internal structure. For example, the point groups {{overline|1}}, 2, and m contain different geometric symmetry operations, (inversion, rotation, and reflection, respectively) but all share the structure of the cyclic group C2. All isomorphic groups are of the same order, but not all groups of the same order are isomorphic. The point groups which are isomorphic are shown in the following table:{{cite journal | last=Novak | first=I | title=Molecular isomorphism | journal=European Journal of Physics | publisher=IOP Publishing | volume=16 | issue=4 | date=1995-07-18 | issn=0143-0807 | doi=10.1088/0143-0807/16/4/001 | pages=151–153| bibcode=1995EJPh...16..151N | s2cid=250887121 }}

class="wikitable"
Hermann–Mauguin

!Schoenflies

!Order

!colspan=2|Abstract group

align=center1C11C1G_1^1
align=center

| {{overline|1}}

Ci = S22rowspan="3"| C2rowspan=3|G_2^1
align=center2C22
align=center

| m

Cs = C1h2
align=center3C33C3G_3^1
align=center4C44rowspan="2"| C4rowspan=2|G_4^1
align=center

| {{overline|4}}

S44
align=center

| 2/m

 C2h4rowspan="3" | D2 = C2 × C2rowspan=3|G_4^2
align=center 222D2 = V4
align=center

| mm2

C2v 4
align=center

|{{overline|3}}

C3i = S66rowspan="3"|C6rowspan=3|G_6^1
align=center6C66
align=center

| {{overline|6}}

C3h6
align=center

| 32

D36rowspan="2"| D3rowspan=2|G_6^2
align=center

| 3m

C3v6
align=center

| mmm

D2h = Vh8D2 × C2G_8^3
align=center

|  4/m

C4h8C4 × C2G_8^2
align=center

|422

D48rowspan="3"| D4rowspan=3|G_8^4
align=center

| 4mm

C4v8
align=center

| {{overline|4}}2m

D2d = Vd8
align=center

| 6/m

C6h12C6 × C2G_{12}^2
align=center23T12A4G_{12}^5
align=center

| {{overline|3}}m

D3d12rowspan="4" | D6rowspan=4|G_{12}^3
align=center

| 622

D612
align=center

| 6mm

C6v12
align=center

| {{overline|6}}m2

D3h12
align=center

| 4/mmm

D4h16D4 × C2G_{16}^9
align=center

| 6/mmm

D6h24D6 × C2G_{24}^5
align=center

| m{{overline|3}}

Th24A4 × C2G_{24}^{10}
align=center

| 432

O  24rowspan="2"| S4rowspan=2|G_{24}^{7}
align=center

| {{overline|4}}3m

Td24
align=center

| m{{overline|3}}m

Oh48S4 × C2G_{48}^7

This table makes use of cyclic groups (C1, C2, C3, C4, C6), dihedral groups (D2, D3, D4, D6), one of the alternating groups (A4), and one of the symmetric groups (S4). Here the symbol " × " indicates a direct product.

Deriving the crystallographic point group (crystal class) from the space group

  1. Leave out the Bravais lattice type.
  2. Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry. (Glide planes are converted into simple mirror planes; screw axes are converted into simple axes of rotation.)
  3. Axes of rotation, rotoinversion axes, and mirror planes remain unchanged.

See also

References