Omega baryon
{{Short description|Subatomic hadron particle}}
{{redirect|Omega particle|usage of the term in Star Trek|The Omega Directive}}
{{distinguish|Omega meson}}
{{Use dmy dates|date=February 2021}}
Image:Omega Baryon.svg trace of the first observed Ω baryon event at Brookhaven National Laboratory, adapted from original tracing. The tracks of neutral particles (dashed lines) are not visible in the bubble chamber. The collision of a K− meson with a proton creates an Ω−, a K0 and a K+. The Ω− decays into a π− and a Ξ0, which in turn decays into a Λ0 and a π0. The Λ0 decays into a proton and a π−. The π0, invisible due to its short lifetime, decays into two photons (γ), which in turn each create an electron-positron pair.]]
Omega baryons (often called simply omega particles) are a family of subatomic hadrons which are represented by the symbol {{SubatomicParticle|Omega}} and are either charge neutral or have a +2, +1 or −1 elementary charge. Additionally, they contain no up or down quarks.{{cite web | author=Particle Data Group | author-link=Particle Data Group |url=http://pdg.lbl.gov/2011/reviews/rpp2011-rev-naming-scheme-hadrons.pdf |title= 2010 Review of Particle Physics – Naming scheme for hadrons |access-date=2011-12-26 }} Omega baryons containing top quarks are also not expected to be observed. This is because the Standard Model predicts the mean lifetime of top quarks to be roughly {{val|5|e=-25|u=s}},
{{cite journal
|author=A. Quadt
|year=2006
|title=Top quark physics at hadron colliders
|journal=European Physical Journal C
|volume=48 |issue=3 |pages=835–1000
|bibcode = 2006EPJC...48..835Q
|doi=10.1140/epjc/s2006-02631-6
|s2cid=121887478
|url=https://cds.cern.ch/record/1339554
}} which is about a twentieth of the timescale necessary for the strong interactions required for hadronization, the process by which hadrons form from quarks and gluons.
The first omega baryon was the {{SubatomicParticle|Omega-}}, it was made of three strange quarks, and was discovered in 1964.
{{cite journal
|author=V. E. Barnes|year=1964
|title=Observation of a Hyperon with Strangeness Minus Three
|url=http://teachers.web.cern.ch/teachers/archiv/HST2001/bubblechambers/omegaminus.pdf
|journal=Physical Review Letters
|volume=12 |issue=8 |page=204
|bibcode = 1964PhRvL..12..204B
|doi = 10.1103/PhysRevLett.12.204
|osti=12491965
|display-authors=etal}} The discovery was a great triumph in the study of quarks, since it was found only after its existence, mass, and decay products had been predicted in 1961 by the American physicist Murray Gell-Mann and, independently, by the Israeli physicist Yuval Ne'eman. Besides the {{SubatomicParticle|Omega-}}, a charmed omega particle ({{SubatomicParticle|Charmed Omega0}}) was discovered in 1985, in which a strange quark is replaced by a charm quark. The {{SubatomicParticle|Omega-}} decays only via the weak interaction and has therefore a relatively long lifetime.
{{cite web
|author=R. Nave
|title=The Omega baryon
|url=http://hyperphysics.phy-astr.gsu.edu/hbase/particles/omega.html#c1
|website=HyperPhysics
|access-date=2009-11-26
}} Spin (J) and parity (P) values for unobserved baryons are predicted by the quark model.{{Cite journal|date=1994-01-01|title=Heavy baryons |journal=Progress in Particle and Nuclear Physics |volume=33|pages=787–868|doi=10.1016/0146-6410(94)90053-1 |last1=Körner|first1=J.G|last2=Krämer|first2=M|last3=Pirjol|first3=D|arxiv=hep-ph/9406359 |bibcode=1994PrPNP..33..787K|s2cid=118931787 }}
Since omega baryons do not have any up or down quarks, they all have isospin 0.
Omega baryons
File:Quark structure omega.svg
class="wikitable sortable"
|+Omega |
class=unsortable|Particle
! Symbol ! Quark ! S ! C ! {{nowrap|B'}} ! Mean lifetime ! class=unsortable|Decays to |
---|
Omega{{cite web |author=Particle Data Group |author-link=Particle Data Group |url=http://pdg.lbl.gov/2007/listings/s024.pdf |title= 2006 Review of Particle Physics – {{SubatomicParticle|Omega-}} |access-date=2008-04-20 }}
| {{SubatomicParticle|Omega-}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Strange quark}} | {{val|1672.45|0.29}} | {{sfrac|3|2}}+ | −1 | −3 | 0 | 0 | {{val|8.21|0.11|e=-11}} | {{nowrap|{{SubatomicParticle|link=yes|Lambda0}} + {{SubatomicParticle|link=yes|Kaon-}}}} or |
Charmed omega{{cite web |author=Particle Data Group |author-link=Particle Data Group |url=http://pdg.lbl.gov/2018/listings/rpp2018-list-omegac-zero.pdf |title={{SubatomicParticle|Charmed omega0}} listing – {{SubatomicParticle|Charmed Omega0}}|access-date=13 August 2018 }}
| {{SubatomicParticle|Charmed Omega0}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Charm quark}} | {{val|2697.5|2.6}} | {{sfrac|1|2}}+ | 0 | −2 | +1 | 0 | {{val|268|24|e=-15}} | See [https://pdg.lbl.gov/2022/listings/contents_listings.html {{SubatomicParticle|Charmed omega0}} Decay Modes] |
Bottom omega
| {{SubatomicParticle|Bottom Omega-}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Bottom quark}} | {{val|6054.4|6.8}} | {{sfrac|1|2}}+ | −1 | −2 | 0 | −1 |{{val|1.13|0.53|e=-12}} |{{nowrap|{{SubatomicParticle|Omega-}} + {{SubatomicParticle|link=yes|J/Psi}}}} (seen) |
Double charmed omega†
| {{SubatomicParticle|Double charmed Omega+}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Charm quark}} | | {{sfrac|1|2}}+ | +1 | −1 | +2 | 0 | | |
Charmed bottom omega†
| {{SubatomicParticle|Charmed bottom Omega0}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Bottom quark}} | | {{sfrac|1|2}}+ | 0 | −1 | +1 | −1 | | |
Double bottom omega†
| {{SubatomicParticle|Double Bottom Omega-}} | {{SubatomicParticle|link=yes|Strange quark}}{{SubatomicParticle|link=yes|Bottom quark}}{{SubatomicParticle|link=yes|Bottom quark}} | | {{sfrac|1|2}}+ | −1 | −1 | 0 | −2 | | |
Triple charmed omega†
| {{SubatomicParticle|Triple charmed Omega++}} | {{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Charm quark}} | | {{sfrac|3|2}}+ | +2 | 0 | +3 | 0 | | |
Double charmed bottom omega†
| {{SubatomicParticle|Double charmed bottom Omega+}} | {{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Bottom quark}} | | {{sfrac|1|2}}+ | +1 | 0 | +2 | −1 | | |
Charmed double bottom omega†
| {{SubatomicParticle|Charmed double bottom Omega0}} | {{SubatomicParticle|link=yes|Charm quark}}{{SubatomicParticle|link=yes|Bottom quark}}{{SubatomicParticle|link=yes|Bottom quark}} | | {{sfrac|1|2}}+ | 0 | 0 | +1 | −2 | | |
Triple bottom omega†
| {{SubatomicParticle|Triple Bottom Omega-}} | {{SubatomicParticle|link=yes|Bottom quark}}{{SubatomicParticle|link=yes|Bottom quark}}{{SubatomicParticle|link=yes|Bottom quark}} | | {{sfrac|3|2}}+ | −1 | 0 | 0 | −3 | | |
† Particle (or quantity, i.e. spin) has neither been observed nor indicated.
Recent discoveries
The {{SubatomicParticle|Bottom Omega-}} particle is a "doubly strange" baryon containing two strange quarks and a bottom quark. A discovery of this particle was first claimed in September 2008 by physicists working on the DØ experiment at the Tevatron facility of the Fermi National Accelerator Laboratory.
{{cite web
|date=3 September 2008
|title=Fermilab physicists discover "doubly strange" particle
|url=http://www.fnal.gov/pub/presspass/press_releases/Dzero_Omega-sub-b.html
|publisher=Fermilab
|access-date=2008-09-04
{{cite journal
|author=V. Abazov et al. (DØ Collaboration)
|year=2008
|title=Observation of the doubly strange b baryon {{SubatomicParticle|Bottom Omega-}}
|journal=Physical Review Letters
|volume=101 |issue=23 |page=232002
|arxiv=0808.4142
|bibcode=2008PhRvL.101w2002A
|doi=10.1103/PhysRevLett.101.232002
|pmid=19113541
|s2cid=30481085
}} However, the reported mass of {{val|6165|16|ul=MeV/c2}} was significantly higher than expected in the quark model. The apparent discrepancy from the Standard Model has since been dubbed the "{{SubatomicParticle|Bottom Omega}} puzzle". In May 2009, the CDF collaboration made public their results on the search for the {{SubatomicParticle|Bottom Omega-}} based on analysis of a data sample roughly four times the size of the one used by the DØ experiment.
{{cite journal
|author=T. Aaltonen et al. (CDF Collaboration)
|year=2009
|title=Observation of the {{SubatomicParticle|Bottom Omega-}} and Measurement of the Properties of the {{SubatomicParticle|Bottom Xi-}} and {{SubatomicParticle|Bottom Omega-}}
|journal=Physical Review D
|volume=80 |issue=7 |pages=072003
|arxiv=0905.3123
|bibcode=2009PhRvD..80g2003A
|doi=10.1103/PhysRevD.80.072003
|hdl=1721.1/52706
|s2cid=54189461
}} CDF measured the mass to be {{val|6054.4|6.8|u=MeV/c2}}, which was in excellent agreement with the Standard Model prediction. No signal has been observed at the DØ reported value. The two results differ by {{val|111|18|u=MeV/c2}}, which is equivalent to 6.2 standard deviations and are therefore inconsistent. Excellent agreement between the CDF measured mass and theoretical expectations is a strong indication that the particle discovered by CDF is indeed the {{SubatomicParticle|Bottom Omega-}}. In February 2013 the LHCb collaboration published a measurement of the {{SubatomicParticle|Bottom Omega-}} mass that is consistent with, but more precise than, the CDF result.{{cite journal
|author=R. Aaij et al. (LHCb collaboration)
|year=2013
|title=Measurement of the {{SubatomicParticle|Bottom Lambda0}}, {{SubatomicParticle|Bottom Xi-}} and {{SubatomicParticle|Bottom Omega-}} baryon masses
|journal=Physical Review Letters
|volume=110 |issue=18 |page=182001
|arxiv=1302.1072
|bibcode=2013PhRvL.110r2001A
|doi=10.1103/PhysRevLett.110.182001
|pmid=23683191
|s2cid=22966047
}}
In March 2017, the LHCb collaboration announced the observation of five new narrow {{SubatomicParticle|Charmed Omega0}} states decaying to {{SubatomicParticle|Charmed Xi+}}{{SubatomicParticle|Kaon-}}, where the {{SubatomicParticle|Charmed Xi+}} was reconstructed in the decay mode {{SubatomicParticle|proton}}{{SubatomicParticle|Kaon-}}{{SubatomicParticle|pion+}}.{{cite web|title=LHCb observes an exceptionally large group of particles|publisher=CERN|url=http://home.cern/about/updates/2017/03/lhcb-observes-exceptionally-large-group-particles}}{{cite journal|author=R. Aaij et al. (LHCb collaboration)|title=Observation of five new narrow {{SubatomicParticle|Charmed Omega0}} states decaying to {{SubatomicParticle|Charmed Xi+}}{{SubatomicParticle|Kaon-}}|year=2017|journal=Physical Review Letters|volume=11801|issue=2017|pages=182001|arxiv=1703.04639|bibcode=2017PhRvL.118r2001A|doi=10.1103/PhysRevLett.118.182001|pmid=28524669|s2cid=610517}} The states are named {{SubatomicParticle|Charmed Omega}}(3000)0, {{SubatomicParticle|Charmed Omega}}(3050)0, {{SubatomicParticle|Charmed Omega}}(3066)0, {{SubatomicParticle|Charmed Omega}}(3090)0 and {{SubatomicParticle|Charmed Omega}}(3119)0. Their masses and widths were reported, but their quantum numbers could not be determined due to the large background present in the sample.
See also
References
{{Reflist|30em}}
External links
- [https://www.flickr.com/photos/brookhavenlab/3148786892/in/album-72157611796003039/ Picture of the first event containing the {{SubatomicParticle|Omega-}}, which happens to contain the complete decay chain of the {{SubatomicParticle|Omega-}}].
- [https://www.sciencedaily.com/releases/2008/09/080903172201.htm Science Daily – Discovery of the {{SubatomicParticle|Bottom Omega-}}]
- [http://www.bbc.co.uk/programmes/p01z4p1j Strangeness Minus Three - BBC Horizon 1964]
{{Particles}}