Uniform 6-polytope#Regular and uniform honeycombs

{{Short description|Uniform 6-dimensional polytope}}

class=wikitable style="float:right; margin-left:8px; width:300px"

|+ Graphs of three regular and related uniform polytopes

align=center valign=top

|colspan=4|100px
6-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node}}

|colspan=4|100px
Truncated 6-simplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node}}

|colspan=4|100px
Rectified 6-simplex
{{CDD|node|3|node_1|3|node|3|node|3|node|3|node}}

align=center valign=top

|colspan=6|150px
Cantellated 6-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node}}

|colspan=6|150px
Runcinated 6-simplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node}}

align=center valign=top

|colspan=6|150px
Stericated 6-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node}}

|colspan=6|150px
Pentellated 6-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1}}

align=center valign=top

|colspan=4|100px
6-orthoplex
{{CDD|node_1|3|node|3|node|3|node|3|node|4|node}}

|colspan=4|100px
Truncated 6-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node|4|node}}

|colspan=4|100px
Rectified 6-orthoplex
{{CDD|node|3|node_1|3|node|3|node|3|node|4|node}}

align=center valign=top

|colspan=4|100px
Cantellated 6-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node|4|node}}

|colspan=4|100px
Runcinated 6-orthoplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node|4|node}}

|colspan=4|100px
Stericated 6-orthoplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1|4|node}}

align=center valign=top

|colspan=6|150px
Cantellated 6-cube
{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node}}

|colspan=6|150px
Runcinated 6-cube
{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node}}

align=center valign=top

|colspan=6|150px
Stericated 6-cube
{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node}}

|colspan=6|150px
Pentellated 6-cube
{{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1}}

align=center valign=top

|colspan=4|100px
6-cube
{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}

|colspan=4|100px
Truncated 6-cube
{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}}

|colspan=4|100px
Rectified 6-cube
{{CDD|node|4|node_1|3|node|3|node|3|node|3|node}}

align=center valign=top

|colspan=4|100px
6-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}}

|colspan=4|100px
Truncated 6-demicube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node}}

|colspan=4|100px
Cantellated 6-demicube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node}}

align=center valign=top

|colspan=6|150px
Runcinated 6-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node}}

|colspan=6|150px
Stericated 6-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}}

align=center valign=top

|colspan=6|150px
221
{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|colspan=6|150px
122
{{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}

align=center valign=top

|colspan=6|150px
Truncated 221
{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}

|colspan=6|150px
Truncated 122
{{CDD|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

The complete set of convex uniform 6-polytopes has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams. Each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope.

The simplest uniform polypeta are regular polytopes: the 6-simplex {3,3,3,3,3}, the 6-cube (hexeract) {4,3,3,3,3}, and the 6-orthoplex (hexacross) {3,3,3,3,4}.

History of discovery

  • Regular polytopes: (convex faces)
  • 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
  • Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
  • 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular polytera) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Convex uniform polytopes:
  • 1940: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes.
  • Nonregular uniform star polytopes: (similar to the nonconvex uniform polyhedra)
  • Ongoing: Jonathan Bowers and other researchers search for other non-convex uniform 6-polytopes, with a current count of 41348 known uniform 6-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 5-polytopes. The list is not proven complete.[http://www.polytope.net/hedrondude/polypeta.htm Uniform Polypeta], Jonathan Bowers[https://polytope.miraheze.org/wiki/Uniform_polytope Uniform polytope]

Uniform 6-polytopes by fundamental Coxeter groups

Uniform 6-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams.

There are four fundamental reflective symmetry groups which generate 153 unique uniform 6-polytopes.

class=wikitable
#

!colspan=2|Coxeter group

!Coxeter-Dynkin diagram

1A6[3,3,3,3,3]{{CDD|node|3|node|3|node|3|node|3|node|3|node}}
2B6[3,3,3,3,4]{{CDD|node|3|node|3|node|3|node|3|node|4|node}}
3D6[3,3,3,31,1]{{CDD|node|3|node|3|node|3|node|split1|nodes}}
rowspan=2|4

|rowspan=2|E6

[32,2,1]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
[3,32,2]{{CDD|node|3|node|split1|nodes|3ab|nodes}}

class=wikitable width=480

|480px
Coxeter-Dynkin diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

Uniform prismatic families

Uniform prism

There are 6 categorical uniform prisms based on the uniform 5-polytopes.

class=wikitable
#

!colspan=3|Coxeter group

!Notes

1A5A1[3,3,3,3,2]{{CDD|node|3|node|3|node|3|node|3|node|2|node}}Prism family based on 5-simplex
2B5A1[4,3,3,3,2]{{CDD|node|4|node|3|node|3|node|3|node|2|node}}Prism family based on 5-cube
3aD5A1[32,1,1,2]{{CDD|nodes|split2|node|3|node|3|node|2|node}}Prism family based on 5-demicube

class=wikitable
#

!colspan=3|Coxeter group

!Notes

4A3I2(p)A1[3,3,2,p,2]{{CDD|node|3|node|3|node|2|node|p|node|2|node}}Prism family based on tetrahedral-p-gonal duoprisms
5B3I2(p)A1[4,3,2,p,2]{{CDD|node|4|node|3|node|2|node|p|node|2|node}}Prism family based on cubic-p-gonal duoprisms
6H3I2(p)A1[5,3,2,p,2]{{CDD|node|5|node|3|node|2|node|p|node|2|node}}Prism family based on dodecahedral-p-gonal duoprisms

Uniform duoprism

There are 11 categorical uniform duoprismatic families of polytopes based on Cartesian products of lower-dimensional uniform polytopes. Five are formed as the product of a uniform 4-polytope with a regular polygon, and six are formed by the product of two uniform polyhedra:

class=wikitable
#

!colspan=3|Coxeter group

!Notes

1A4I2(p)[3,3,3,2,p]{{CDD|node|3|node|3|node|3|node|2|node|p|node}}Family based on 5-cell-p-gonal duoprisms.
2B4I2(p)[4,3,3,2,p]{{CDD|node|4|node|3|node|3|node|2|node|p|node}}Family based on tesseract-p-gonal duoprisms.
3F4I2(p)[3,4,3,2,p]{{CDD|node|3|node|4|node|3|node|2|node|p|node}}Family based on 24-cell-p-gonal duoprisms.
4H4I2(p)[5,3,3,2,p]{{CDD|node|5|node|3|node|3|node|2|node|p|node}}Family based on 120-cell-p-gonal duoprisms.
5D4I2(p)[31,1,1,2,p]{{CDD|nodes|split2|node|3|node|2|node|p|node}}Family based on demitesseract-p-gonal duoprisms.

class=wikitable
#

!colspan=3|Coxeter group

!Notes

6A32[3,3,2,3,3]{{CDD|node|3|node|3|node|2|node|3|node|3|node}}Family based on tetrahedral duoprisms.
7A3B3[3,3,2,4,3]{{CDD|node|3|node|3|node|2|node|4|node|3|node}}Family based on tetrahedral-cubic duoprisms.
8A3H3[3,3,2,5,3]{{CDD|node|3|node|3|node|2|node|5|node|3|node}}Family based on tetrahedral-dodecahedral duoprisms.
9B32[4,3,2,4,3]{{CDD|node|4|node|3|node|2|node|4|node|3|node}}Family based on cubic duoprisms.
10B3H3[4,3,2,5,3]{{CDD|node|4|node|3|node|2|node|5|node|3|node}}Family based on cubic-dodecahedral duoprisms.
11H32[5,3,2,5,3]{{CDD|node|5|node|3|node|2|node|5|node|3|node}}Family based on dodecahedral duoprisms.

Uniform triaprism

There is one infinite family of uniform triaprismatic families of polytopes constructed as a Cartesian products of three regular polygons. Each combination of at least one ring on every connected group produces a uniform prismatic 6-polytope.

class=wikitable
#

!colspan=3|Coxeter group

!Notes

1I2(p)I2(q)I2(r)[p,2,q,2,r]{{CDD|node|p|node|2|node|q|node|2|node|r|node}}Family based on p,q,r-gonal triprisms

Enumerating the convex uniform 6-polytopes

  • Simplex family: A6 [34] - {{CDD|node|3|node|3|node|3|node|3|node|3|node}}
  • 35 uniform 6-polytopes as permutations of rings in the group diagram, including one regular:
  • # {34} - 6-simplex - {{CDD|node_1|3|node|3|node|3|node|3|node|3|node}}
  • Hypercube/orthoplex family: B6 [4,34] - {{CDD|node|4|node|3|node|3|node|3|node|3|node}}
  • 63 uniform 6-polytopes as permutations of rings in the group diagram, including two regular forms:
  • # {4,33} — 6-cube (hexeract) - {{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}
  • # {33,4} — 6-orthoplex, (hexacross) - {{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}
  • Demihypercube D6 family: [33,1,1] - {{CDD|nodes|split2|node|3|node|3|node|3|node}}
  • 47 uniform 6-polytopes (16 unique) as permutations of rings in the group diagram, including:
  • # {3,32,1}, 121 6-demicube (demihexeract) - {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}}; also as h{4,33}, {{CDD|node_h|4|node|3|node|3|node|3|node|3|node}}
  • # {3,3,31,1}, 211 6-orthoplex - {{CDD|nodes|split2|node|3|node|3|node|3|node_1}}, a half symmetry form of {{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}.
  • E6 family: [33,1,1] - {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
  • 39 uniform 6-polytopes as permutations of rings in the group diagram, including:
  • # {3,3,32,1}, 221 - {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
  • # {3,32,2}, 122 - {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}

These fundamental families generate 153 nonprismatic convex uniform polypeta.

In addition, there are 57 uniform 6-polytope constructions based on prisms of the uniform 5-polytopes: [3,3,3,3,2], [4,3,3,3,2], [32,1,1,2], excluding the penteract prism as a duplicate of the hexeract.

In addition, there are infinitely many uniform 6-polytope based on:

  1. Duoprism prism families: [3,3,2,p,2], [4,3,2,p,2], [5,3,2,p,2].
  2. Duoprism families: [3,3,3,2,p], [4,3,3,2,p], [5,3,3,2,p].
  3. Triaprism family: [p,2,q,2,r].

= The A<sub>6</sub> family =

{{Further|list of A6 polytopes}}

There are 32+4−1=35 forms, derived by marking one or more nodes of the Coxeter-Dynkin diagram.

All 35 are enumerated below. They are named by Norman Johnson from the Wythoff construction operations upon regular 6-simplex (heptapeton). Bowers-style acronym names are given in parentheses for cross-referencing.

The A6 family has symmetry of order 5040 (7 factorial).

The coordinates of uniform 6-polytopes with 6-simplex symmetry can be generated as permutations of simple integers in 7-space, all in hyperplanes with normal vector (1,1,1,1,1,1,1).

class="wikitable"
rowspan=2|#

!rowspan=2|Coxeter-Dynkin

!rowspan=2|Johnson naming system
Bowers name and (acronym)

!rowspan=2|Base point

!colspan=6|Element counts

5|| 4|| 3|| 2|| 1|| 0
align=center

!1

|{{CDD|node|3|node|3|node|3|node|3|node|3|node_1}}

| 6-simplex
heptapeton (hop)

|(0,0,0,0,0,0,1)

|7

213535217
align=center

!2

|{{CDD|node|3|node|3|node|3|node|3|node_1|3|node}}

| Rectified 6-simplex
rectified heptapeton (ril)

|(0,0,0,0,0,1,1)

146314017510521
align=center

!3

|{{CDD|node|3|node|3|node|3|node|3|node_1|3|node_1}}

| Truncated 6-simplex
truncated heptapeton (til)

|(0,0,0,0,0,1,2)

146314017512642
align=center

!4

|{{CDD|node|3|node|3|node|3|node_1|3|node|3|node}}

| Birectified 6-simplex
birectified heptapeton (bril)

|(0,0,0,0,1,1,1)

148424535021035
align=center

!5

|{{CDD|node|3|node|3|node|3|node_1|3|node|3|node_1}}

| Cantellated 6-simplex
small rhombated heptapeton (sril)

|(0,0,0,0,1,1,2)

35210560805525105
align=center

!6

|{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node}}

| Bitruncated 6-simplex
bitruncated heptapeton (batal)

|(0,0,0,0,1,2,2)

1484245385315105
align=center

!7

|{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}

| Cantitruncated 6-simplex
great rhombated heptapeton (gril)

|(0,0,0,0,1,2,3)

35210560805630210
align=center

!8

|{{CDD|node|3|node|3|node_1|3|node|3|node|3|node_1}}

| Runcinated 6-simplex
small prismated heptapeton (spil)

|(0,0,0,1,1,1,2)

7045513301610840140
align=center

!9

|{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node}}

| Bicantellated 6-simplex
small birhombated heptapeton (sabril)

|(0,0,0,1,1,2,2)

7045512951610840140
align=center

!10

|{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}

| Runcitruncated 6-simplex
prismatotruncated heptapeton (patal)

|(0,0,0,1,1,2,3)

70560182028001890420
style="text-align:center; background:#e0f0e0;"

!11

|{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node}}

| Tritruncated 6-simplex
tetradecapeton (fe)

|(0,0,0,1,2,2,2)

1484280490420140
align=center

!12

|{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}

| Runcicantellated 6-simplex
prismatorhombated heptapeton (pril)

|(0,0,0,1,2,2,3)

70455129519601470420
align=center

!13

|{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}

| Bicantitruncated 6-simplex
great birhombated heptapeton (gabril)

|(0,0,0,1,2,3,3)

4932998015401260420
align=center

!14

|{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}

| Runcicantitruncated 6-simplex
great prismated heptapeton (gapil)

|(0,0,0,1,2,3,4)

70560182030102520840
align=center

!15

|{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1}}

| Stericated 6-simplex
small cellated heptapeton (scal)

|(0,0,1,1,1,1,2)

|105

70014701400630105
style="text-align:center; background:#e0f0e0;"

!16

|{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node}}

| Biruncinated 6-simplex
small biprismato-tetradecapeton (sibpof)

|(0,0,1,1,1,2,2)

84714210025201260210
align=center

!17

|{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}

| Steritruncated 6-simplex
cellitruncated heptapeton (catal)

|(0,0,1,1,1,2,3)

105945294037802100420
align=center

!18

|{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}

| Stericantellated 6-simplex
cellirhombated heptapeton (cral)

|(0,0,1,1,2,2,3)

1051050346550403150630
align=center

!19

|{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}

| Biruncitruncated 6-simplex
biprismatorhombated heptapeton (bapril)

|(0,0,1,1,2,3,3)

84714231035702520630
align=center

!20

|{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}

| Stericantitruncated 6-simplex
celligreatorhombated heptapeton (cagral)

|(0,0,1,1,2,3,4)

10511554410714050401260
align=center

!21

|{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}

| Steriruncinated 6-simplex
celliprismated heptapeton (copal)

|(0,0,1,2,2,2,3)

105700199526601680420
align=center

!22

|{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}

|Steriruncitruncated 6-simplex
celliprismatotruncated heptapeton (captal)

|(0,0,1,2,2,3,4)

1059453360567044101260
align=center

!23

|{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}

| Steriruncicantellated 6-simplex
celliprismatorhombated heptapeton (copril)

|(0,0,1,2,3,3,4)

10510503675588044101260
style="text-align:center; background:#e0f0e0;"

!24

|{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}

| Biruncicantitruncated 6-simplex
great biprismato-tetradecapeton (gibpof)

|(0,0,1,2,3,4,4)

847142520441037801260
align=center

!25

|{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

| Steriruncicantitruncated 6-simplex
great cellated heptapeton (gacal)

|(0,0,1,2,3,4,5)

10511554620861075602520
style="text-align:center; background:#e0f0e0;"

!26

|{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1}}

| Pentellated 6-simplex
small teri-tetradecapeton (staff)

|(0,1,1,1,1,1,2)

12643463049021042
align=center

!27

|{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}

| Pentitruncated 6-simplex
teracellated heptapeton (tocal)

|(0,1,1,1,1,2,3)

12682617851820945210
align=center

!28

|{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}

| Penticantellated 6-simplex
teriprismated heptapeton (topal)

|(0,1,1,1,2,2,3)

1261246357043402310420
align=center

!29

|{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}

| Penticantitruncated 6-simplex
terigreatorhombated heptapeton (togral)

|(0,1,1,1,2,3,4)

1261351409553903360840
align=center

!30

|{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}

| Pentiruncitruncated 6-simplex
tericellirhombated heptapeton (tocral)

|(0,1,1,2,2,3,4)

12614915565861056701260
style="text-align:center; background:#e0f0e0;"

!31

|{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}

| Pentiruncicantellated 6-simplex
teriprismatorhombi-tetradecapeton (taporf)

|(0,1,1,2,3,3,4)

12615965250756050401260
align=center

!32

|{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}

| Pentiruncicantitruncated 6-simplex
terigreatoprismated heptapeton (tagopal)

|(0,1,1,2,3,4,5)

126170168251155088202520
style="text-align:center; background:#e0f0e0;"

!33

|{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}

| Pentisteritruncated 6-simplex
tericellitrunki-tetradecapeton (tactaf)

|(0,1,2,2,2,3,4)

1261176378052503360840
align=center

!34

|{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}

| Pentistericantitruncated 6-simplex
tericelligreatorhombated heptapeton (tacogral)

|(0,1,2,2,3,4,5)

126159665101134088202520
style="text-align:center; background:#e0f0e0;"

!35

|{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

| Omnitruncated 6-simplex
great teri-tetradecapeton (gotaf)

|(0,1,2,3,4,5,6)

1261806840016800151205040

= The B<sub>6</sub> family =

{{Further|list of B6 polytopes}}

There are 63 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

The B6 family has symmetry of order 46080 (6 factorial x 26).

They are named by Norman Johnson from the Wythoff construction operations upon the regular 6-cube and 6-orthoplex. Bowers names and acronym names are given for cross-referencing.

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter-Dynkin diagram

!rowspan=2|Schläfli symbol

!rowspan=2|Names

!colspan=6|Element counts

5|| 4|| 3|| 2|| 1|| 0
align=center BGCOLOR="#f0e0e0"

!36

|{{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}

t0{3,3,3,3,4}6-orthoplex
Hexacontatetrapeton (gee)
641922401606012
align=center BGCOLOR="#f0e0e0"

!37

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node}}

t1{3,3,3,3,4}Rectified 6-orthoplex
Rectified hexacontatetrapeton (rag)
765761200112048060
align=center BGCOLOR="#f0e0e0"

!38

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node}}

t2{3,3,3,3,4}Birectified 6-orthoplex
Birectified hexacontatetrapeton (brag)
76636216028801440160
align=center BGCOLOR="#e0e0f0"

!39

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node}}

t2{4,3,3,3,3}Birectified 6-cube
Birectified hexeract (brox)
76636208032001920240
align=center BGCOLOR="#e0e0f0"

!40

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node}}

t1{4,3,3,3,3}Rectified 6-cube
Rectified hexeract (rax)
7644411201520960192
align=center BGCOLOR="#e0e0f0"

!41

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}

t0{4,3,3,3,3}6-cube
Hexeract (ax)
126016024019264
align=center BGCOLOR="#f0e0e0"

!42

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node_1}}

t0,1{3,3,3,3,4}Truncated 6-orthoplex
Truncated hexacontatetrapeton (tag)
7657612001120540120
align=center BGCOLOR="#f0e0e0"

!43

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node_1}}

t0,2{3,3,3,3,4}Cantellated 6-orthoplex
Small rhombated hexacontatetrapeton (srog)
1361656504064003360480
align=center BGCOLOR="#f0e0e0"

!44

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node}}

t1,2{3,3,3,3,4}Bitruncated 6-orthoplex
Bitruncated hexacontatetrapeton (botag)
1920480
align=center BGCOLOR="#f0e0e0"

!45

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node_1}}

t0,3{3,3,3,3,4}Runcinated 6-orthoplex
Small prismated hexacontatetrapeton (spog)
7200960
align=center BGCOLOR="#f0e0e0"

!46

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node}}

t1,3{3,3,3,3,4}Bicantellated 6-orthoplex
Small birhombated hexacontatetrapeton (siborg)
86401440
align=center BGCOLOR="#e0f0e0"

!47

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node}}

t2,3{4,3,3,3,3}Tritruncated 6-cube
Hexeractihexacontitetrapeton (xog)
3360960
align=center BGCOLOR="#f0e0e0"

!48

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node_1}}

t0,4{3,3,3,3,4}Stericated 6-orthoplex
Small cellated hexacontatetrapeton (scag)
5760960
align=center BGCOLOR="#e0f0e0"

!49

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node}}

t1,4{4,3,3,3,3}Biruncinated 6-cube
Small biprismato-hexeractihexacontitetrapeton (sobpoxog)
115201920
align=center BGCOLOR="#e0e0f0"

!50

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node}}

t1,3{4,3,3,3,3}Bicantellated 6-cube
Small birhombated hexeract (saborx)
96001920
align=center BGCOLOR="#e0e0f0"

!51

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node}}

t1,2{4,3,3,3,3}Bitruncated 6-cube
Bitruncated hexeract (botox)
2880960
align=center BGCOLOR="#e0f0e0"

!52

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1}}

t0,5{4,3,3,3,3}Pentellated 6-cube
Small teri-hexeractihexacontitetrapeton (stoxog)
1920384
align=center BGCOLOR="#e0e0f0"

!53

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node}}

t0,4{4,3,3,3,3}Stericated 6-cube
Small cellated hexeract (scox)
5760960
align=center BGCOLOR="#e0e0f0"

!54

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node}}

t0,3{4,3,3,3,3}Runcinated 6-cube
Small prismated hexeract (spox)
76801280
align=center BGCOLOR="#e0e0f0"

!55

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node}}

t0,2{4,3,3,3,3}Cantellated 6-cube
Small rhombated hexeract (srox)
4800960
align=center BGCOLOR="#e0e0f0"

!56

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}}

t0,1{4,3,3,3,3}Truncated 6-cube
Truncated hexeract (tox)
76444112015201152384
align=center BGCOLOR="#f0e0e0"

!57

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node_1}}

t0,1,2{3,3,3,3,4}Cantitruncated 6-orthoplex
Great rhombated hexacontatetrapeton (grog)
3840960
align=center BGCOLOR="#f0e0e0"

!58

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node_1}}

t0,1,3{3,3,3,3,4}Runcitruncated 6-orthoplex
Prismatotruncated hexacontatetrapeton (potag)
158402880
align=center BGCOLOR="#f0e0e0"

!59

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node_1}}

t0,2,3{3,3,3,3,4}Runcicantellated 6-orthoplex
Prismatorhombated hexacontatetrapeton (prog)
115202880
align=center BGCOLOR="#f0e0e0"

!60

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node}}

t1,2,3{3,3,3,3,4}Bicantitruncated 6-orthoplex
Great birhombated hexacontatetrapeton (gaborg)
100802880
align=center BGCOLOR="#f0e0e0"

!61

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node_1}}

t0,1,4{3,3,3,3,4}Steritruncated 6-orthoplex
Cellitruncated hexacontatetrapeton (catog)
192003840
align=center BGCOLOR="#f0e0e0"

!62

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node_1}}

t0,2,4{3,3,3,3,4}Stericantellated 6-orthoplex
Cellirhombated hexacontatetrapeton (crag)
288005760
align=center BGCOLOR="#f0e0e0"

!63

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node}}

t1,2,4{3,3,3,3,4}Biruncitruncated 6-orthoplex
Biprismatotruncated hexacontatetrapeton (boprax)
230405760
align=center BGCOLOR="#f0e0e0"

!64

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node_1}}

t0,3,4{3,3,3,3,4}Steriruncinated 6-orthoplex
Celliprismated hexacontatetrapeton (copog)
153603840
align=center BGCOLOR="#e0e0f0"

!65

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node}}

t1,2,4{4,3,3,3,3}Biruncitruncated 6-cube
Biprismatotruncated hexeract (boprag)
230405760
align=center BGCOLOR="#e0e0f0"

!66

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node}}

t1,2,3{4,3,3,3,3}Bicantitruncated 6-cube
Great birhombated hexeract (gaborx)
115203840
align=center BGCOLOR="#f0e0e0"

!67

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1}}

t0,1,5{3,3,3,3,4}Pentitruncated 6-orthoplex
Teritruncated hexacontatetrapeton (tacox)
86401920
align=center BGCOLOR="#f0e0e0"

!68

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1}}

t0,2,5{3,3,3,3,4}Penticantellated 6-orthoplex
Terirhombated hexacontatetrapeton (tapox)
211203840
align=center BGCOLOR="#e0e0f0"

!69

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node}}

t0,3,4{4,3,3,3,3}Steriruncinated 6-cube
Celliprismated hexeract (copox)
153603840
align=center BGCOLOR="#e0e0f0"

!70

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1}}

t0,2,5{4,3,3,3,3}Penticantellated 6-cube
Terirhombated hexeract (topag)
211203840
align=center BGCOLOR="#e0e0f0"

!71

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node}}

t0,2,4{4,3,3,3,3}Stericantellated 6-cube
Cellirhombated hexeract (crax)
288005760
align=center BGCOLOR="#e0e0f0"

!72

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node}}

t0,2,3{4,3,3,3,3}Runcicantellated 6-cube
Prismatorhombated hexeract (prox)
134403840
align=center BGCOLOR="#e0e0f0"

!73

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node_1}}

t0,1,5{4,3,3,3,3}Pentitruncated 6-cube
Teritruncated hexeract (tacog)
86401920
align=center BGCOLOR="#e0e0f0"

!74

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node}}

t0,1,4{4,3,3,3,3}Steritruncated 6-cube
Cellitruncated hexeract (catax)
192003840
align=center BGCOLOR="#e0e0f0"

!75

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node}}

t0,1,3{4,3,3,3,3}Runcitruncated 6-cube
Prismatotruncated hexeract (potax)
172803840
align=center BGCOLOR="#e0e0f0"

!76

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node}}

t0,1,2{4,3,3,3,3}Cantitruncated 6-cube
Great rhombated hexeract (grox)
57601920
align=center BGCOLOR="#f0e0e0"

!77

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}

t0,1,2,3{3,3,3,3,4}Runcicantitruncated 6-orthoplex
Great prismated hexacontatetrapeton (gopog)
201605760
align=center BGCOLOR="#f0e0e0"

!78

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node_1}}

t0,1,2,4{3,3,3,3,4}Stericantitruncated 6-orthoplex
Celligreatorhombated hexacontatetrapeton (cagorg)
4608011520
align=center BGCOLOR="#f0e0e0"

!79

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node_1}}

t0,1,3,4{3,3,3,3,4}Steriruncitruncated 6-orthoplex
Celliprismatotruncated hexacontatetrapeton (captog)
4032011520
align=center BGCOLOR="#f0e0e0"

!80

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1}}

t0,2,3,4{3,3,3,3,4}Steriruncicantellated 6-orthoplex
Celliprismatorhombated hexacontatetrapeton (coprag)
4032011520
align=center BGCOLOR="#e0f0e0"

!81

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node}}

t1,2,3,4{4,3,3,3,3}Biruncicantitruncated 6-cube
Great biprismato-hexeractihexacontitetrapeton (gobpoxog)
3456011520
align=center BGCOLOR="#f0e0e0"

!82

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1}}

t0,1,2,5{3,3,3,3,4}Penticantitruncated 6-orthoplex
Terigreatorhombated hexacontatetrapeton (togrig)
307207680
align=center BGCOLOR="#f0e0e0"

!83

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1}}

t0,1,3,5{3,3,3,3,4}Pentiruncitruncated 6-orthoplex
Teriprismatotruncated hexacontatetrapeton (tocrax)
5184011520
align=center BGCOLOR="#e0f0e0"

!84

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1}}

t0,2,3,5{4,3,3,3,3}Pentiruncicantellated 6-cube
Teriprismatorhombi-hexeractihexacontitetrapeton (tiprixog)
4608011520
align=center BGCOLOR="#e0e0f0"

!85

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node}}

t0,2,3,4{4,3,3,3,3}Steriruncicantellated 6-cube
Celliprismatorhombated hexeract (coprix)
4032011520
align=center BGCOLOR="#e0f0e0"

!86

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node_1}}

t0,1,4,5{4,3,3,3,3}Pentisteritruncated 6-cube
Tericelli-hexeractihexacontitetrapeton (tactaxog)
307207680
align=center BGCOLOR="#e0e0f0"

!87

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node_1}}

t0,1,3,5{4,3,3,3,3}Pentiruncitruncated 6-cube
Teriprismatotruncated hexeract (tocrag)
5184011520
align=center BGCOLOR="#e0e0f0"

!88

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node}}

t0,1,3,4{4,3,3,3,3}Steriruncitruncated 6-cube
Celliprismatotruncated hexeract (captix)
4032011520
align=center BGCOLOR="#e0e0f0"

!89

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node_1}}

t0,1,2,5{4,3,3,3,3}Penticantitruncated 6-cube
Terigreatorhombated hexeract (togrix)
307207680
align=center BGCOLOR="#e0e0f0"

!90

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node}}

t0,1,2,4{4,3,3,3,3}Stericantitruncated 6-cube
Celligreatorhombated hexeract (cagorx)
4608011520
align=center BGCOLOR="#e0e0f0"

!91

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node}}

t0,1,2,3{4,3,3,3,3}Runcicantitruncated 6-cube
Great prismated hexeract (gippox)
230407680
align=center BGCOLOR="#f0e0e0"

!92

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

t0,1,2,3,4{3,3,3,3,4}Steriruncicantitruncated 6-orthoplex
Great cellated hexacontatetrapeton (gocog)
6912023040
align=center BGCOLOR="#f0e0e0"

!93

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}

t0,1,2,3,5{3,3,3,3,4}Pentiruncicantitruncated 6-orthoplex
Terigreatoprismated hexacontatetrapeton (tagpog)
8064023040
align=center BGCOLOR="#f0e0e0"

!94

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node_1}}

t0,1,2,4,5{3,3,3,3,4}Pentistericantitruncated 6-orthoplex
Tericelligreatorhombated hexacontatetrapeton (tecagorg)
8064023040
align=center BGCOLOR="#e0e0f0"

!95

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node_1}}

t0,1,2,4,5{4,3,3,3,3}Pentistericantitruncated 6-cube
Tericelligreatorhombated hexeract (tocagrax)
8064023040
align=center BGCOLOR="#e0e0f0"

!96

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node_1}}

t0,1,2,3,5{4,3,3,3,3}Pentiruncicantitruncated 6-cube
Terigreatoprismated hexeract (tagpox)
8064023040
align=center BGCOLOR="#e0e0f0"

!97

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node}}

t0,1,2,3,4{4,3,3,3,3}Steriruncicantitruncated 6-cube
Great cellated hexeract (gocax)
6912023040
align=center BGCOLOR="#e0f0e0"

!98

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

t0,1,2,3,4,5{4,3,3,3,3}Omnitruncated 6-cube
Great teri-hexeractihexacontitetrapeton (gotaxog)
13824046080

= The D<sub>6</sub> family =

{{Further|list of D6 polytopes}}

The D6 family has symmetry of order 23040 (6 factorial x 25).

This family has 3×16−1=47 Wythoffian uniform polytopes, generated by marking one or more nodes of the D6 Coxeter-Dynkin diagram. Of these, 31 (2×16−1) are repeated from the B6 family and 16 are unique to this family. The 16 unique forms are enumerated below. Bowers-style acronym names are given for cross-referencing.

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram

!rowspan=2|Names

!rowspan=2|Base point
(Alternately signed)

!colspan=6|Element counts

!rowspan=2|Circumrad

5||4||3||2||1||0
align=center

!99

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node}}6-demicube
Hemihexeract (hax)
(1,1,1,1,1,1)44252640640240320.8660254
align=center

!100

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node}}Cantic 6-cube
Truncated hemihexeract (thax)
(1,1,3,3,3,3)766362080320021604802.1794493
align=center

!101

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node}}Runcic 6-cube
Small rhombated hemihexeract (sirhax)
(1,1,1,3,3,3)38406401.9364916
align=center

!102

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node}}Steric 6-cube
Small prismated hemihexeract (sophax)
(1,1,1,1,3,3)33604801.6583123
align=center

!103

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}}Pentic 6-cube
Small cellated demihexeract (sochax)
(1,1,1,1,1,3)14401921.3228756
align=center

!104

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node}}Runcicantic 6-cube
Great rhombated hemihexeract (girhax)
(1,1,3,5,5,5)576019203.2787192
align=center

!105

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node}}Stericantic 6-cube
Prismatotruncated hemihexeract (pithax)
(1,1,3,3,5,5)1296028802.95804
align=center

!106

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node}}Steriruncic 6-cube
Prismatorhombated hemihexeract (prohax)
(1,1,1,3,5,5)768019202.7838821
align=center

!107

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}}Penticantic 6-cube
Cellitruncated hemihexeract (cathix)
(1,1,3,3,3,5)960019202.5980761
align=center

!108

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}}Pentiruncic 6-cube
Cellirhombated hemihexeract (crohax)
(1,1,1,3,3,5)1056019202.3979158
align=center

!109

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}}Pentisteric 6-cube
Celliprismated hemihexeract (cophix)
(1,1,1,1,3,5)52809602.1794496
align=center

!110

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}Steriruncicantic 6-cube
Great prismated hemihexeract (gophax)
(1,1,3,5,7,7)1728057604.0926762
align=center

!111

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}}Pentiruncicantic 6-cube
Celligreatorhombated hemihexeract (cagrohax)
(1,1,3,5,5,7)2016057603.7080991
align=center

!112

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}}Pentistericantic 6-cube
Celliprismatotruncated hemihexeract (capthix)
(1,1,3,3,5,7)2304057603.4278274
align=center

!113

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}Pentisteriruncic 6-cube
Celliprismatorhombated hemihexeract (caprohax)
(1,1,1,3,5,7)1536038403.2787192
align=center

!114

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}Pentisteriruncicantic 6-cube
Great cellated hemihexeract (gochax)
(1,1,3,5,7,9)34560115204.5552168

= The E<sub>6</sub> family =

{{Further|list of E6 polytopes}}

There are 39 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Bowers-style acronym names are given for cross-referencing. The E6 family has symmetry of order 51,840.

class="wikitable"
rowspan=2|#

!rowspan=2|Coxeter diagram

!rowspan=2|Names

!colspan=6|Element counts

5-faces

! 4-faces

! Cells

! Faces

! Edges

! Vertices

align=center

|115

{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}221
Icosiheptaheptacontidipeton (jak)
99648108072021627
align=center

|116

{{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}Rectified 221
Rectified icosiheptaheptacontidipeton (rojak)
1261350432050402160216
align=center

|117

{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}Truncated 221
Truncated icosiheptaheptacontidipeton (tojak)
1261350432050402376432
align=center

|118

{{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}Cantellated 221
Small rhombated icosiheptaheptacontidipeton (sirjak)
34239421512024480151202160
align=center

|119

{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}Runcinated 221
Small demiprismated icosiheptaheptacontidipeton (shopjak)
3424662162001944086401080
align=center

|120

{{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}Demified icosiheptaheptacontidipeton (hejak)3422430720079203240432
align=center

|121

{{CDD|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}Bitruncated 221
Bitruncated icosiheptaheptacontidipeton (botajik)
2160
align=center

|122

{{CDD|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}Demirectified icosiheptaheptacontidipeton (harjak)1080
align=center

|123

{{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}Cantitruncated 221
Great rhombated icosiheptaheptacontidipeton (girjak)
4320
align=center

|124

{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}Runcitruncated 221
Demiprismatotruncated icosiheptaheptacontidipeton (hopitjak)
4320
align=center

|125

{{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}}Steritruncated 221
Cellitruncated icosiheptaheptacontidipeton (catjak)
2160
align=center

|126

{{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}Demitruncated icosiheptaheptacontidipeton (hotjak)2160
align=center

|127

{{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}}Runcicantellated 221
Demiprismatorhombated icosiheptaheptacontidipeton (haprojak)
6480
align=center

|128

{{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}Small demirhombated icosiheptaheptacontidipeton (shorjak)4320
align=center

|129

{{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}}Small prismated icosiheptaheptacontidipeton (spojak)4320
align=center

|130

{{CDD|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}Tritruncated icosiheptaheptacontidipeton (titajak)4320
align=center

|131

{{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}Runcicantitruncated 221
Great demiprismated icosiheptaheptacontidipeton (ghopjak)
12960
align=center

|132

{{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}}Stericantitruncated 221
Celligreatorhombated icosiheptaheptacontidipeton (cograjik)
12960
align=center

|133

{{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}Great demirhombated icosiheptaheptacontidipeton (ghorjak)8640
align=center

|134

{{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}Prismatotruncated icosiheptaheptacontidipeton (potjak)12960
align=center

|135

{{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}}Demicellitruncated icosiheptaheptacontidipeton (hictijik)8640
align=center

|136

{{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}}Prismatorhombated icosiheptaheptacontidipeton (projak)12960
align=center

|137

{{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}Great prismated icosiheptaheptacontidipeton (gapjak)25920
align=center

|138

{{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}}Demicelligreatorhombated icosiheptaheptacontidipeton (hocgarjik)25920

class="wikitable"
rowspan=2|#

!rowspan=2|Coxeter diagram

!rowspan=2|Names

!colspan=6|Element counts

5-faces

! 4-faces

! Cells

! Faces

! Edges

! Vertices

style="text-align:center; background:#e0f0e0;"

|139

{{CDD|node_1|3|node|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}122
Pentacontatetrapeton (mo)
547022160216072072
style="text-align:center; background:#e0f0e0;"

|140

{{CDD|node|3|node_1|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}Rectified 122
Rectified pentacontatetrapeton (ram)
12615666480108006480720
style="text-align:center; background:#e0f0e0;"

|141

{{CDD|node|3|node|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}Birectified 122
Birectified pentacontatetrapeton (barm)
12622861080019440129602160
style="text-align:center; background:#e0f0e0;"

|142

{{CDD|node|3|node|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}Trirectified 122
Trirectified pentacontatetrapeton (trim)
5584608864064802160270
style="text-align:center; background:#e0f0e0;"

|143

{{CDD|node_1|3|node_1|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}Truncated 122
Truncated pentacontatetrapeton (tim)
136801440
style="text-align:center; background:#e0f0e0;"

|144

{{CDD|node|3|node_1|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}Bitruncated 122
Bitruncated pentacontatetrapeton (bitem)
6480
style="text-align:center; background:#e0f0e0;"

|145

{{CDD|node|3|node|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}}Tritruncated 122
Tritruncated pentacontatetrapeton (titam)
8640
style="text-align:center; background:#e0f0e0;"

|146

{{CDD|node_1|3|node|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}Cantellated 122
Small rhombated pentacontatetrapeton (sram)
6480
style="text-align:center; background:#e0f0e0;"

|147

{{CDD|node_1|3|node_1|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}Cantitruncated 122
Great rhombated pentacontatetrapeton (gram)
12960
style="text-align:center; background:#e0f0e0;"

|148

{{CDD|node_1|3|node|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}}Runcinated 122
Small prismated pentacontatetrapeton (spam)
2160
style="text-align:center; background:#e0f0e0;"

|149

{{CDD|node|3|node_1|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}}Bicantellated 122
Small birhombated pentacontatetrapeton (sabrim)
6480
style="text-align:center; background:#e0f0e0;"

|150

{{CDD|node|3|node_1|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}}Bicantitruncated 122
Great birhombated pentacontatetrapeton (gabrim)
12960
style="text-align:center; background:#e0f0e0;"

|151

{{CDD|node_1|3|node_1|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}}Runcitruncated 122
Prismatotruncated pentacontatetrapeton (patom)
12960
style="text-align:center; background:#e0f0e0;"

|152

{{CDD|node_1|3|node|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}Runcicantellated 122
Prismatorhombated pentacontatetrapeton (prom)
25920
style="text-align:center; background:#e0f0e0;"

|153

{{CDD|node_1|3|node_1|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}}Omnitruncated 122
Great prismated pentacontatetrapeton (gopam)
51840

= Triaprisms =

Uniform triaprisms, {p}×{q}×{r}, form an infinite class for all integers p,q,r>2. {4}×{4}×{4} makes a lower symmetry form of the 6-cube.

The extended f-vector is (p,p,1)*(q,q,1)*(r,r,1)=(pqr,3pqr,3pqr+pq+pr+qr,3p(p+1),3p,1).

class="wikitable"
rowspan=2|Coxeter diagram

!rowspan=2|Names

!colspan=6|Element counts

5-faces

! 4-faces

! Cells

! Faces

! Edges

! Vertices

align=center

|{{CDD|branch_10|labelp|2|branch_10|labelq|2|branch_10|labelr}}

{p}×{q}×{r} {{cite web | url=https://bendwavy.org/klitzing/incmats/n-m-k-tip.htm | title=N,m,k-tip }}p+q+rpq+pr+qr+p+q+rpqr+2(pq+pr+qr)3pqr+pq+pr+qr3pqrpqr
align=center

|{{CDD|branch_10|labelp|2|branch_10|labelp|2|branch_10|labelp}}

{p}×{p}×{p}3p3p(p+1)p2(p+6)3p2(p+1)3p3p3
align=center

|{{CDD|branch_10|2|branch_10|2|branch_10}}

{3}×{3}×{3} (trittip)93681998127
align=center

|{{CDD|branch_10|label4|2|branch_10|label4|2|branch_10|label4}}

{4}×{4}×{4} = 6-cube126016024019264

= Non-Wythoffian 6-polytopes =

In 6 dimensions and above, there are an infinite amount of non-Wythoffian convex uniform polytopes: the Cartesian product of the grand antiprism in 4 dimensions and any regular polygon in 2 dimensions. It is not yet proven whether or not there are more.

Regular and uniform honeycombs

File:Coxeter diagram affine rank6 correspondence.png

There are four fundamental affine Coxeter groups and 27 prismatic groups that generate regular and uniform tessellations in 5-space:

class=wikitable
#

!colspan=2|Coxeter group

!Coxeter diagram

!Forms

align=center

|1

{\tilde{A}}_5[3[6]]{{CDD|node|split1|nodes|3ab|nodes|split2|node}}12
align=center

|2

{\tilde{C}}_5[4,33,4]{{CDD|node|4|node|3|node|3|node|3|node|4|node}}35
align=center

|3

{\tilde{B}}_5[4,3,31,1]
[4,33,4,1+]
{{CDD|node|4|node|3|node|3|node|split1|nodes}}
{{CDD|node|4|node|3|node|3|node|3|node|4|node_h0}}
47 (16 new)
align=center

|4

{\tilde{D}}_5[31,1,3,31,1]
[1+,4,33,4,1+]
{{CDD|nodes|split2|node|3|node|split1|nodes}}
{{CDD|node_h0|4|node|3|node|3|node|3|node|4|node_h0}}
20 (3 new)

Regular and uniform honeycombs include:

  • {\tilde{A}}_5 There are 12 unique uniform honeycombs, including:
  • 5-simplex honeycomb {{CDD|node_1|split1|nodes|3ab|nodes|split2|node}}
  • Truncated 5-simplex honeycomb {{CDD|branch_11|3ab|nodes|3ab|branch}}
  • Omnitruncated 5-simplex honeycomb {{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}
  • {\tilde{C}}_5 There are 35 uniform honeycombs, including:
  • Regular hypercube honeycomb of Euclidean 5-space, the 5-cube honeycomb, with symbols {4,33,4}, {{CDD|node_1|4|node|3|node|3|node|3|node|4|node}} = {{CDD|node_1|4|node|3|node|3|node|split1|nodes}}
  • {\tilde{B}}_5 There are 47 uniform honeycombs, 16 new, including:
  • The uniform alternated hypercube honeycomb, 5-demicubic honeycomb, with symbols h{4,33,4}, {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node|4|node}} = {{CDD|nodes_10ru|split2|node|3|node|split1|nodes}}
  • {\tilde{D}}_5, [31,1,3,31,1]: There are 20 unique ringed permutations, and 3 new ones. Coxeter calls the first one a quarter 5-cubic honeycomb, with symbols q{4,33,4}, {{CDD|nodes_10ru|split2|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node_h1}}. The other two new ones are {{CDD|nodes_10ru|split2|node_1|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|4|node_h1}}, {{CDD|nodes_10ru|split2|node_1|3|node_1|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|4|node_h1}}.

class=wikitable

|+ Prismatic groups

#

!colspan=2|Coxeter group

!Coxeter-Dynkin diagram

1{\tilde{A}}_4x{\tilde{I}}_1[3[5],2,∞]{{CDD|branch|3ab|nodes|split2|node|2|node|infin|node}}
2{\tilde{B}}_4x{\tilde{I}}_1[4,3,31,1,2,∞]{{CDD|nodes|split2|node|3|node|4|node|2|node|infin|node}}
3{\tilde{C}}_4x{\tilde{I}}_1[4,3,3,4,2,∞]{{CDD|node|4|node|3|node|3|node|4|node|2|node|infin|node}}
4{\tilde{D}}_4x{\tilde{I}}_1[31,1,1,1,2,∞]{{CDD|nodes|split2|node|split1|nodes|2|node|infin|node}}
5{\tilde{F}}_4x{\tilde{I}}_1[3,4,3,3,2,∞]{{CDD|node|3|node|4|node|3|node|3|node|2|node|infin|node}}
6{\tilde{C}}_3x{\tilde{I}}_1x{\tilde{I}}_1[4,3,4,2,∞,2,∞]{{CDD|node|4|node|3|node|4|node|2|node|infin|node|2|node|infin|node}}
7{\tilde{B}}_3x{\tilde{I}}_1x{\tilde{I}}_1[4,31,1,2,∞,2,∞]{{CDD|nodea|3a|branch|3a|4a|nodea|2|node|infin|node|2|node|infin|node}}
8{\tilde{A}}_3x{\tilde{I}}_1x{\tilde{I}}_1[3[4],2,∞,2,∞]{{CDD|branch|3ab|branch|2|node|infin|node|2|node|infin|node}}
9{\tilde{C}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[4,4,2,∞,2,∞,2,∞]{{CDD|node|4|node|4|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
10{\tilde{H}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[6,3,2,∞,2,∞,2,∞]{{CDD|node|6|node|3|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
11{\tilde{A}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[3[3],2,∞,2,∞,2,∞]{{CDD|node|split1|branch|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
12{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[∞,2,∞,2,∞,2,∞,2,∞]{{CDD|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
13{\tilde{A}}_2x{\tilde{A}}_2x{\tilde{I}}_1[3[3],2,3[3],2,∞]{{CDD|node|split1|branch|2|node|split1|branch|2|node|infin|node}}
14{\tilde{A}}_2x{\tilde{B}}_2x{\tilde{I}}_1[3[3],2,4,4,2,∞]{{CDD|node|split1|branch|2|node|4|node|4|node|2|node|infin|node}}
15{\tilde{A}}_2x{\tilde{G}}_2x{\tilde{I}}_1[3[3],2,6,3,2,∞]{{CDD|node|split1|branch|2|node|6|node|3|node|2|node|infin|node}}
16{\tilde{B}}_2x{\tilde{B}}_2x{\tilde{I}}_1[4,4,2,4,4,2,∞]{{CDD|node|4|node|4|node|2|node|4|node|4|node|2|node|infin|node}}
17{\tilde{B}}_2x{\tilde{G}}_2x{\tilde{I}}_1[4,4,2,6,3,2,∞]{{CDD|node|4|node|4|node|2|node|6|node|3|node|2|node|infin|node}}
18{\tilde{G}}_2x{\tilde{G}}_2x{\tilde{I}}_1[6,3,2,6,3,2,∞]{{CDD|node|6|node|3|node|2|node|6|node|3|node|2|node|infin|node}}
19{\tilde{A}}_3x{\tilde{A}}_2[3[4],2,3[3]]{{CDD|branch|3ab|branch|2|node|split1|branch}}
20{\tilde{B}}_3x{\tilde{A}}_2[4,31,1,2,3[3]]{{CDD|nodea|3a|branch|3a|4a|nodea|2|node|split1|branch}}
21{\tilde{C}}_3x{\tilde{A}}_2[4,3,4,2,3[3]]{{CDD|node|4|node|3|node|4|node|2|node|split1|branch}}
22{\tilde{A}}_3x{\tilde{B}}_2[3[4],2,4,4]{{CDD|branch|3ab|branch|2|node|4|node|4|node}}
23{\tilde{B}}_3x{\tilde{B}}_2[4,31,1,2,4,4]{{CDD|nodea|3a|branch|3a|4a|nodea|2|node|4|node|4|node}}
24{\tilde{C}}_3x{\tilde{B}}_2[4,3,4,2,4,4]{{CDD|node|4|node|3|node|4|node|2|node|4|node|4|node}}
25{\tilde{A}}_3x{\tilde{G}}_2[3[4],2,6,3]{{CDD|branch|3ab|branch|2|node|6|node|3|node}}
26{\tilde{B}}_3x{\tilde{G}}_2[4,31,1,2,6,3]{{CDD|nodea|3a|branch|3a|4a|nodea|2|node|6|node|3|node}}
27{\tilde{C}}_3x{\tilde{G}}_2[4,3,4,2,6,3]{{CDD|node|4|node|3|node|4|node|2|node|6|node|3|node}}

= Regular and uniform hyperbolic honeycombs =

There are no compact hyperbolic Coxeter groups of rank 6, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 12 paracompact hyperbolic Coxeter groups of rank 6, each generating uniform honeycombs in 5-space as permutations of rings of the Coxeter diagrams.

class=wikitable

|+ Hyperbolic paracompact groups

|align=right|

{\bar{P}}_5 = [3,3[5]]: {{CDD|branch|3ab|nodes|split2|node|3|node}}

{\widehat{AU}}_5 = [(3,3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|3ab|branch}}

{\widehat{AR}}_5 = [(3,3,4,3,3,4)]: {{CDD|label4|branch|3ab|nodes|3ab|branch|label4}}

|align=right|

{\bar{S}}_5 = [4,3,32,1]: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|4a|nodea}}

{\bar{O}}_5 = [3,4,31,1]: {{CDD|nodes|split2|node|3|node|4|node|3|node}}

{\bar{N}}_5 = [3,(3,4)1,1]: {{CDD|nodea|4a|nodea|3a|branch|3a|nodea|4a|nodea}}

|align=right|

{\bar{U}}_5 = [3,3,3,4,3]: {{CDD|node|3|node|3|node|3|node|4|node|3|node}}

{\bar{X}}_5 = [3,3,4,3,3]: {{CDD|node|3|node|3|node|4|node|3|node|3|node}}

{\bar{R}}_5 = [3,4,3,3,4]: {{CDD|node|3|node|4|node|3|node|3|node|4|node}}

|align=right|{\bar{Q}}_5 = [32,1,1,1]: {{CDD|nodea|3a|nodes|split2|node|split1|nodes}}

{\bar{M}}_5 = [4,3,31,1,1]: {{CDD|nodea|4a|nodes|split2|node|split1|nodes}}

{\bar{L}}_5 = [31,1,1,1,1]: {{CDD|node|branch3|splitsplit2|node|split1|nodes}}

Notes on the Wythoff construction for the uniform 6-polytopes

Construction of the reflective 6-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter–Dynkin diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 6-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.

Here's the primary operators available for constructing and naming the uniform 6-polytopes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

class="wikitable"
Operation

!Extended
Schläfli symbol

!width=110|Coxeter-
Dynkin
diagram

!Description

Parent

|width=70| t0{p,q,r,s,t}

|{{CDD|node_1|p|node|q|node|r|node|s|node|t|node}}

| Any regular 6-polytope

Rectified

| t1{p,q,r,s,t}

|{{CDD|node|p|node_1|q|node|r|node|s|node|t|node}}

|The edges are fully truncated into single points. The 6-polytope now has the combined faces of the parent and dual.

Birectified

| t2{p,q,r,s,t}

|{{CDD|node|p|node|q|node_1|r|node|s|node|t|node}}

|Birectification reduces cells to their duals.

Truncated

| t0,1{p,q,r,s,t}

|{{CDD|node_1|p|node_1|q|node|r|node|s|node|t|node}}

|Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 6-polytope. The 6-polytope has its original faces doubled in sides, and contains the faces of the dual.
400px

Bitruncated

| t1,2{p,q,r,s,t}

|{{CDD|node|p|node_1|q|node_1|r|node|s|node|t|node}}

|Bitrunction transforms cells to their dual truncation.

Tritruncated

| t2,3{p,q,r,s,t}

|{{CDD|node|p|node|q|node_1|r|node_1|s|node|t|node}}

|Tritruncation transforms 4-faces to their dual truncation.

Cantellated

| t0,2{p,q,r,s,t}

|{{CDD|node_1|p|node|q|node_1|r|node|s|node|t|node}}

|In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms.
400px

Bicantellated

| t1,3{p,q,r,s,t}

|{{CDD|node|p|node_1|q|node|r|node_1|s|node|t|node}}

|In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms.

Runcinated

| t0,3{p,q,r,s,t}

|{{CDD|node_1|p|node|q|node|r|node_1|s|node|t|node}}

|Runcination reduces cells and creates new cells at the vertices and edges.

Biruncinated

| t1,4{p,q,r,s,t}

|{{CDD|node|p|node_1|q|node|r|node|s|node_1|t|node}}

|Runcination reduces cells and creates new cells at the vertices and edges.

Stericated

| t0,4{p,q,r,s,t}

|{{CDD|node_1|p|node|q|node|r|node|s|node_1|t|node}}

|Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps.

Pentellated

| t0,5{p,q,r,s,t}

|{{CDD|node_1|p|node|q|node|r|node|s|node|t|node_1}}

|Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps. (expansion operation for polypeta)

Omnitruncated

| t0,1,2,3,4,5{p,q,r,s,t}

|{{CDD|node_1|p|node_1|q|node_1|r|node_1|s|node_1|t|node_1}}

|All five operators, truncation, cantellation, runcination, sterication, and pentellation are applied.

See also

  • {{section link|List of regular polytopes|Higher dimensions}}

Notes

{{reflist}}

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
  • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • {{KlitzingPolytopes|polypeta.htm|6D|uniform polytopes (polypeta)}}
  • {{KlitzingPolytopes|../explain/polytope-tree.htm#dynkin|Uniform polytopes|truncation operators}}