Uniform 6-polytope#Regular and uniform honeycombs
{{Short description|Uniform 6-dimensional polytope}}
class=wikitable style="float:right; margin-left:8px; width:300px"
|+ Graphs of three regular and related uniform polytopes |
align=center valign=top
|colspan=4|100px |colspan=4|100px |colspan=4|100px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=4|100px |colspan=4|100px |colspan=4|100px |
align=center valign=top
|colspan=4|100px |colspan=4|100px |colspan=4|100px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=4|100px |colspan=4|100px |colspan=4|100px |
align=center valign=top
|colspan=4|100px |colspan=4|100px |colspan=4|100px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
align=center valign=top
|colspan=6|150px |colspan=6|150px |
In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.
The complete set of convex uniform 6-polytopes has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams. Each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope.
The simplest uniform polypeta are regular polytopes: the 6-simplex {3,3,3,3,3}, the 6-cube (hexeract) {4,3,3,3,3}, and the 6-orthoplex (hexacross) {3,3,3,3,4}.
History of discovery
- Regular polytopes: (convex faces)
- 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
- Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
- 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular polytera) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
- Convex uniform polytopes:
- 1940: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes.
- Nonregular uniform star polytopes: (similar to the nonconvex uniform polyhedra)
- Ongoing: Jonathan Bowers and other researchers search for other non-convex uniform 6-polytopes, with a current count of 41348 known uniform 6-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 5-polytopes. The list is not proven complete.[http://www.polytope.net/hedrondude/polypeta.htm Uniform Polypeta], Jonathan Bowers[https://polytope.miraheze.org/wiki/Uniform_polytope Uniform polytope]
Uniform 6-polytopes by fundamental Coxeter groups
Uniform 6-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams.
There are four fundamental reflective symmetry groups which generate 153 unique uniform 6-polytopes.
class=wikitable | |||
#
!colspan=2|Coxeter group | |||
---|---|---|---|
1 | A6 | [3,3,3,3,3] | {{CDD|node|3|node|3|node|3|node|3|node|3|node}} |
2 | B6 | [3,3,3,3,4] | {{CDD|node|3|node|3|node|3|node|3|node|4|node}} |
3 | D6 | [3,3,3,31,1] | {{CDD|node|3|node|3|node|3|node|split1|nodes}} |
rowspan=2|4
|rowspan=2|E6 | [32,2,1] | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}} | |
[3,32,2] | {{CDD|node|3|node|split1|nodes|3ab|nodes}} |
class=wikitable width=480
|480px |
Uniform prismatic families
Uniform prism
There are 6 categorical uniform prisms based on the uniform 5-polytopes.
class=wikitable | ||||
#
!colspan=3|Coxeter group !Notes | ||||
---|---|---|---|---|
1 | A5A1 | [3,3,3,3,2] | {{CDD|node|3|node|3|node|3|node|3|node|2|node}} | Prism family based on 5-simplex |
2 | B5A1 | [4,3,3,3,2] | {{CDD|node|4|node|3|node|3|node|3|node|2|node}} | Prism family based on 5-cube |
3a | D5A1 | [32,1,1,2] | {{CDD|nodes|split2|node|3|node|3|node|2|node}} | Prism family based on 5-demicube |
class=wikitable | ||||
#
!colspan=3|Coxeter group !Notes | ||||
---|---|---|---|---|
4 | A3I2(p)A1 | [3,3,2,p,2] | {{CDD|node|3|node|3|node|2|node|p|node|2|node}} | Prism family based on tetrahedral-p-gonal duoprisms |
5 | B3I2(p)A1 | [4,3,2,p,2] | {{CDD|node|4|node|3|node|2|node|p|node|2|node}} | Prism family based on cubic-p-gonal duoprisms |
6 | H3I2(p)A1 | [5,3,2,p,2] | {{CDD|node|5|node|3|node|2|node|p|node|2|node}} | Prism family based on dodecahedral-p-gonal duoprisms |
Uniform duoprism
There are 11 categorical uniform duoprismatic families of polytopes based on Cartesian products of lower-dimensional uniform polytopes. Five are formed as the product of a uniform 4-polytope with a regular polygon, and six are formed by the product of two uniform polyhedra:
class=wikitable | ||||
#
!colspan=3|Coxeter group !Notes | ||||
---|---|---|---|---|
1 | A4I2(p) | [3,3,3,2,p] | {{CDD|node|3|node|3|node|3|node|2|node|p|node}} | Family based on 5-cell-p-gonal duoprisms. |
2 | B4I2(p) | [4,3,3,2,p] | {{CDD|node|4|node|3|node|3|node|2|node|p|node}} | Family based on tesseract-p-gonal duoprisms. |
3 | F4I2(p) | [3,4,3,2,p] | {{CDD|node|3|node|4|node|3|node|2|node|p|node}} | Family based on 24-cell-p-gonal duoprisms. |
4 | H4I2(p) | [5,3,3,2,p] | {{CDD|node|5|node|3|node|3|node|2|node|p|node}} | Family based on 120-cell-p-gonal duoprisms. |
5 | D4I2(p) | [31,1,1,2,p] | {{CDD|nodes|split2|node|3|node|2|node|p|node}} | Family based on demitesseract-p-gonal duoprisms. |
class=wikitable | ||||
#
!colspan=3|Coxeter group !Notes | ||||
---|---|---|---|---|
6 | A32 | [3,3,2,3,3] | {{CDD|node|3|node|3|node|2|node|3|node|3|node}} | Family based on tetrahedral duoprisms. |
7 | A3B3 | [3,3,2,4,3] | {{CDD|node|3|node|3|node|2|node|4|node|3|node}} | Family based on tetrahedral-cubic duoprisms. |
8 | A3H3 | [3,3,2,5,3] | {{CDD|node|3|node|3|node|2|node|5|node|3|node}} | Family based on tetrahedral-dodecahedral duoprisms. |
9 | B32 | [4,3,2,4,3] | {{CDD|node|4|node|3|node|2|node|4|node|3|node}} | Family based on cubic duoprisms. |
10 | B3H3 | [4,3,2,5,3] | {{CDD|node|4|node|3|node|2|node|5|node|3|node}} | Family based on cubic-dodecahedral duoprisms. |
11 | H32 | [5,3,2,5,3] | {{CDD|node|5|node|3|node|2|node|5|node|3|node}} | Family based on dodecahedral duoprisms. |
Uniform triaprism
There is one infinite family of uniform triaprismatic families of polytopes constructed as a Cartesian products of three regular polygons. Each combination of at least one ring on every connected group produces a uniform prismatic 6-polytope.
class=wikitable | ||||
#
!colspan=3|Coxeter group !Notes | ||||
---|---|---|---|---|
1 | I2(p)I2(q)I2(r) | [p,2,q,2,r] | {{CDD|node|p|node|2|node|q|node|2|node|r|node}} | Family based on p,q,r-gonal triprisms |
Enumerating the convex uniform 6-polytopes
- Simplex family: A6 [34] - {{CDD|node|3|node|3|node|3|node|3|node|3|node}}
- 35 uniform 6-polytopes as permutations of rings in the group diagram, including one regular:
- # {34} - 6-simplex - {{CDD|node_1|3|node|3|node|3|node|3|node|3|node}}
- Hypercube/orthoplex family: B6 [4,34] - {{CDD|node|4|node|3|node|3|node|3|node|3|node}}
- 63 uniform 6-polytopes as permutations of rings in the group diagram, including two regular forms:
- # {4,33} — 6-cube (hexeract) - {{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}
- # {33,4} — 6-orthoplex, (hexacross) - {{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}
- Demihypercube D6 family: [33,1,1] - {{CDD|nodes|split2|node|3|node|3|node|3|node}}
- 47 uniform 6-polytopes (16 unique) as permutations of rings in the group diagram, including:
- # {3,32,1}, 121 6-demicube (demihexeract) - {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}}; also as h{4,33}, {{CDD|node_h|4|node|3|node|3|node|3|node|3|node}}
- # {3,3,31,1}, 211 6-orthoplex - {{CDD|nodes|split2|node|3|node|3|node|3|node_1}}, a half symmetry form of {{CDD|node|4|node|3|node|3|node|3|node|3|node_1}}.
- E6 family: [33,1,1] - {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
- 39 uniform 6-polytopes as permutations of rings in the group diagram, including:
- # {3,3,32,1}, 221 - {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}
- # {3,32,2}, 122 - {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}
These fundamental families generate 153 nonprismatic convex uniform polypeta.
In addition, there are 57 uniform 6-polytope constructions based on prisms of the uniform 5-polytopes: [3,3,3,3,2], [4,3,3,3,2], [32,1,1,2], excluding the penteract prism as a duplicate of the hexeract.
In addition, there are infinitely many uniform 6-polytope based on:
- Duoprism prism families: [3,3,2,p,2], [4,3,2,p,2], [5,3,2,p,2].
- Duoprism families: [3,3,3,2,p], [4,3,3,2,p], [5,3,3,2,p].
- Triaprism family: [p,2,q,2,r].
= The A<sub>6</sub> family =
{{Further|list of A6 polytopes}}
There are 32+4−1=35 forms, derived by marking one or more nodes of the Coxeter-Dynkin diagram.
All 35 are enumerated below. They are named by Norman Johnson from the Wythoff construction operations upon regular 6-simplex (heptapeton). Bowers-style acronym names are given in parentheses for cross-referencing.
The A6 family has symmetry of order 5040 (7 factorial).
The coordinates of uniform 6-polytopes with 6-simplex symmetry can be generated as permutations of simple integers in 7-space, all in hyperplanes with normal vector (1,1,1,1,1,1,1).
class="wikitable" | ||||||
rowspan=2|#
!rowspan=2|Coxeter-Dynkin !rowspan=2|Johnson naming system !rowspan=2|Base point !colspan=6|Element counts | ||||||
---|---|---|---|---|---|---|
5|| 4|| 3|| 2|| 1|| 0 | ||||||
align=center
!1 |{{CDD|node|3|node|3|node|3|node|3|node|3|node_1}} | 6-simplex |(0,0,0,0,0,0,1) |7 | 21 | 35 | 35 | 21 | 7 | |
align=center
!2 |{{CDD|node|3|node|3|node|3|node|3|node_1|3|node}} | Rectified 6-simplex |(0,0,0,0,0,1,1) | 14 | 63 | 140 | 175 | 105 | 21 |
align=center
!3 |{{CDD|node|3|node|3|node|3|node|3|node_1|3|node_1}} | Truncated 6-simplex |(0,0,0,0,0,1,2) | 14 | 63 | 140 | 175 | 126 | 42 |
align=center
!4 |{{CDD|node|3|node|3|node|3|node_1|3|node|3|node}} | Birectified 6-simplex |(0,0,0,0,1,1,1) | 14 | 84 | 245 | 350 | 210 | 35 |
align=center
!5 |{{CDD|node|3|node|3|node|3|node_1|3|node|3|node_1}} | Cantellated 6-simplex |(0,0,0,0,1,1,2) | 35 | 210 | 560 | 805 | 525 | 105 |
align=center
!6 |{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node}} | Bitruncated 6-simplex |(0,0,0,0,1,2,2) | 14 | 84 | 245 | 385 | 315 | 105 |
align=center
!7 |{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} | Cantitruncated 6-simplex |(0,0,0,0,1,2,3) | 35 | 210 | 560 | 805 | 630 | 210 |
align=center
!8 |{{CDD|node|3|node|3|node_1|3|node|3|node|3|node_1}} | Runcinated 6-simplex |(0,0,0,1,1,1,2) | 70 | 455 | 1330 | 1610 | 840 | 140 |
align=center
!9 |{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node}} | Bicantellated 6-simplex |(0,0,0,1,1,2,2) | 70 | 455 | 1295 | 1610 | 840 | 140 |
align=center
!10 |{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} | Runcitruncated 6-simplex |(0,0,0,1,1,2,3) | 70 | 560 | 1820 | 2800 | 1890 | 420 |
style="text-align:center; background:#e0f0e0;"
!11 |{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node}} | Tritruncated 6-simplex |(0,0,0,1,2,2,2) | 14 | 84 | 280 | 490 | 420 | 140 |
align=center
!12 |{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} | Runcicantellated 6-simplex |(0,0,0,1,2,2,3) | 70 | 455 | 1295 | 1960 | 1470 | 420 |
align=center
!13 |{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} | Bicantitruncated 6-simplex |(0,0,0,1,2,3,3) | 49 | 329 | 980 | 1540 | 1260 | 420 |
align=center
!14 |{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} | Runcicantitruncated 6-simplex |(0,0,0,1,2,3,4) | 70 | 560 | 1820 | 3010 | 2520 | 840 |
align=center
!15 |{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1}} | Stericated 6-simplex |(0,0,1,1,1,1,2) |105 | 700 | 1470 | 1400 | 630 | 105 | |
style="text-align:center; background:#e0f0e0;"
!16 |{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node}} | Biruncinated 6-simplex |(0,0,1,1,1,2,2) | 84 | 714 | 2100 | 2520 | 1260 | 210 |
align=center
!17 |{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} | Steritruncated 6-simplex |(0,0,1,1,1,2,3) | 105 | 945 | 2940 | 3780 | 2100 | 420 |
align=center
!18 |{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} | Stericantellated 6-simplex |(0,0,1,1,2,2,3) | 105 | 1050 | 3465 | 5040 | 3150 | 630 |
align=center
!19 |{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} | Biruncitruncated 6-simplex |(0,0,1,1,2,3,3) | 84 | 714 | 2310 | 3570 | 2520 | 630 |
align=center
!20 |{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} | Stericantitruncated 6-simplex |(0,0,1,1,2,3,4) | 105 | 1155 | 4410 | 7140 | 5040 | 1260 |
align=center
!21 |{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} | Steriruncinated 6-simplex |(0,0,1,2,2,2,3) | 105 | 700 | 1995 | 2660 | 1680 | 420 |
align=center
!22 |{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} |Steriruncitruncated 6-simplex |(0,0,1,2,2,3,4) | 105 | 945 | 3360 | 5670 | 4410 | 1260 |
align=center
!23 |{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} | Steriruncicantellated 6-simplex |(0,0,1,2,3,3,4) | 105 | 1050 | 3675 | 5880 | 4410 | 1260 |
style="text-align:center; background:#e0f0e0;"
!24 |{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} | Biruncicantitruncated 6-simplex |(0,0,1,2,3,4,4) | 84 | 714 | 2520 | 4410 | 3780 | 1260 |
align=center
!25 |{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} | Steriruncicantitruncated 6-simplex |(0,0,1,2,3,4,5) | 105 | 1155 | 4620 | 8610 | 7560 | 2520 |
style="text-align:center; background:#e0f0e0;"
!26 |{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1}} | Pentellated 6-simplex |(0,1,1,1,1,1,2) | 126 | 434 | 630 | 490 | 210 | 42 |
align=center
!27 |{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} | Pentitruncated 6-simplex |(0,1,1,1,1,2,3) | 126 | 826 | 1785 | 1820 | 945 | 210 |
align=center
!28 |{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} | Penticantellated 6-simplex |(0,1,1,1,2,2,3) | 126 | 1246 | 3570 | 4340 | 2310 | 420 |
align=center
!29 |{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} | Penticantitruncated 6-simplex |(0,1,1,1,2,3,4) | 126 | 1351 | 4095 | 5390 | 3360 | 840 |
align=center
!30 |{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} | Pentiruncitruncated 6-simplex |(0,1,1,2,2,3,4) | 126 | 1491 | 5565 | 8610 | 5670 | 1260 |
style="text-align:center; background:#e0f0e0;"
!31 |{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} | Pentiruncicantellated 6-simplex |(0,1,1,2,3,3,4) | 126 | 1596 | 5250 | 7560 | 5040 | 1260 |
align=center
!32 |{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} | Pentiruncicantitruncated 6-simplex |(0,1,1,2,3,4,5) | 126 | 1701 | 6825 | 11550 | 8820 | 2520 |
style="text-align:center; background:#e0f0e0;"
!33 |{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} | Pentisteritruncated 6-simplex |(0,1,2,2,2,3,4) | 126 | 1176 | 3780 | 5250 | 3360 | 840 |
align=center
!34 |{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} | Pentistericantitruncated 6-simplex |(0,1,2,2,3,4,5) | 126 | 1596 | 6510 | 11340 | 8820 | 2520 |
style="text-align:center; background:#e0f0e0;"
!35 |{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} | Omnitruncated 6-simplex |(0,1,2,3,4,5,6) | 126 | 1806 | 8400 | 16800 | 15120 | 5040 |
= The B<sub>6</sub> family =
{{Further|list of B6 polytopes}}
There are 63 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
The B6 family has symmetry of order 46080 (6 factorial x 26).
They are named by Norman Johnson from the Wythoff construction operations upon the regular 6-cube and 6-orthoplex. Bowers names and acronym names are given for cross-referencing.
class="wikitable"
!rowspan=2|# !rowspan=2|Coxeter-Dynkin diagram !rowspan=2|Schläfli symbol !rowspan=2|Names !colspan=6|Element counts | ||||||||
5|| 4|| 3|| 2|| 1|| 0 | ||||||||
---|---|---|---|---|---|---|---|---|
align=center BGCOLOR="#f0e0e0"
!36 |{{CDD|node|4|node|3|node|3|node|3|node|3|node_1}} | t0{3,3,3,3,4} | 6-orthoplex Hexacontatetrapeton (gee) | 64 | 192 | 240 | 160 | 60 | 12 |
align=center BGCOLOR="#f0e0e0"
!37 |{{CDD|node|4|node|3|node|3|node|3|node_1|3|node}} | t1{3,3,3,3,4} | Rectified 6-orthoplex Rectified hexacontatetrapeton (rag) | 76 | 576 | 1200 | 1120 | 480 | 60 |
align=center BGCOLOR="#f0e0e0"
!38 |{{CDD|node|4|node|3|node|3|node_1|3|node|3|node}} | t2{3,3,3,3,4} | Birectified 6-orthoplex Birectified hexacontatetrapeton (brag) | 76 | 636 | 2160 | 2880 | 1440 | 160 |
align=center BGCOLOR="#e0e0f0"
!39 |{{CDD|node|4|node|3|node_1|3|node|3|node|3|node}} | t2{4,3,3,3,3} | Birectified 6-cube Birectified hexeract (brox) | 76 | 636 | 2080 | 3200 | 1920 | 240 |
align=center BGCOLOR="#e0e0f0"
!40 |{{CDD|node|4|node_1|3|node|3|node|3|node|3|node}} | t1{4,3,3,3,3} | Rectified 6-cube Rectified hexeract (rax) | 76 | 444 | 1120 | 1520 | 960 | 192 |
align=center BGCOLOR="#e0e0f0"
!41 |{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}} | t0{4,3,3,3,3} | 6-cube Hexeract (ax) | 12 | 60 | 160 | 240 | 192 | 64 |
align=center BGCOLOR="#f0e0e0"
!42 |{{CDD|node|4|node|3|node|3|node|3|node_1|3|node_1}} | t0,1{3,3,3,3,4} | Truncated 6-orthoplex Truncated hexacontatetrapeton (tag) | 76 | 576 | 1200 | 1120 | 540 | 120 |
align=center BGCOLOR="#f0e0e0"
!43 |{{CDD|node|4|node|3|node|3|node_1|3|node|3|node_1}} | t0,2{3,3,3,3,4} | Cantellated 6-orthoplex Small rhombated hexacontatetrapeton (srog) | 136 | 1656 | 5040 | 6400 | 3360 | 480 |
align=center BGCOLOR="#f0e0e0"
!44 |{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node}} | t1,2{3,3,3,3,4} | Bitruncated 6-orthoplex Bitruncated hexacontatetrapeton (botag) | 1920 | 480 | ||||
align=center BGCOLOR="#f0e0e0"
!45 |{{CDD|node|4|node|3|node_1|3|node|3|node|3|node_1}} | t0,3{3,3,3,3,4} | Runcinated 6-orthoplex Small prismated hexacontatetrapeton (spog) | 7200 | 960 | ||||
align=center BGCOLOR="#f0e0e0"
!46 |{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node}} | t1,3{3,3,3,3,4} | Bicantellated 6-orthoplex Small birhombated hexacontatetrapeton (siborg) | 8640 | 1440 | ||||
align=center BGCOLOR="#e0f0e0"
!47 |{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node}} | t2,3{4,3,3,3,3} | Tritruncated 6-cube Hexeractihexacontitetrapeton (xog) | 3360 | 960 | ||||
align=center BGCOLOR="#f0e0e0"
!48 |{{CDD|node|4|node_1|3|node|3|node|3|node|3|node_1}} | t0,4{3,3,3,3,4} | Stericated 6-orthoplex Small cellated hexacontatetrapeton (scag) | 5760 | 960 | ||||
align=center BGCOLOR="#e0f0e0"
!49 |{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node}} | t1,4{4,3,3,3,3} | Biruncinated 6-cube Small biprismato-hexeractihexacontitetrapeton (sobpoxog) | 11520 | 1920 | ||||
align=center BGCOLOR="#e0e0f0"
!50 |{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node}} | t1,3{4,3,3,3,3} | Bicantellated 6-cube Small birhombated hexeract (saborx) | 9600 | 1920 | ||||
align=center BGCOLOR="#e0e0f0"
!51 |{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node}} | t1,2{4,3,3,3,3} | Bitruncated 6-cube Bitruncated hexeract (botox) | 2880 | 960 | ||||
align=center BGCOLOR="#e0f0e0"
!52 |{{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1}} | t0,5{4,3,3,3,3} | Pentellated 6-cube Small teri-hexeractihexacontitetrapeton (stoxog) | 1920 | 384 | ||||
align=center BGCOLOR="#e0e0f0"
!53 |{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node}} | t0,4{4,3,3,3,3} | Stericated 6-cube Small cellated hexeract (scox) | 5760 | 960 | ||||
align=center BGCOLOR="#e0e0f0"
!54 |{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node}} | t0,3{4,3,3,3,3} | Runcinated 6-cube Small prismated hexeract (spox) | 7680 | 1280 | ||||
align=center BGCOLOR="#e0e0f0"
!55 |{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node}} | t0,2{4,3,3,3,3} | Cantellated 6-cube Small rhombated hexeract (srox) | 4800 | 960 | ||||
align=center BGCOLOR="#e0e0f0"
!56 |{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}} | t0,1{4,3,3,3,3} | Truncated 6-cube Truncated hexeract (tox) | 76 | 444 | 1120 | 1520 | 1152 | 384 |
align=center BGCOLOR="#f0e0e0"
!57 |{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node_1}} | t0,1,2{3,3,3,3,4} | Cantitruncated 6-orthoplex Great rhombated hexacontatetrapeton (grog) | 3840 | 960 | ||||
align=center BGCOLOR="#f0e0e0"
!58 |{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node_1}} | t0,1,3{3,3,3,3,4} | Runcitruncated 6-orthoplex Prismatotruncated hexacontatetrapeton (potag) | 15840 | 2880 | ||||
align=center BGCOLOR="#f0e0e0"
!59 |{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node_1}} | t0,2,3{3,3,3,3,4} | Runcicantellated 6-orthoplex Prismatorhombated hexacontatetrapeton (prog) | 11520 | 2880 | ||||
align=center BGCOLOR="#f0e0e0"
!60 |{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node}} | t1,2,3{3,3,3,3,4} | Bicantitruncated 6-orthoplex Great birhombated hexacontatetrapeton (gaborg) | 10080 | 2880 | ||||
align=center BGCOLOR="#f0e0e0"
!61 |{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node_1}} | t0,1,4{3,3,3,3,4} | Steritruncated 6-orthoplex Cellitruncated hexacontatetrapeton (catog) | 19200 | 3840 | ||||
align=center BGCOLOR="#f0e0e0"
!62 |{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node_1}} | t0,2,4{3,3,3,3,4} | Stericantellated 6-orthoplex Cellirhombated hexacontatetrapeton (crag) | 28800 | 5760 | ||||
align=center BGCOLOR="#f0e0e0"
!63 |{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node}} | t1,2,4{3,3,3,3,4} | Biruncitruncated 6-orthoplex Biprismatotruncated hexacontatetrapeton (boprax) | 23040 | 5760 | ||||
align=center BGCOLOR="#f0e0e0"
!64 |{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node_1}} | t0,3,4{3,3,3,3,4} | Steriruncinated 6-orthoplex Celliprismated hexacontatetrapeton (copog) | 15360 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!65 |{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node}} | t1,2,4{4,3,3,3,3} | Biruncitruncated 6-cube Biprismatotruncated hexeract (boprag) | 23040 | 5760 | ||||
align=center BGCOLOR="#e0e0f0"
!66 |{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node}} | t1,2,3{4,3,3,3,3} | Bicantitruncated 6-cube Great birhombated hexeract (gaborx) | 11520 | 3840 | ||||
align=center BGCOLOR="#f0e0e0"
!67 |{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1}} | t0,1,5{3,3,3,3,4} | Pentitruncated 6-orthoplex Teritruncated hexacontatetrapeton (tacox) | 8640 | 1920 | ||||
align=center BGCOLOR="#f0e0e0"
!68 |{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1}} | t0,2,5{3,3,3,3,4} | Penticantellated 6-orthoplex Terirhombated hexacontatetrapeton (tapox) | 21120 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!69 |{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node}} | t0,3,4{4,3,3,3,3} | Steriruncinated 6-cube Celliprismated hexeract (copox) | 15360 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!70 |{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1}} | t0,2,5{4,3,3,3,3} | Penticantellated 6-cube Terirhombated hexeract (topag) | 21120 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!71 |{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node}} | t0,2,4{4,3,3,3,3} | Stericantellated 6-cube Cellirhombated hexeract (crax) | 28800 | 5760 | ||||
align=center BGCOLOR="#e0e0f0"
!72 |{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node}} | t0,2,3{4,3,3,3,3} | Runcicantellated 6-cube Prismatorhombated hexeract (prox) | 13440 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!73 |{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node_1}} | t0,1,5{4,3,3,3,3} | Pentitruncated 6-cube Teritruncated hexeract (tacog) | 8640 | 1920 | ||||
align=center BGCOLOR="#e0e0f0"
!74 |{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node}} | t0,1,4{4,3,3,3,3} | Steritruncated 6-cube Cellitruncated hexeract (catax) | 19200 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!75 |{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node}} | t0,1,3{4,3,3,3,3} | Runcitruncated 6-cube Prismatotruncated hexeract (potax) | 17280 | 3840 | ||||
align=center BGCOLOR="#e0e0f0"
!76 |{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node}} | t0,1,2{4,3,3,3,3} | Cantitruncated 6-cube Great rhombated hexeract (grox) | 5760 | 1920 | ||||
align=center BGCOLOR="#f0e0e0"
!77 |{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node_1}} | t0,1,2,3{3,3,3,3,4} | Runcicantitruncated 6-orthoplex Great prismated hexacontatetrapeton (gopog) | 20160 | 5760 | ||||
align=center BGCOLOR="#f0e0e0"
!78 |{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node_1}} | t0,1,2,4{3,3,3,3,4} | Stericantitruncated 6-orthoplex Celligreatorhombated hexacontatetrapeton (cagorg) | 46080 | 11520 | ||||
align=center BGCOLOR="#f0e0e0"
!79 |{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node_1}} | t0,1,3,4{3,3,3,3,4} | Steriruncitruncated 6-orthoplex Celliprismatotruncated hexacontatetrapeton (captog) | 40320 | 11520 | ||||
align=center BGCOLOR="#f0e0e0"
!80 |{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1}} | t0,2,3,4{3,3,3,3,4} | Steriruncicantellated 6-orthoplex Celliprismatorhombated hexacontatetrapeton (coprag) | 40320 | 11520 | ||||
align=center BGCOLOR="#e0f0e0"
!81 |{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node}} | t1,2,3,4{4,3,3,3,3} | Biruncicantitruncated 6-cube Great biprismato-hexeractihexacontitetrapeton (gobpoxog) | 34560 | 11520 | ||||
align=center BGCOLOR="#f0e0e0"
!82 |{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1}} | t0,1,2,5{3,3,3,3,4} | Penticantitruncated 6-orthoplex Terigreatorhombated hexacontatetrapeton (togrig) | 30720 | 7680 | ||||
align=center BGCOLOR="#f0e0e0"
!83 |{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1}} | t0,1,3,5{3,3,3,3,4} | Pentiruncitruncated 6-orthoplex Teriprismatotruncated hexacontatetrapeton (tocrax) | 51840 | 11520 | ||||
align=center BGCOLOR="#e0f0e0"
!84 |{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1}} | t0,2,3,5{4,3,3,3,3} | Pentiruncicantellated 6-cube Teriprismatorhombi-hexeractihexacontitetrapeton (tiprixog) | 46080 | 11520 | ||||
align=center BGCOLOR="#e0e0f0"
!85 |{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node}} | t0,2,3,4{4,3,3,3,3} | Steriruncicantellated 6-cube Celliprismatorhombated hexeract (coprix) | 40320 | 11520 | ||||
align=center BGCOLOR="#e0f0e0"
!86 |{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node_1}} | t0,1,4,5{4,3,3,3,3} | Pentisteritruncated 6-cube Tericelli-hexeractihexacontitetrapeton (tactaxog) | 30720 | 7680 | ||||
align=center BGCOLOR="#e0e0f0"
!87 |{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node_1}} | t0,1,3,5{4,3,3,3,3} | Pentiruncitruncated 6-cube Teriprismatotruncated hexeract (tocrag) | 51840 | 11520 | ||||
align=center BGCOLOR="#e0e0f0"
!88 |{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node}} | t0,1,3,4{4,3,3,3,3} | Steriruncitruncated 6-cube Celliprismatotruncated hexeract (captix) | 40320 | 11520 | ||||
align=center BGCOLOR="#e0e0f0"
!89 |{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node_1}} | t0,1,2,5{4,3,3,3,3} | Penticantitruncated 6-cube Terigreatorhombated hexeract (togrix) | 30720 | 7680 | ||||
align=center BGCOLOR="#e0e0f0"
!90 |{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node}} | t0,1,2,4{4,3,3,3,3} | Stericantitruncated 6-cube Celligreatorhombated hexeract (cagorx) | 46080 | 11520 | ||||
align=center BGCOLOR="#e0e0f0"
!91 |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node}} | t0,1,2,3{4,3,3,3,3} | Runcicantitruncated 6-cube Great prismated hexeract (gippox) | 23040 | 7680 | ||||
align=center BGCOLOR="#f0e0e0"
!92 |{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} | t0,1,2,3,4{3,3,3,3,4} | Steriruncicantitruncated 6-orthoplex Great cellated hexacontatetrapeton (gocog) | 69120 | 23040 | ||||
align=center BGCOLOR="#f0e0e0"
!93 |{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}} | t0,1,2,3,5{3,3,3,3,4} | Pentiruncicantitruncated 6-orthoplex Terigreatoprismated hexacontatetrapeton (tagpog) | 80640 | 23040 | ||||
align=center BGCOLOR="#f0e0e0"
!94 |{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node_1}} | t0,1,2,4,5{3,3,3,3,4} | Pentistericantitruncated 6-orthoplex Tericelligreatorhombated hexacontatetrapeton (tecagorg) | 80640 | 23040 | ||||
align=center BGCOLOR="#e0e0f0"
!95 |{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node_1}} | t0,1,2,4,5{4,3,3,3,3} | Pentistericantitruncated 6-cube Tericelligreatorhombated hexeract (tocagrax) | 80640 | 23040 | ||||
align=center BGCOLOR="#e0e0f0"
!96 |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node_1}} | t0,1,2,3,5{4,3,3,3,3} | Pentiruncicantitruncated 6-cube Terigreatoprismated hexeract (tagpox) | 80640 | 23040 | ||||
align=center BGCOLOR="#e0e0f0"
!97 |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node}} | t0,1,2,3,4{4,3,3,3,3} | Steriruncicantitruncated 6-cube Great cellated hexeract (gocax) | 69120 | 23040 | ||||
align=center BGCOLOR="#e0f0e0"
!98 |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} | t0,1,2,3,4,5{4,3,3,3,3} | Omnitruncated 6-cube Great teri-hexeractihexacontitetrapeton (gotaxog) | 138240 | 46080 |
= The D<sub>6</sub> family =
{{Further|list of D6 polytopes}}
The D6 family has symmetry of order 23040 (6 factorial x 25).
This family has 3×16−1=47 Wythoffian uniform polytopes, generated by marking one or more nodes of the D6 Coxeter-Dynkin diagram. Of these, 31 (2×16−1) are repeated from the B6 family and 16 are unique to this family. The 16 unique forms are enumerated below. Bowers-style acronym names are given for cross-referencing.
class="wikitable"
!rowspan=2|# !rowspan=2|Coxeter diagram !rowspan=2|Names !rowspan=2|Base point !colspan=6|Element counts !rowspan=2|Circumrad | ||||||||||
5||4||3||2||1||0 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
align=center
!99 | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node}} | 6-demicube Hemihexeract (hax) | (1,1,1,1,1,1) | 44 | 252 | 640 | 640 | 240 | 32 | 0.8660254 |
align=center
!100 | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node}} | Cantic 6-cube Truncated hemihexeract (thax) | (1,1,3,3,3,3) | 76 | 636 | 2080 | 3200 | 2160 | 480 | 2.1794493 |
align=center
!101 | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node}} | Runcic 6-cube Small rhombated hemihexeract (sirhax) | (1,1,1,3,3,3) | 3840 | 640 | 1.9364916 | ||||
align=center
!102 | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node}} | Steric 6-cube Small prismated hemihexeract (sophax) | (1,1,1,1,3,3) | 3360 | 480 | 1.6583123 | ||||
align=center
!103 | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}} | Pentic 6-cube Small cellated demihexeract (sochax) | (1,1,1,1,1,3) | 1440 | 192 | 1.3228756 | ||||
align=center
!104 | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node}} | Runcicantic 6-cube Great rhombated hemihexeract (girhax) | (1,1,3,5,5,5) | 5760 | 1920 | 3.2787192 | ||||
align=center
!105 | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node}} | Stericantic 6-cube Prismatotruncated hemihexeract (pithax) | (1,1,3,3,5,5) | 12960 | 2880 | 2.95804 | ||||
align=center
!106 | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node}} | Steriruncic 6-cube Prismatorhombated hemihexeract (prohax) | (1,1,1,3,5,5) | 7680 | 1920 | 2.7838821 | ||||
align=center
!107 | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}} | Penticantic 6-cube Cellitruncated hemihexeract (cathix) | (1,1,3,3,3,5) | 9600 | 1920 | 2.5980761 | ||||
align=center
!108 | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}} | Pentiruncic 6-cube Cellirhombated hemihexeract (crohax) | (1,1,1,3,3,5) | 10560 | 1920 | 2.3979158 | ||||
align=center
!109 | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}} | Pentisteric 6-cube Celliprismated hemihexeract (cophix) | (1,1,1,1,3,5) | 5280 | 960 | 2.1794496 | ||||
align=center
!110 | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}} | Steriruncicantic 6-cube Great prismated hemihexeract (gophax) | (1,1,3,5,7,7) | 17280 | 5760 | 4.0926762 | ||||
align=center
!111 | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}} | Pentiruncicantic 6-cube Celligreatorhombated hemihexeract (cagrohax) | (1,1,3,5,5,7) | 20160 | 5760 | 3.7080991 | ||||
align=center
!112 | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}} | Pentistericantic 6-cube Celliprismatotruncated hemihexeract (capthix) | (1,1,3,3,5,7) | 23040 | 5760 | 3.4278274 | ||||
align=center
!113 | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}} | Pentisteriruncic 6-cube Celliprismatorhombated hemihexeract (caprohax) | (1,1,1,3,5,7) | 15360 | 3840 | 3.2787192 | ||||
align=center
!114 | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}} | Pentisteriruncicantic 6-cube Great cellated hemihexeract (gochax) | (1,1,3,5,7,9) | 34560 | 11520 | 4.5552168 |
= The E<sub>6</sub> family =
{{Further|list of E6 polytopes}}
There are 39 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Bowers-style acronym names are given for cross-referencing. The E6 family has symmetry of order 51,840.
class="wikitable" | ||||||||
rowspan=2|#
!rowspan=2|Coxeter diagram !rowspan=2|Names !colspan=6|Element counts | ||||||||
---|---|---|---|---|---|---|---|---|
5-faces
! 4-faces ! Cells ! Faces ! Edges ! Vertices | ||||||||
align=center
|115 | {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}} | 221 Icosiheptaheptacontidipeton (jak) | 99 | 648 | 1080 | 720 | 216 | 27 |
align=center
|116 | {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}} | Rectified 221 Rectified icosiheptaheptacontidipeton (rojak) | 126 | 1350 | 4320 | 5040 | 2160 | 216 |
align=center
|117 | {{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}} | Truncated 221 Truncated icosiheptaheptacontidipeton (tojak) | 126 | 1350 | 4320 | 5040 | 2376 | 432 |
align=center
|118 | {{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}} | Cantellated 221 Small rhombated icosiheptaheptacontidipeton (sirjak) | 342 | 3942 | 15120 | 24480 | 15120 | 2160 |
align=center
|119 | {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}} | Runcinated 221 Small demiprismated icosiheptaheptacontidipeton (shopjak) | 342 | 4662 | 16200 | 19440 | 8640 | 1080 |
align=center
|120 | {{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}} | Demified icosiheptaheptacontidipeton (hejak) | 342 | 2430 | 7200 | 7920 | 3240 | 432 |
align=center
|121 | {{CDD|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}} | Bitruncated 221 Bitruncated icosiheptaheptacontidipeton (botajik) | 2160 | |||||
align=center
|122 | {{CDD|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}} | Demirectified icosiheptaheptacontidipeton (harjak) | 1080 | |||||
align=center
|123 | {{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}} | Cantitruncated 221 Great rhombated icosiheptaheptacontidipeton (girjak) | 4320 | |||||
align=center
|124 | {{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}} | Runcitruncated 221 Demiprismatotruncated icosiheptaheptacontidipeton (hopitjak) | 4320 | |||||
align=center
|125 | {{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}} | Steritruncated 221 Cellitruncated icosiheptaheptacontidipeton (catjak) | 2160 | |||||
align=center
|126 | {{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}} | Demitruncated icosiheptaheptacontidipeton (hotjak) | 2160 | |||||
align=center
|127 | {{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}} | Runcicantellated 221 Demiprismatorhombated icosiheptaheptacontidipeton (haprojak) | 6480 | |||||
align=center
|128 | {{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}} | Small demirhombated icosiheptaheptacontidipeton (shorjak) | 4320 | |||||
align=center
|129 | {{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}} | Small prismated icosiheptaheptacontidipeton (spojak) | 4320 | |||||
align=center
|130 | {{CDD|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}} | Tritruncated icosiheptaheptacontidipeton (titajak) | 4320 | |||||
align=center
|131 | {{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}} | Runcicantitruncated 221 Great demiprismated icosiheptaheptacontidipeton (ghopjak) | 12960 | |||||
align=center
|132 | {{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}} | Stericantitruncated 221 Celligreatorhombated icosiheptaheptacontidipeton (cograjik) | 12960 | |||||
align=center
|133 | {{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}} | Great demirhombated icosiheptaheptacontidipeton (ghorjak) | 8640 | |||||
align=center
|134 | {{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}} | Prismatotruncated icosiheptaheptacontidipeton (potjak) | 12960 | |||||
align=center
|135 | {{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}} | Demicellitruncated icosiheptaheptacontidipeton (hictijik) | 8640 | |||||
align=center
|136 | {{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}} | Prismatorhombated icosiheptaheptacontidipeton (projak) | 12960 | |||||
align=center
|137 | {{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}} | Great prismated icosiheptaheptacontidipeton (gapjak) | 25920 | |||||
align=center
|138 | {{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}} | Demicelligreatorhombated icosiheptaheptacontidipeton (hocgarjik) | 25920 |
class="wikitable" | ||||||||
rowspan=2|#
!rowspan=2|Coxeter diagram !rowspan=2|Names !colspan=6|Element counts | ||||||||
---|---|---|---|---|---|---|---|---|
5-faces
! 4-faces ! Cells ! Faces ! Edges ! Vertices | ||||||||
style="text-align:center; background:#e0f0e0;"
|139 | {{CDD|node_1|3|node|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}} | 122 Pentacontatetrapeton (mo) | 54 | 702 | 2160 | 2160 | 720 | 72 |
style="text-align:center; background:#e0f0e0;"
|140 | {{CDD|node|3|node_1|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}} | Rectified 122 Rectified pentacontatetrapeton (ram) | 126 | 1566 | 6480 | 10800 | 6480 | 720 |
style="text-align:center; background:#e0f0e0;"
|141 | {{CDD|node|3|node|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}} | Birectified 122 Birectified pentacontatetrapeton (barm) | 126 | 2286 | 10800 | 19440 | 12960 | 2160 |
style="text-align:center; background:#e0f0e0;"
|142 | {{CDD|node|3|node|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}} | Trirectified 122 Trirectified pentacontatetrapeton (trim) | 558 | 4608 | 8640 | 6480 | 2160 | 270 |
style="text-align:center; background:#e0f0e0;"
|143 | {{CDD|node_1|3|node_1|split1|nodes|3ab|nodes}} = {{CDD|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}} | Truncated 122 Truncated pentacontatetrapeton (tim) | 13680 | 1440 | ||||
style="text-align:center; background:#e0f0e0;"
|144 | {{CDD|node|3|node_1|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}} | Bitruncated 122 Bitruncated pentacontatetrapeton (bitem) | 6480 | |||||
style="text-align:center; background:#e0f0e0;"
|145 | {{CDD|node|3|node|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}} | Tritruncated 122 Tritruncated pentacontatetrapeton (titam) | 8640 | |||||
style="text-align:center; background:#e0f0e0;"
|146 | {{CDD|node_1|3|node|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}} | Cantellated 122 Small rhombated pentacontatetrapeton (sram) | 6480 | |||||
style="text-align:center; background:#e0f0e0;"
|147 | {{CDD|node_1|3|node_1|split1|nodes_11|3ab|nodes}} = {{CDD|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}} | Cantitruncated 122 Great rhombated pentacontatetrapeton (gram) | 12960 | |||||
style="text-align:center; background:#e0f0e0;"
|148 | {{CDD|node_1|3|node|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}} | Runcinated 122 Small prismated pentacontatetrapeton (spam) | 2160 | |||||
style="text-align:center; background:#e0f0e0;"
|149 | {{CDD|node|3|node_1|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}} | Bicantellated 122 Small birhombated pentacontatetrapeton (sabrim) | 6480 | |||||
style="text-align:center; background:#e0f0e0;"
|150 | {{CDD|node|3|node_1|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}} | Bicantitruncated 122 Great birhombated pentacontatetrapeton (gabrim) | 12960 | |||||
style="text-align:center; background:#e0f0e0;"
|151 | {{CDD|node_1|3|node_1|split1|nodes|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}} | Runcitruncated 122 Prismatotruncated pentacontatetrapeton (patom) | 12960 | |||||
style="text-align:center; background:#e0f0e0;"
|152 | {{CDD|node_1|3|node|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}} | Runcicantellated 122 Prismatorhombated pentacontatetrapeton (prom) | 25920 | |||||
style="text-align:center; background:#e0f0e0;"
|153 | {{CDD|node_1|3|node_1|split1|nodes_11|3ab|nodes_11}} = {{CDD|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}} | Omnitruncated 122 Great prismated pentacontatetrapeton (gopam) | 51840 |
= Triaprisms =
Uniform triaprisms, {p}×{q}×{r}, form an infinite class for all integers p,q,r>2. {4}×{4}×{4} makes a lower symmetry form of the 6-cube.
The extended f-vector is (p,p,1)*(q,q,1)*(r,r,1)=(pqr,3pqr,3pqr+pq+pr+qr,3p(p+1),3p,1).
class="wikitable" | |||||||
rowspan=2|Coxeter diagram
!rowspan=2|Names !colspan=6|Element counts | |||||||
---|---|---|---|---|---|---|---|
5-faces
! 4-faces ! Cells ! Faces ! Edges ! Vertices | |||||||
align=center
|{{CDD|branch_10|labelp|2|branch_10|labelq|2|branch_10|labelr}} | {p}×{q}×{r} {{cite web | url=https://bendwavy.org/klitzing/incmats/n-m-k-tip.htm | title=N,m,k-tip }} | p+q+r | pq+pr+qr+p+q+r | pqr+2(pq+pr+qr) | 3pqr+pq+pr+qr | 3pqr | pqr |
align=center
|{{CDD|branch_10|labelp|2|branch_10|labelp|2|branch_10|labelp}} | {p}×{p}×{p} | 3p | 3p(p+1) | p2(p+6) | 3p2(p+1) | 3p3 | p3 |
align=center
|{{CDD|branch_10|2|branch_10|2|branch_10}} | {3}×{3}×{3} (trittip) | 9 | 36 | 81 | 99 | 81 | 27 |
align=center
|{{CDD|branch_10|label4|2|branch_10|label4|2|branch_10|label4}} | {4}×{4}×{4} = 6-cube | 12 | 60 | 160 | 240 | 192 | 64 |
= Non-Wythoffian 6-polytopes =
In 6 dimensions and above, there are an infinite amount of non-Wythoffian convex uniform polytopes: the Cartesian product of the grand antiprism in 4 dimensions and any regular polygon in 2 dimensions. It is not yet proven whether or not there are more.
Regular and uniform honeycombs
File:Coxeter diagram affine rank6 correspondence.png
There are four fundamental affine Coxeter groups and 27 prismatic groups that generate regular and uniform tessellations in 5-space:
class=wikitable | ||||
#
!colspan=2|Coxeter group !Forms | ||||
---|---|---|---|---|
align=center
|1 | [3[6]] | {{CDD|node|split1|nodes|3ab|nodes|split2|node}} | 12 | |
align=center
|2 | [4,33,4] | {{CDD|node|4|node|3|node|3|node|3|node|4|node}} | 35 | |
align=center
|3 | [4,3,31,1] [4,33,4,1+] | {{CDD|node|4|node|3|node|3|node|split1|nodes}} {{CDD|node|4|node|3|node|3|node|3|node|4|node_h0}} | 47 (16 new) | |
align=center
|4 | [31,1,3,31,1] [1+,4,33,4,1+] | {{CDD|nodes|split2|node|3|node|split1|nodes}} {{CDD|node_h0|4|node|3|node|3|node|3|node|4|node_h0}} | 20 (3 new) |
Regular and uniform honeycombs include:
- There are 12 unique uniform honeycombs, including:
- 5-simplex honeycomb {{CDD|node_1|split1|nodes|3ab|nodes|split2|node}}
- Truncated 5-simplex honeycomb {{CDD|branch_11|3ab|nodes|3ab|branch}}
- Omnitruncated 5-simplex honeycomb {{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}
- There are 35 uniform honeycombs, including:
- Regular hypercube honeycomb of Euclidean 5-space, the 5-cube honeycomb, with symbols {4,33,4}, {{CDD|node_1|4|node|3|node|3|node|3|node|4|node}} = {{CDD|node_1|4|node|3|node|3|node|split1|nodes}}
- There are 47 uniform honeycombs, 16 new, including:
- The uniform alternated hypercube honeycomb, 5-demicubic honeycomb, with symbols h{4,33,4}, {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node|4|node}} = {{CDD|nodes_10ru|split2|node|3|node|split1|nodes}}
- , [31,1,3,31,1]: There are 20 unique ringed permutations, and 3 new ones. Coxeter calls the first one a quarter 5-cubic honeycomb, with symbols q{4,33,4}, {{CDD|nodes_10ru|split2|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|4|node_h1}}. The other two new ones are {{CDD|nodes_10ru|split2|node_1|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|4|node_h1}}, {{CDD|nodes_10ru|split2|node_1|3|node_1|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|4|node_h1}}.
class=wikitable
|+ Prismatic groups | |||
#
!colspan=2|Coxeter group | |||
---|---|---|---|
1 | x | [3[5],2,∞] | {{CDD|branch|3ab|nodes|split2|node|2|node|infin|node}} |
2 | x | [4,3,31,1,2,∞] | {{CDD|nodes|split2|node|3|node|4|node|2|node|infin|node}} |
3 | x | [4,3,3,4,2,∞] | {{CDD|node|4|node|3|node|3|node|4|node|2|node|infin|node}} |
4 | x | [31,1,1,1,2,∞] | {{CDD|nodes|split2|node|split1|nodes|2|node|infin|node}} |
5 | x | [3,4,3,3,2,∞] | {{CDD|node|3|node|4|node|3|node|3|node|2|node|infin|node}} |
6 | xx | [4,3,4,2,∞,2,∞] | {{CDD|node|4|node|3|node|4|node|2|node|infin|node|2|node|infin|node}} |
7 | xx | [4,31,1,2,∞,2,∞] | {{CDD|nodea|3a|branch|3a|4a|nodea|2|node|infin|node|2|node|infin|node}} |
8 | xx | [3[4],2,∞,2,∞] | {{CDD|branch|3ab|branch|2|node|infin|node|2|node|infin|node}} |
9 | xxx | [4,4,2,∞,2,∞,2,∞] | {{CDD|node|4|node|4|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}} |
10 | xxx | [6,3,2,∞,2,∞,2,∞] | {{CDD|node|6|node|3|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}} |
11 | xxx | [3[3],2,∞,2,∞,2,∞] | {{CDD|node|split1|branch|2|node|infin|node|2|node|infin|node|2|node|infin|node}} |
12 | xxxx | [∞,2,∞,2,∞,2,∞,2,∞] | {{CDD|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}} |
13 | xx | [3[3],2,3[3],2,∞] | {{CDD|node|split1|branch|2|node|split1|branch|2|node|infin|node}} |
14 | xx | [3[3],2,4,4,2,∞] | {{CDD|node|split1|branch|2|node|4|node|4|node|2|node|infin|node}} |
15 | xx | [3[3],2,6,3,2,∞] | {{CDD|node|split1|branch|2|node|6|node|3|node|2|node|infin|node}} |
16 | xx | [4,4,2,4,4,2,∞] | {{CDD|node|4|node|4|node|2|node|4|node|4|node|2|node|infin|node}} |
17 | xx | [4,4,2,6,3,2,∞] | {{CDD|node|4|node|4|node|2|node|6|node|3|node|2|node|infin|node}} |
18 | xx | [6,3,2,6,3,2,∞] | {{CDD|node|6|node|3|node|2|node|6|node|3|node|2|node|infin|node}} |
19 | x | [3[4],2,3[3]] | {{CDD|branch|3ab|branch|2|node|split1|branch}} |
20 | x | [4,31,1,2,3[3]] | {{CDD|nodea|3a|branch|3a|4a|nodea|2|node|split1|branch}} |
21 | x | [4,3,4,2,3[3]] | {{CDD|node|4|node|3|node|4|node|2|node|split1|branch}} |
22 | x | [3[4],2,4,4] | {{CDD|branch|3ab|branch|2|node|4|node|4|node}} |
23 | x | [4,31,1,2,4,4] | {{CDD|nodea|3a|branch|3a|4a|nodea|2|node|4|node|4|node}} |
24 | x | [4,3,4,2,4,4] | {{CDD|node|4|node|3|node|4|node|2|node|4|node|4|node}} |
25 | x | [3[4],2,6,3] | {{CDD|branch|3ab|branch|2|node|6|node|3|node}} |
26 | x | [4,31,1,2,6,3] | {{CDD|nodea|3a|branch|3a|4a|nodea|2|node|6|node|3|node}} |
27 | x | [4,3,4,2,6,3] | {{CDD|node|4|node|3|node|4|node|2|node|6|node|3|node}} |
= Regular and uniform hyperbolic honeycombs =
There are no compact hyperbolic Coxeter groups of rank 6, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 12 paracompact hyperbolic Coxeter groups of rank 6, each generating uniform honeycombs in 5-space as permutations of rings of the Coxeter diagrams.
class=wikitable
|+ Hyperbolic paracompact groups |align=right| = [3,3[5]]: {{CDD|branch|3ab|nodes|split2|node|3|node}} = [(3,3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|3ab|branch}} = [(3,3,4,3,3,4)]: {{CDD|label4|branch|3ab|nodes|3ab|branch|label4}} |align=right| = [4,3,32,1]: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|4a|nodea}} = [3,4,31,1]: {{CDD|nodes|split2|node|3|node|4|node|3|node}} = [3,(3,4)1,1]: {{CDD|nodea|4a|nodea|3a|branch|3a|nodea|4a|nodea}} |align=right| = [3,3,3,4,3]: {{CDD|node|3|node|3|node|3|node|4|node|3|node}} = [3,3,4,3,3]: {{CDD|node|3|node|3|node|4|node|3|node|3|node}} = [3,4,3,3,4]: {{CDD|node|3|node|4|node|3|node|3|node|4|node}} |align=right| = [32,1,1,1]: {{CDD|nodea|3a|nodes|split2|node|split1|nodes}} = [4,3,31,1,1]: {{CDD|nodea|4a|nodes|split2|node|split1|nodes}} = [31,1,1,1,1]: {{CDD|node|branch3|splitsplit2|node|split1|nodes}} |
Notes on the Wythoff construction for the uniform 6-polytopes
Construction of the reflective 6-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter–Dynkin diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 6-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.
Here's the primary operators available for constructing and naming the uniform 6-polytopes.
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
class="wikitable" |
Operation
!Extended !width=110|Coxeter- !Description |
---|
Parent
|width=70| t0{p,q,r,s,t} |{{CDD|node_1|p|node|q|node|r|node|s|node|t|node}} | Any regular 6-polytope |
Rectified
| t1{p,q,r,s,t} |{{CDD|node|p|node_1|q|node|r|node|s|node|t|node}} |The edges are fully truncated into single points. The 6-polytope now has the combined faces of the parent and dual. |
Birectified
| t2{p,q,r,s,t} |{{CDD|node|p|node|q|node_1|r|node|s|node|t|node}} |
Truncated
| t0,1{p,q,r,s,t} |{{CDD|node_1|p|node_1|q|node|r|node|s|node|t|node}} |Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 6-polytope. The 6-polytope has its original faces doubled in sides, and contains the faces of the dual. |
Bitruncated
| t1,2{p,q,r,s,t} |{{CDD|node|p|node_1|q|node_1|r|node|s|node|t|node}} |Bitrunction transforms cells to their dual truncation. |
Tritruncated
| t2,3{p,q,r,s,t} |{{CDD|node|p|node|q|node_1|r|node_1|s|node|t|node}} |Tritruncation transforms 4-faces to their dual truncation. |
Cantellated
| t0,2{p,q,r,s,t} |{{CDD|node_1|p|node|q|node_1|r|node|s|node|t|node}} |In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms. |
Bicantellated
| t1,3{p,q,r,s,t} |{{CDD|node|p|node_1|q|node|r|node_1|s|node|t|node}} |In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms. |
Runcinated
| t0,3{p,q,r,s,t} |{{CDD|node_1|p|node|q|node|r|node_1|s|node|t|node}} |Runcination reduces cells and creates new cells at the vertices and edges. |
Biruncinated
| t1,4{p,q,r,s,t} |{{CDD|node|p|node_1|q|node|r|node|s|node_1|t|node}} |Runcination reduces cells and creates new cells at the vertices and edges. |
Stericated
| t0,4{p,q,r,s,t} |{{CDD|node_1|p|node|q|node|r|node|s|node_1|t|node}} |Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps. |
Pentellated
| t0,5{p,q,r,s,t} |{{CDD|node_1|p|node|q|node|r|node|s|node|t|node_1}} |Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps. (expansion operation for polypeta) |
Omnitruncated
| t0,1,2,3,4,5{p,q,r,s,t} |{{CDD|node_1|p|node_1|q|node_1|r|node_1|s|node_1|t|node_1}} |All five operators, truncation, cantellation, runcination, sterication, and pentellation are applied. |
See also
- {{section link|List of regular polytopes|Higher dimensions}}
Notes
{{reflist}}
References
- T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
- A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
- H.S.M. Coxeter:
- H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- {{KlitzingPolytopes|polypeta.htm|6D|uniform polytopes (polypeta)}}
- {{KlitzingPolytopes|../explain/polytope-tree.htm#dynkin|Uniform polytopes|truncation operators}}
External links
- [http://www.steelpillow.com/polyhedra/ditela.html Polytope names]
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
- {{PolyCell | urlname = glossary.html| title = Glossary for hyperspace}}
{{Polytopes}}
{{Honeycombs}}