Order-6 hexagonal tiling honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Order-6 hexagonal tiling honeycomb | |
colspan=2 align=center|320px Perspective projection view from center of Poincaré disk model | |
bgcolor=#e7dcc3|Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | {6,3,6} {6,3[3]} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node|3|node|6|node}} {{CDD|node_1|6|node|split1|branch}} ↔ {{CDD|node_1|6|node|3|node|6|node_h0}} {{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u|splitplit2u|node}} ↔ {{CDD|node_1|6|node_g|3sg|node_g|6|node}} |
bgcolor=#e7dcc3|Cells | {6,3} 40px |
bgcolor=#e7dcc3|Faces | hexagon {6} |
bgcolor=#e7dcc3|Edge figure | hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | {3,6} or {3[3]} 40px 40px |
bgcolor=#e7dcc3|Dual | Self-dual |
bgcolor=#e7dcc3|Coxeter group | , [6,3,6] , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Regular, quasiregular |
In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,6}. Since that of the hexagonal tiling of the plane is {6,3}, this honeycomb has six such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the triangular tiling is {3,6}, the vertex figure of this honeycomb is a triangular tiling. Thus, infinitely many hexagonal tilings meet at each vertex of this honeycomb.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
{{Honeycomb}}
Related tilings
The order-6 hexagonal tiling honeycomb is analogous to the 2D hyperbolic infinite-order apeirogonal tiling, {∞,∞}, with infinite apeirogonal faces, and with all vertices on the ideal surface.
: 240px
It contains {{CDD|node_1|3|node_1|ultra|node}} and {{CDD|node|3|node|ultra|node_1}} that tile 2-hypercycle surfaces, which are similar to the paracompact tilings {{CDD|node_1|3|node_1|infin|node}} and {{CDD|node|3|node|infin|node_1}} (the truncated infinite-order triangular tiling and order-3 apeirogonal tiling, respectively):
Symmetry
File:Hyperbolic subgroup tree 636.png
The order-6 hexagonal tiling honeycomb has a half-symmetry construction: {{CDD|node_1|6|node|split1|branch}}.
It also has an index-6 subgroup, [6,3*,6], with a non-simplex fundamental domain. This subgroup corresponds to a Coxeter diagram with six order-3 branches and three infinite-order branches in the shape of a triangular prism: {{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u|splitplit2u|node}}.
{{-}}
Related polytopes and honeycombs
The order-6 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of eleven paracompact honeycombs in 3-space.
{{Regular_paracompact_H3_honeycombs}}
There are nine uniform honeycombs in the [6,3,6] Coxeter group family, including this regular form.
{{636 family}}
This honeycomb has a related alternated honeycomb, the triangular tiling honeycomb, but with a lower symmetry: {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}.
The order-6 hexagonal tiling honeycomb is part of a sequence of regular polychora and honeycombs with triangular tiling vertex figures:
{{Triangular tiling vertex figure tessellations small}}
It is also part of a sequence of regular polychora and honeycombs with hexagonal tiling cells:
{{Hexagonal tiling cell tessellations}}
It is also part of a sequence of regular polychora and honeycombs with regular deltahedral vertex figures:
{{Symmetric2_tessellations}}
= Rectified order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | r{6,3,6} or t1{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node|6|node_1|3|node|6|node}} {{CDD|branch_11|split2|node|6|node}} ↔ {{CDD|node_h0|6|node_1|3|node|6|node}} {{CDD|node|6|node_1|split1|branch}} ↔ {{CDD|node|6|node_1|3|node|6|node_h0}} {{CDD|branch_11|splitcross|branch}} ↔ {{CDD|node_h0|6|node_1|3|node|6|node_h0}} ↔ {{CDD|node_h1|6|node|3|node|6|node_h1}} |
bgcolor=#e7dcc3|Cells | {3,6} 40px r{6,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px hexagonal prism |
bgcolor=#e7dcc3|Coxeter groups | , [6,3,6] , [6,3[3]] , [3[3,3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The rectified order-6 hexagonal tiling honeycomb, t1{6,3,6}, {{CDD|node|6|node_1|3|node|6|node}} has triangular tiling and trihexagonal tiling facets, with a hexagonal prism vertex figure.
it can also be seen as a quarter order-6 hexagonal tiling honeycomb, q{6,3,6}, {{CDD|node_h1|6|node|3|node|6|node_h1}} ↔ {{CDD|branch_11|splitcross|branch}}.
It is analogous to 2D hyperbolic order-4 apeirogonal tiling, r{∞,∞} with infinite apeirogonal faces, and with all vertices on the ideal surface.
: 240px
== Related honeycombs==
The order-6 hexagonal tiling honeycomb is part of a series of honeycombs with hexagonal prism vertex figures:
{{Hexagonal tiling vertex figure tessellations}}
It is also part of a matrix of 3-dimensional quarter honeycombs: q{2p,4,2q}
{{Quarter hyperbolic honeycomb table}}
{{-}}
= Truncated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Truncated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t{6,3,6} or t0,1{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node|6|node}} {{CDD|node_1|6|node_1|split1|branch}} ↔ {{CDD|node_1|6|node_1|3|node|6|node_h0}} |
bgcolor=#e7dcc3|Cells | {3,6} 40px t{6,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px hexagonal pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [6,3,6] , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The truncated order-6 hexagonal tiling honeycomb, t0,1{6,3,6}, {{CDD|node_1|6|node_1|3|node|6|node}} has triangular tiling and truncated hexagonal tiling facets, with a hexagonal pyramid vertex figure.[https://twitter.com/roice713/status/1111121384875483136 Twitter] Rotation around 3 fold axis
{{-}}
= Bitruncated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Bitruncated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | bt{6,3,6} or t1,2{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node|6|node_1|3|node_1|6|node}} {{CDD|node|6|node_1|split1|branch 11}} ↔ {{CDD|node|6|node_1|3|node_1|6|node_h0}} {{CDD|node_1|6|node|3|node|3|node}} |
bgcolor=#e7dcc3|Cells | t{3,6} 40px |
bgcolor=#e7dcc3|Faces | hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px tetrahedron |
bgcolor=#e7dcc3|Coxeter groups | , , [6,3[3]] , [3,3,6] |
bgcolor=#e7dcc3|Properties | Regular |
The bitruncated order-6 hexagonal tiling honeycomb is a lower symmetry construction of the regular hexagonal tiling honeycomb, {{CDD|node|6|node_1|3|node_1|6|node}} ↔ {{CDD|node_1|6|node|3|node|3|node}}. It contains hexagonal tiling facets, with a tetrahedron vertex figure.
{{-}}
= Cantellated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantellated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | rr{6,3,6} or t0,2{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node|3|node_1|6|node}} {{CDD|node_1|6|node|split1|branch_11}} ↔ {{CDD|node_1|6|node|3|node_1|6|node_h0}} |
bgcolor=#e7dcc3|Cells | r{3,6} 40px rr{6,3} 40px {}x{6} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px wedge |
bgcolor=#e7dcc3|Coxeter groups | , [6,3,6] , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantellated order-6 hexagonal tiling honeycomb, t0,2{6,3,6}, {{CDD|node_1|6|node|3|node_1|6|node}} has trihexagonal tiling, rhombitrihexagonal tiling, and hexagonal prism cells, with a wedge vertex figure.
{{-}}
= Cantitruncated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | tr{6,3,6} or t0,1,2{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node_1|6|node}} {{CDD|node_1|6|node_1|split1|branch_11}} ↔ {{CDD|node_1|6|node_1|3|node_1|6|node_h0}} |
bgcolor=#e7dcc3|Cells | tr{3,6} 40px t{3,6} 40px {}x{6} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px mirrored sphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [6,3,6] , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantitruncated order-6 hexagonal tiling honeycomb, t0,1,2{6,3,6}, {{CDD|node_1|6|node_1|3|node_1|6|node}} has hexagonal tiling, truncated trihexagonal tiling, and hexagonal prism cells, with a mirrored sphenoid vertex figure.
{{-}}
= Runcinated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcinated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node|3|node|6|node_1}} {{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u_11|splitplit2u|node_1}} ↔ {{CDD|node_1|6|node_g|3sg|node_g|6|node_1}} |
bgcolor=#e7dcc3|Cells | {6,3} 40px40px {}×{6} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular antiprism |
bgcolor=#e7dcc3|Coxeter groups | , |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The runcinated order-6 hexagonal tiling honeycomb, t0,3{6,3,6}, {{CDD|node_1|6|node|3|node|6|node_1}} has hexagonal tiling and hexagonal prism cells, with a triangular antiprism vertex figure.
It is analogous to the 2D hyperbolic rhombihexahexagonal tiling, rr{6,6}, {{CDD|node_1|6|node|6|node_1}} with square and hexagonal faces:
: 240px
{{-}}
= Runcitruncated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node|6|node_1}} |
bgcolor=#e7dcc3|Cells | t{6,3} 40px rr{6,3} 40px {}x{6}40px {}x{12} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px isosceles-trapezoidal pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [6,3,6] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcitruncated order-6 hexagonal tiling honeycomb, t0,1,3{6,3,6}, {{CDD|node_1|6|node_1|3|node|6|node_1}} has truncated hexagonal tiling, rhombitrihexagonal tiling, hexagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.
{{-}}
= Omnitruncated order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Omnitruncated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|6|node_1|3|node_1|6|node_1}} |
bgcolor=#e7dcc3|Cells | tr{6,3} 40px {}x{12} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px phyllic disphenoid |
bgcolor=#e7dcc3|Coxeter groups | , |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The omnitruncated order-6 hexagonal tiling honeycomb, t0,1,2,3{6,3,6}, {{CDD|node_1|6|node_1|3|node_1|6|node_1}} has truncated trihexagonal tiling and dodecagonal prism cells, with a phyllic disphenoid vertex figure.
{{-}}
=Alternated order-6 hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Alternated order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | h{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}} |
bgcolor=#e7dcc3|Cells | {3,6} 40px {3[3]} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} |
bgcolor=#e7dcc3|Vertex figure | 80px hexagonal tiling |
bgcolor=#e7dcc3|Coxeter groups | , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Regular, quasiregular |
The alternated order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the regular triangular tiling honeycomb, {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}. It contains triangular tiling facets in a hexagonal tiling vertex figure.
{{-}}
= Cantic order-6 hexagonal tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantic order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | h2{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_h1|6|node|3|node_1|6|node}} ↔ {{CDD|branch_10ru|split2|node_1|6|node}} |
bgcolor=#e7dcc3|Cells | t{3,6} 40px r{6,3} 40px h2{6,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular prism |
bgcolor=#e7dcc3|Coxeter groups | , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The cantic order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the rectified triangular tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|6|node}} ↔ {{CDD|branch_10ru|split2|node_1|6|node}}, with trihexagonal tiling and hexagonal tiling facets in a triangular prism vertex figure.
{{-}}
=Runcic order-6 hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcic order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | h3{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_h1|6|node|3|node|6|node_1}} ↔ {{CDD|branch_10ru|split2|node|6|node_1}} |
bgcolor=#e7dcc3|Cells | rr{3,6} 40px {6,3} 40px {3[3]} 40px {3}x{} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular cupola |
bgcolor=#e7dcc3|Coxeter groups | , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcic hexagonal tiling honeycomb, h3{6,3,6}, {{CDD|node_h1|6|node|3|node|6|node_1}}, or {{CDD|branch_10ru|split2|node|6|node_1}}, has hexagonal tiling, rhombitrihexagonal tiling, triangular tiling, and triangular prism facets, with a triangular cupola vertex figure.
{{-}}
=Runicantic order-6 hexagonal tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcicantic order-6 hexagonal tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | h2,3{6,3,6} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_h1|6|node|3|node_1|6|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|6|node_1}} |
bgcolor=#e7dcc3|Cells | tr{6,3} 40px t{6,3} 40px h2{6,3} 40px {}x{3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} hexagon {6} dodecagon {12} |
bgcolor=#e7dcc3|Vertex figure | 80px rectangular pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [6,3[3]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcicantic order-6 hexagonal tiling honeycomb, h2,3{6,3,6}, {{CDD|node_h1|6|node|3|node_1|6|node_1}}, or {{CDD|branch_10ru|split2|node_1|6|node_1}}, contains truncated trihexagonal tiling, truncated hexagonal tiling, trihexagonal tiling, and triangular prism facets, with a rectangular pyramid vertex figure.
{{-}}
See also
References
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I,II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups