Order-6 hexagonal tiling honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Order-6 hexagonal tiling honeycomb

colspan=2 align=center|320px
Perspective projection view
from center of Poincaré disk model
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbol{6,3,6}
{6,3[3]}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node|6|node}}
{{CDD|node_1|6|node|split1|branch}} ↔ {{CDD|node_1|6|node|3|node|6|node_h0}}
{{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u|splitplit2u|node}} ↔ {{CDD|node_1|6|node_g|3sg|node_g|6|node}}
bgcolor=#e7dcc3|Cells{6,3} 40px
bgcolor=#e7dcc3|Faceshexagon {6}
bgcolor=#e7dcc3|Edge figurehexagon {6}
bgcolor=#e7dcc3|Vertex figure{3,6} or {3[3]}
40px 40px
bgcolor=#e7dcc3|DualSelf-dual
bgcolor=#e7dcc3|Coxeter group\overline{Z}_3, [6,3,6]
\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesRegular, quasiregular

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,6}. Since that of the hexagonal tiling of the plane is {6,3}, this honeycomb has six such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the triangular tiling is {3,6}, the vertex figure of this honeycomb is a triangular tiling. Thus, infinitely many hexagonal tilings meet at each vertex of this honeycomb.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III

{{Honeycomb}}

Related tilings

The order-6 hexagonal tiling honeycomb is analogous to the 2D hyperbolic infinite-order apeirogonal tiling, {∞,∞}, with infinite apeirogonal faces, and with all vertices on the ideal surface.

: 240px

It contains {{CDD|node_1|3|node_1|ultra|node}} and {{CDD|node|3|node|ultra|node_1}} that tile 2-hypercycle surfaces, which are similar to the paracompact tilings {{CDD|node_1|3|node_1|infin|node}} and {{CDD|node|3|node|infin|node_1}} (the truncated infinite-order triangular tiling and order-3 apeirogonal tiling, respectively):

: 120px 120px

Symmetry

File:Hyperbolic subgroup tree 636.png

The order-6 hexagonal tiling honeycomb has a half-symmetry construction: {{CDD|node_1|6|node|split1|branch}}.

It also has an index-6 subgroup, [6,3*,6], with a non-simplex fundamental domain. This subgroup corresponds to a Coxeter diagram with six order-3 branches and three infinite-order branches in the shape of a triangular prism: {{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u|splitplit2u|node}}.

{{-}}

Related polytopes and honeycombs

The order-6 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of eleven paracompact honeycombs in 3-space.

{{Regular_paracompact_H3_honeycombs}}

There are nine uniform honeycombs in the [6,3,6] Coxeter group family, including this regular form.

{{636 family}}

This honeycomb has a related alternated honeycomb, the triangular tiling honeycomb, but with a lower symmetry: {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}.

The order-6 hexagonal tiling honeycomb is part of a sequence of regular polychora and honeycombs with triangular tiling vertex figures:

{{Triangular tiling vertex figure tessellations small}}

It is also part of a sequence of regular polychora and honeycombs with hexagonal tiling cells:

{{Hexagonal tiling cell tessellations}}

It is also part of a sequence of regular polychora and honeycombs with regular deltahedral vertex figures:

{{Symmetric2_tessellations}}

= Rectified order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{6,3,6} or t1{6,3,6}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|6|node_1|3|node|6|node}}
{{CDD|branch_11|split2|node|6|node}} ↔ {{CDD|node_h0|6|node_1|3|node|6|node}}
{{CDD|node|6|node_1|split1|branch}} ↔ {{CDD|node|6|node_1|3|node|6|node_h0}}
{{CDD|branch_11|splitcross|branch}} ↔ {{CDD|node_h0|6|node_1|3|node|6|node_h0}} ↔ {{CDD|node_h1|6|node|3|node|6|node_h1}}
bgcolor=#e7dcc3|Cells{3,6} 40px
r{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
hexagonal prism
bgcolor=#e7dcc3|Coxeter groups\overline{Z}_3, [6,3,6]
\overline{VP}_3, [6,3[3]]
\overline{PP}_3, [3[3,3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified order-6 hexagonal tiling honeycomb, t1{6,3,6}, {{CDD|node|6|node_1|3|node|6|node}} has triangular tiling and trihexagonal tiling facets, with a hexagonal prism vertex figure.

it can also be seen as a quarter order-6 hexagonal tiling honeycomb, q{6,3,6}, {{CDD|node_h1|6|node|3|node|6|node_h1}} ↔ {{CDD|branch_11|splitcross|branch}}.

480px

It is analogous to 2D hyperbolic order-4 apeirogonal tiling, r{∞,∞} with infinite apeirogonal faces, and with all vertices on the ideal surface.

: 240px

== Related honeycombs==

The order-6 hexagonal tiling honeycomb is part of a series of honeycombs with hexagonal prism vertex figures:

{{Hexagonal tiling vertex figure tessellations}}

It is also part of a matrix of 3-dimensional quarter honeycombs: q{2p,4,2q}

{{Quarter hyperbolic honeycomb table}}

{{-}}

= Truncated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt{6,3,6} or t0,1{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|6|node}}
{{CDD|node_1|6|node_1|split1|branch}} ↔ {{CDD|node_1|6|node_1|3|node|6|node_h0}}
bgcolor=#e7dcc3|Cells{3,6} 40px
t{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
hexagonal pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{Z}_3, [6,3,6]
\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated order-6 hexagonal tiling honeycomb, t0,1{6,3,6}, {{CDD|node_1|6|node_1|3|node|6|node}} has triangular tiling and truncated hexagonal tiling facets, with a hexagonal pyramid vertex figure.[https://twitter.com/roice713/status/1111121384875483136 Twitter] Rotation around 3 fold axis

480px

{{-}}

= Bitruncated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Bitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolbt{6,3,6} or t1,2{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|6|node_1|3|node_1|6|node}}
{{CDD|node|6|node_1|split1|branch 11}} ↔ {{CDD|node|6|node_1|3|node_1|6|node_h0}}
{{CDD|node_1|6|node|3|node|3|node}}
bgcolor=#e7dcc3|Cellst{3,6} 40px
bgcolor=#e7dcc3|Faceshexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
tetrahedron
bgcolor=#e7dcc3|Coxeter groups2\times\overline{Z}_3, 6,3,6
\overline{VP}_3, [6,3[3]]
\overline{V}_3, [3,3,6]
bgcolor=#e7dcc3|PropertiesRegular

The bitruncated order-6 hexagonal tiling honeycomb is a lower symmetry construction of the regular hexagonal tiling honeycomb, {{CDD|node|6|node_1|3|node_1|6|node}} ↔ {{CDD|node_1|6|node|3|node|3|node}}. It contains hexagonal tiling facets, with a tetrahedron vertex figure.

480px

{{-}}

= Cantellated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantellated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolrr{6,3,6} or t0,2{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node_1|6|node}}
{{CDD|node_1|6|node|split1|branch_11}} ↔ {{CDD|node_1|6|node|3|node_1|6|node_h0}}
bgcolor=#e7dcc3|Cellsr{3,6} 40px
rr{6,3} 40px
{}x{6} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Coxeter groups\overline{Z}_3, [6,3,6]
\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantellated order-6 hexagonal tiling honeycomb, t0,2{6,3,6}, {{CDD|node_1|6|node|3|node_1|6|node}} has trihexagonal tiling, rhombitrihexagonal tiling, and hexagonal prism cells, with a wedge vertex figure.

480px

{{-}}

= Cantitruncated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{6,3,6} or t0,1,2{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|6|node}}
{{CDD|node_1|6|node_1|split1|branch_11}} ↔ {{CDD|node_1|6|node_1|3|node_1|6|node_h0}}
bgcolor=#e7dcc3|Cellstr{3,6} 40px
t{3,6} 40px
{}x{6} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
mirrored sphenoid
bgcolor=#e7dcc3|Coxeter groups\overline{Z}_3, [6,3,6]
\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantitruncated order-6 hexagonal tiling honeycomb, t0,1,2{6,3,6}, {{CDD|node_1|6|node_1|3|node_1|6|node}} has hexagonal tiling, truncated trihexagonal tiling, and hexagonal prism cells, with a mirrored sphenoid vertex figure.

480px

{{-}}

= Runcinated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcinated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,3{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node|3|node|6|node_1}}
{{CDD|node_1|splitplit1u|branch4u_11|uabc|branch4u_11|splitplit2u|node_1}} ↔ {{CDD|node_1|6|node_g|3sg|node_g|6|node_1}}
bgcolor=#e7dcc3|Cells{6,3} 40px40px
{}×{6} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular antiprism
bgcolor=#e7dcc3|Coxeter groups2\times\overline{Z}_3, 6,3,6
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The runcinated order-6 hexagonal tiling honeycomb, t0,3{6,3,6}, {{CDD|node_1|6|node|3|node|6|node_1}} has hexagonal tiling and hexagonal prism cells, with a triangular antiprism vertex figure.

480px

It is analogous to the 2D hyperbolic rhombihexahexagonal tiling, rr{6,6}, {{CDD|node_1|6|node|6|node_1}} with square and hexagonal faces:

: 240px

{{-}}

= Runcitruncated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,3{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node|6|node_1}}
bgcolor=#e7dcc3|Cellst{6,3} 40px
rr{6,3} 40px
{}x{6}40px
{}x{12} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
isosceles-trapezoidal pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{Z}_3, [6,3,6]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcitruncated order-6 hexagonal tiling honeycomb, t0,1,3{6,3,6}, {{CDD|node_1|6|node_1|3|node|6|node_1}} has truncated hexagonal tiling, rhombitrihexagonal tiling, hexagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

480px

{{-}}

= Omnitruncated order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,3{6,3,6}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|6|node_1|3|node_1|6|node_1}}
bgcolor=#e7dcc3|Cellstr{6,3} 40px
{}x{12} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
phyllic disphenoid
bgcolor=#e7dcc3|Coxeter groups2\times\overline{Z}_3, 6,3,6
bgcolor=#e7dcc3|PropertiesVertex-transitive

The omnitruncated order-6 hexagonal tiling honeycomb, t0,1,2,3{6,3,6}, {{CDD|node_1|6|node_1|3|node_1|6|node_1}} has truncated trihexagonal tiling and dodecagonal prism cells, with a phyllic disphenoid vertex figure.

480px

{{-}}

=Alternated order-6 hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Alternated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh{6,3,6}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}
bgcolor=#e7dcc3|Cells{3,6} 40px
{3[3]} 40px
bgcolor=#e7dcc3|Facestriangle {3}
bgcolor=#e7dcc3|Vertex figure80px
hexagonal tiling
bgcolor=#e7dcc3|Coxeter groups\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesRegular, quasiregular

The alternated order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the regular triangular tiling honeycomb, {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}. It contains triangular tiling facets in a hexagonal tiling vertex figure.

{{-}}

= Cantic order-6 hexagonal tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh2{6,3,6}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_h1|6|node|3|node_1|6|node}} ↔ {{CDD|branch_10ru|split2|node_1|6|node}}
bgcolor=#e7dcc3|Cellst{3,6} 40px
r{6,3} 40px
h2{6,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular prism
bgcolor=#e7dcc3|Coxeter groups\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The cantic order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the rectified triangular tiling honeycomb, {{CDD|node_h1|6|node|3|node_1|6|node}} ↔ {{CDD|branch_10ru|split2|node_1|6|node}}, with trihexagonal tiling and hexagonal tiling facets in a triangular prism vertex figure.

{{-}}

=Runcic order-6 hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh3{6,3,6}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_h1|6|node|3|node|6|node_1}} ↔ {{CDD|branch_10ru|split2|node|6|node_1}}
bgcolor=#e7dcc3|Cellsrr{3,6} 40px
{6,3} 40px
{3[3]} 40px
{3}x{} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
bgcolor=#e7dcc3|Vertex figure80px
triangular cupola
bgcolor=#e7dcc3|Coxeter groups\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcic hexagonal tiling honeycomb, h3{6,3,6}, {{CDD|node_h1|6|node|3|node|6|node_1}}, or {{CDD|branch_10ru|split2|node|6|node_1}}, has hexagonal tiling, rhombitrihexagonal tiling, triangular tiling, and triangular prism facets, with a triangular cupola vertex figure.

{{-}}

=Runicantic order-6 hexagonal tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcicantic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsh2,3{6,3,6}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_h1|6|node|3|node_1|6|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|6|node_1}}
bgcolor=#e7dcc3|Cellstr{6,3} 40px
t{6,3} 40px
h2{6,3} 40px
{}x{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
hexagon {6}
dodecagon {12}
bgcolor=#e7dcc3|Vertex figure80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{VP}_3, [6,3[3]]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantic order-6 hexagonal tiling honeycomb, h2,3{6,3,6}, {{CDD|node_h1|6|node|3|node_1|6|node_1}}, or {{CDD|branch_10ru|split2|node_1|6|node_1}}, contains truncated trihexagonal tiling, truncated hexagonal tiling, trihexagonal tiling, and triangular prism facets, with a rectangular pyramid vertex figure.

{{-}}

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I,II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups

Category:Hexagonal tilings

Category:Regular 3-honeycombs

Category:Self-dual tilings