class="wikitable"
|+ List of orders of magnitude for energy
! Factor (joules)
! SI prefix
! Value
! Item |
rowspan="4" |1024
| rowspan="4" |yotta- (YJ)
|2.31×1024{{nbsp}}J
|Total energy of the Sudbury impact event[{{Cite conference |last1=Echaurren |first1=J. C. |date=2010 |title=Numerical Estimations of Hydrothermal Zones, Trough Mathematical Calculations for Impact Conditions, on the Sudbury Structure, Ontario, Canada |url=https://ui.adsabs.harvard.edu/abs/2010LPICo1538.5192E/abstract |conference=Astrobiology Science Conference 2010 |bibcode=2010LPICo1538.5192E}}] |
2.69×1024{{nbsp}}J
|Rotational energy of Venus, which has a sidereal period of (-)243 Earth days.[{{Cite journal |last1=Margot |first1=Jean-Luc |last2=Campbell |first2=Donald B. |last3=Giorgini |first3=Jon D. |last4=Jao |first4=Joseph S. |last5=Snedeker |first5=Lawrence G. |last6=Ghigo |first6=Frank D. |last7=Bonsall |first7=Amber |date=July 2024 |title=Spin state and moment of inertia of Venus |url=https://www.nature.com/articles/s41550-021-01339-7 |journal=Nature Astronomy |language=en |volume=5 |issue=7 |pages=676–683 |doi=10.1038/s41550-021-01339-7 |issn=2397-3366|arxiv=2103.01504 }}][{{Cite web |title=1/2*0.337*4.87*10^24kg*(6052km)^2*(2pi/(243*86400s))^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*0.337*4.87*10%5E24kg*(6052km)%5E2*(2pi/(243*86400s))%5E2 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}][Clarification of calculation:]
Rotational energy = (defined equal to) 1/2 * Moment of Inertia Factor * Mass * Radius^2 * Angular Velocity^2
The inertial factor has been normalized, and takes on a value between 0 and 1. In this case it is 0.337(24). |
3.8×1024{{nbsp}}J
|Radiative heat energy released from the Earth’s surface each year |
5.5×1024{{nbsp}}J | Total energy from the Sun that strikes the face of the Earth each year[Calculated: 1.27{{e|14}} m{{sup|2}} × 1370 W/m{{sup|2}} × 86400 s/day = 5.5{{e|24}}{{nbsp}}J] |
1025
|
|4×1025{{nbsp}}J
|Total energy of the Carrington Event in 1859[{{Cite journal |last=Hudson |first=Hugh S. |date=2021-09-08 |title=Carrington Events |url=https://www.annualreviews.org/doi/10.1146/annurev-astro-112420-023324 |journal=Annual Review of Astronomy and Astrophysics |language=en |volume=59 |issue=1 |pages=445–477 |doi=10.1146/annurev-astro-112420-023324 |bibcode=2021ARA&A..59..445H |issn=0066-4146}}] |
rowspan="3" | 1026
| rowspan="3" |
| >1026J | Estimated energy of early Archean asteroid impacts[{{Cite journal|url=https://ntrs.nasa.gov/citations/20180006692|title = Climatic Effect of Impacts on the Ocean|date = 26 August 2018|bibcode = 2018LPICo2065.2056Z|last1 = Zahnle|first1 = K. J.|journal = Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces|volume = 2065|page = 2056}}] |
3.2×1026{{nbsp}}J
|Bolometric energy of Proxima Centauri's superflare in March 2016 (10^33.5 erg). In one year, potentially five similar superflares erupts from the surface of the red dwarf.[{{Cite journal |last1=Howard |first1=Ward S. |last2=Tilley |first2=Matt A. |last3=Corbett |first3=Hank |last4=Youngblood |first4=Allison |last5=Loyd |first5=R. O. Parke |last6=Ratzloff |first6=Jeffrey K. |last7=Law |first7=Nicholas M. |last8=Fors |first8=Octavi |last9=del Ser |first9=Daniel |last10=Shkolnik |first10=Evgenya L. |last11=Ziegler |first11=Carl |last12=Goeke |first12=Erin E. |last13=Pietraallo |first13=Aaron D. |last14=Haislip |first14=Joshua |date=2018-06-20 |title=The First Naked-Eye Superflare Detected from Proxima Centauri |journal=The Astrophysical Journal Letters |volume=860 |issue=2 |pages=L30 |doi=10.3847/2041-8213/aacaf3 |doi-access=free |arxiv=1804.02001 |bibcode=2018ApJ...860L..30H |issn=2041-8205}}] |
3.828×1026{{nbsp}}J | Total radiative energy output of the Sun each second[{{cite web|title=Ask Us: Sun: Amount of Energy the Earth Gets from the Sun|url=http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass|archive-url=https://web.archive.org/web/20000816180724/http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass|url-status=dead|archive-date=16 August 2000|work=Cosmicopia|publisher=NASA|access-date=4 November 2011}}] |
rowspan="4" | 1027 | rowspan="4" | ronna- (RJ) | 1×1027{{nbsp}}J | Estimated energy released by the impact that created the Caloris basin on Mercury[{{cite web|last1=Lii|first1=Jiangning|title=Seismic effects of the Caloris basin impact, Mercury|url=https://dspace.mit.edu/bitstream/handle/1721.1/69472/775585855-MIT.pdf?sequence=2|website=MIT}}] |
1×1027{{nbsp}}J
|Upper limit of the most energetic solar flares possible (X1000)[{{Cite journal |last1=Okamoto |first1=Soshi |last2=Notsu |first2=Yuta |last3=Maehara |first3=Hiroyuki |last4=Namekata |first4=Kosuke |last5=Honda |first5=Satoshi |last6=Ikuta |first6=Kai |last7=Nogami |first7=Daisaku |last8=Shibata |first8=Kazunari |date=2021-01-11 |title=Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data |journal=The Astrophysical Journal |language=en |volume=906 |issue=2 |pages=72 |doi=10.3847/1538-4357/abc8f5 |doi-access=free |arxiv=2011.02117 |bibcode=2021ApJ...906...72O |issn=0004-637X}}] |
5.19×1027{{nbsp}}J
|Thermal input necessary to evaporate all surface water on Earth.[{{Cite web |title=1.386 billion km^3 * 1024kg/1m^3 * (2257J+4.19*(100-20)cal)/g - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1.386+billion+km%5E3+*+1024kg/1m%5E3+*+(2257J%2B4.19*(100-20)cal)/g |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}][{{Cite web |title=Heat of Vaporization |url=http://www.kentchemistry.com/links/Energy/HeatVaporization.htm |url-status=live |archive-url=https://web.archive.org/web/20230407002457/http://www.kentchemistry.com/links/Energy/HeatVaporization.htm |archive-date=7 April 2023 |access-date=24 September 2024}}][{{Cite web |title=SCTqh.png (PNG Image, 500 x 300 pixels) |url=https://i.sstatic.net/SCTqh.png |access-date=24 September 2024 |website=i.sstatic.net |postscript=Heat Capacity v.s. Temperature graph for water. 4.19 taken as average value for 20 to 100 degrees C.}}] Note that the evaporated water still remains on Earth, merely in vapor form. |
4.2×1027{{nbsp}}J
|Kinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60{{nbsp}}mph (~50{{nbsp}}J).[{{Cite web |title=0.145kg*c^2*(1/sqrt(1-0.9999999999999999999999951^2)-1) - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/ |access-date=2024-01-04 |website=www.wolframalpha.com |language=en}}] |
rowspan="2" | 1028 | rowspan="2" | | 3.8×1028{{nbsp}}J | Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[{{cite web | url= http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html | title= Moon Fact Sheet | publisher=NASA | access-date=16 December 2011 }}][Calculated: KE = 1/2 × m × v{{sup|2}}. v = 1.023{{e|3}} m/s. m = 7.349{{e|22}} kg. KE = 1/2 × (7.349{{e|22}} kg) × (1.023{{e|3}} m/s){{sup|2}} = 3.845{{e|28}}{{nbsp}}J.] |
7×1028{{nbsp}}J
|Total energy of the stellar superflare from V1355 Orionis[{{Cite journal |last1=Inoue |first1=Shun |last2=Maehara |first2=Hiroyuki |last3=Notsu |first3=Yuta |last4=Namekata |first4=Kosuke |last5=Honda |first5=Satoshi |last6=Namizaki |first6=Keiichi |last7=Nogami |first7=Daisaku |last8=Shibata |first8=Kazunari |date=2023 |title=Detection of a High-velocity Prominence Eruption Leading to a CME Associated with a Superflare on the RS CVn-type Star V1355 Orionis |journal=The Astrophysical Journal |language=en |volume=948 |issue=1 |pages=9 |doi=10.3847/1538-4357/acb7e8 |doi-access=free |arxiv=2301.13453 |bibcode=2023ApJ...948....9I |issn=0004-637X}}][{{Cite web |last=Cowing |first=Keith |date=2023-04-28 |title=Superflare With Massive, High-velocity Prominence Eruption |url=https://spaceref.com/science-and-exploration/superflare-with-massive-high-velocity-prominence-eruption/ |access-date=2024-05-26 |website=SpaceRef |language=en-US}}] |
1029 | | 2.1×1029{{nbsp}}J | Rotational energy of the Earth[{{cite web|title=Moment of Inertia—Earth|url=http://scienceworld.wolfram.com/physics/MomentofInertiaEarth.html|work=Eric Weisstein's World of Physics|access-date=5 November 2011}}][{{cite web|last=Allain|first=Rhett|title=Rotational energy of the Earth as an energy source|url=http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php|work=.dotphysics|publisher=Science Blogs|access-date=5 November 2011|quote=the Earth takes 23.9345 hours to rotate|archive-url=https://web.archive.org/web/20111117014824/http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php|archive-date=17 November 2011|url-status=dead}}][Calculated: E_rotational = 1/2 × I × w{{sup|2}} = 1/2 × (8.0{{e|37}} kg m{{sup|2}}) × (2×pi/(23.9345 hour period × 3600 seconds/hour)){{sup|2}} = 2.1{{e|29}}{{nbsp}}J] |
1030 | quetta- (QJ) | 1.79×1030{{nbsp}}J | Rough estimate of the gravitational binding energy of Mercury.[{{Cite web |title=gravitational binding energy calculator - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=gravitational+binding+energy+calculator&assumption=%7B%22F%22,+%22UniformDensitySphereGravitationalBindingEnergy%22,+%22r%22%7D+-%3E%222439.7+km%22&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22U%22%7D,+%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22m%22%7D,+%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22r%22%7D%7D&assumption=%7B%22F%22,+%22UniformDensitySphereGravitationalBindingEnergy%22,+%22m%22%7D+-%3E%223.3011e+23+kg%22 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}] |
rowspan="2" |1031
| rowspan="2" |
|2×1031{{nbsp}}J
|The Theia Impact, the most energetic event ever in Earth's history[{{Cite web |last=Dhar |first=Michael |date=2022-11-06 |title=What was Earth's biggest explosion? |url=https://www.livescience.com/biggest-explosions-on-earth |access-date=2024-05-27 |website=livescience.com |language=en}}][{{cite arXiv |eprint=2305.18635 |first=Richard B. |last=Firestone |title=The origin of the terrestrial planets |date=2023-05-29|class=astro-ph.EP }}] |
3.3×1031J | Total energy output of the Sun each day[Calculated: 3.8{{e|26}}{{nbsp}}J/s × 86400 s/day = 3.3{{e|31}}{{nbsp}}J] |
rowspan="2" | 1032 | rowspan="2" | | 1.71×1032{{nbsp}}J | Gravitational binding energy of the Earth[{{Cite web |last=Typinski |first=Dave |date=January 2009 |title=Earth's Gravitational Binding Energy |url=http://typnet.net/Essays/EarthBindGraphics/EarthBind.pdf |archive-url=https://web.archive.org/web/20240104173513/http://typnet.net/Essays/EarthBindGraphics/EarthBind.pdf |archive-date=4 January 2024 |access-date=2024-01-04}}] |
3.10×1032{{nbsp}}J
|Yearly energy output of Sirius B, the ultra-dense and Earth-sized white dwarf companion of Sirius, the Dog Star. It has a surface temperature of about 25,200 K.[{{Cite web |title=pi*(11700km)^2*stefan boltzmann constant*(25200K)^4*yr - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=pi*(11700km)%5E2*stefan+boltzmann+constant*(25200K)%5E4*yr |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}] |
1033 | | 2.7×1033{{nbsp}}J | Earth's kinetic energy at perihelion in its orbit around the Sun[{{Cite web |date=2023-12-26 |title=Earth Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20231226062838/https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |archive-date=26 December 2023 }}][KE = 1/2 × 5.9722×10^24 kg × (30.29 km/s)^2 = 2.74×10^33 J] |
1034 | | 1.2×1034{{nbsp}}J | Total energy output of the Sun each year[Calculated: 3.8{{e|26}}{{nbsp}}J/s × 86400 s/day × 365.25 days/year = 1.2{{e|34}}{{nbsp}}J] |
1035
|
|3.5×1035{{nbsp}}J
|The most energetic stellar superflare to date (V2487 Ophiuchi)[{{cite arXiv |eprint=2405.01210 |first=Bradley E. |last=Schaefer |title=Recurrent Nova V2487 Oph Had Superflares in 1941 and 1942 With Radiant Energies 1042.5±1.6 Ergs |date=2024-05-02|class=astro-ph.SR }}] |
1038
|
|7.53×1038{{nbsp}}J
|Baryonic (ordinary) mass-energy contained in a volume of one cubic light-year, on average.[{{Cite web |title=9.9e-30g/cm3*1ly3*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9e-30g/cm3*1ly3*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}] |
rowspan="2" |1039
|
|2–5×1039 J
|Energy of the giant flare (starquake) released by SGR 1806-20[{{Cite web |title=NASA - Cosmic Explosion Among the Brightest in Recorded History |url=https://www.nasa.gov/vision/universe/watchtheskies/swift_nsu_0205.html |access-date=2022-03-27 |website=www.nasa.gov |language=en}}][{{Cite journal |last1=Palmer |first1=D. M. |last2=Barthelmy |first2=S. |last3=Gehrels |first3=N. |last4=Kippen |first4=R. M. |last5=Cayton |first5=T. |last6=Kouveliotou |first6=C. |last7=Eichler |first7=D. |last8=Wijers |first8=R. a. M. J. |last9=Woods |first9=P. M. |last10=Granot |first10=J. |last11=Lyubarsky |first11=Y. E. |date=April 2005 |title=A giant γ-ray flare from the magnetar SGR 1806–20 |url=https://www.nature.com/articles/nature03525 |journal=Nature |language=en |volume=434 |issue=7037 |pages=1107–1109 |doi=10.1038/nature03525 |pmid=15858567 |arxiv=astro-ph/0503030 |bibcode=2005Natur.434.1107P |s2cid=16579885 |issn=1476-4687}}][{{Cite journal |last1=Stella |first1=L. |last2=Dall'Osso |first2=S. |last3=Israel |first3=G. L. |last4=Vecchio |first4=A. |date=2005-11-17 |title=Gravitational Radiation from Newborn Magnetars in the Virgo Cluster |url=https://iopscience.iop.org/article/10.1086/498685 |journal=The Astrophysical Journal |language=en |volume=634 |issue=2 |pages=L165–L168 |doi=10.1086/498685 |arxiv=astro-ph/0511068 |bibcode=2005ApJ...634L.165S |s2cid=18172538 |issn=0004-637X}}] |
| 6.602×1039 J{{nbsp}} | Theoretical total mass–energy of the Moon[{{Cite web |title=7.346e 22kg*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=7.346e+22kg*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}][{{Cite web |title=Moon Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |access-date=2024-09-13 |website=nssdc.gsfc.nasa.gov}}] |
1040
|
|1.61×1040{{nbsp}}J
|Baryonic mass-energy contained in a volume of one cubic parsec, on average.[{{Cite web |title=9.9e-30g/cm3*1pc3*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9e-30g/cm3*1pc3*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}] |
rowspan=2 | 1041
|rowspan=2 |
| 2.276×1041{{nbsp}}J | Gravitational binding energy of the Sun[{{br}}Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition){{br}}Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272] |
5.3675×1041{{nbsp}}J | Theoretical total mass–energy of the Earth[{{Cite web |title=Earth Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |access-date=2024-09-13 |website=nssdc.gsfc.nasa.gov}}][{{Cite web |title=5.9722e 24kg*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=5.9722e+24kg*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}] |
rowspan="2" |1043
| rowspan="2" |
| 5×1043{{nbsp}}J
| Total energy of all gamma rays in a typical gamma-ray burst if collimated[{{Cite journal | last1 = Frail | first1 = D. A. | last2 = Kulkarni | first2 = S. R. | last3 = Sari | first3 = R. | last4 = Djorgovski | first4 = S. G. | last5 = Bloom | first5 = J. S. | last6 = Galama | first6 = T. J. | last7 = Reichart | first7 = D. E. | last8 = Berger | first8 = E. | last9 = Harrison | first9 = F. A. | last10 = Price | first10 = P. A. | last11 = Yost | first11 = S. A. | last12 = Diercks | first12 = A. | last13 = Goodrich | first13 = R. W. | last14 = Chaffee | first14 = F. | title = Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir | doi = 10.1086/338119 | journal = The Astrophysical Journal | volume = 562 | issue = 1 | pages = L55 | year = 2001 |arxiv = astro-ph/0102282 |bibcode = 2001ApJ...562L..55F | s2cid = 1047372 }} "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 10{{sup|50}} erg"][Calculated: 5{{e|50}} erg × 1{{e] |
7}}{{nbsp}}J/erg = 5{{e|43}}{{nbsp}}J |
>1043 J
|Total energy in a typical fast blue optical transient (FBOT)[{{Cite journal |last=Lyutikov |first=Maxim |date=2022 |title=On the nature of fast blue optical transients |url=https://academic.oup.com/mnras/article/515/2/2293/6612740 |journal=Monthly Notices of the Royal Astronomical Society |volume=515 |issue=2 |pages=2293–2304 |doi=10.1093/mnras/stac1717 |doi-access=free |via=Oxford Academic|arxiv=2204.08366 }}] |
rowspan="5" |1044
| rowspan="5" |
|~1044 J
|Average value of a Tidal Disruption Event (TDE) in optical/UV bands[{{Cite journal |last1=Lu |first1=Wenbin |last2=Kumar |first2=Pawan |date=2018-09-28 |title=On the Missing Energy Puzzle of Tidal Disruption Events |journal=The Astrophysical Journal |volume=865 |issue=2 |pages=128 |doi=10.3847/1538-4357/aad54a |arxiv=1802.02151 |bibcode=2018ApJ...865..128L |s2cid=56015417 |issn=1538-4357 |doi-access=free }}] |
~1044 J
|Estimated kinetic energy released by FBOT CSS161010[{{Cite journal |last1=Coppejans |first1=D. L. |last2=Margutti |first2=R. |last3=Terreran |first3=G. |last4=Nayana |first4=A. J. |last5=Coughlin |first5=E. R. |last6=Laskar |first6=T. |last7=Alexander |first7=K. D. |last8=Bietenholz |first8=M. |last9=Caprioli |first9=D. |last10=Chandra |first10=P. |last11=Drout |first11=M. R. |date=2020-05-26 |title=A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy |journal=The Astrophysical Journal |language=en |volume=895 |issue=1 |pages=L23 |doi=10.3847/2041-8213/ab8cc7 |arxiv=2003.10503 |bibcode=2020ApJ...895L..23C |s2cid=214623364 |issn=2041-8213 |doi-access=free }}] |
~1044{{nbsp}}J | Total energy released in a typical supernova,[{{Cite journal |last1=Li |first1=Miao |last2=Li |first2=Yuan |last3=Bryan |first3=Greg L. |last4=Ostriker |first4=Eve C. |last5=Quataert |first5=Eliot |date=2020-05-05 |title=The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium |journal=The Astrophysical Journal |language=en |volume=894 |issue=1 |pages=44 |doi=10.3847/1538-4357/ab86b4 |doi-access=free |arxiv=1909.03138 |bibcode=2020ApJ...894...44L |issn=0004-637X}}] sometimes referred to as a foe. |
1.233×1044{{nbsp}}J | Approximate lifetime energy output of the Sun.[{{Cite web |title=Astronomy with an online telescope |url=https://www.open.edu/openlearn/mod/oucontent/view.php?id=114771§ion=3.3 |access-date=2024-09-11 |website=Open Learning |language=en}}][{{Cite web |title=1.37e27 kg * 9e16 m^2/s^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1.37e27+kg+*+9e16+m%5E2/s%5E2 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}] |
{{Val|3|u=J|e=44}}
|Total energy of a typical gamma-ray burst if collimated[{{Cite journal |last1=Frail |first1=D. A. |last2=Kulkarni |first2=S. R. |last3=Sari |first3=R. |last4=Djorgovski |first4=S. G. |last5=Bloom |first5=J. S. |last6=Galama |first6=T. J. |last7=Reichart |first7=D. E. |last8=Berger |first8=E. |last9=Harrison |first9=F. A. |last10=Price |first10=P. A. |last11=Yost |first11=S. A. |last12=Diercks |first12=A. |last13=Goodrich |first13=R. W. |last14=Chaffee |first14=F. |date=2001-11-01 |title=Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir |url=https://iopscience.iop.org/article/10.1086/338119/meta |journal=The Astrophysical Journal |language=en |volume=562 |issue=1 |pages=L55 |doi=10.1086/338119 |arxiv=astro-ph/0102282 |bibcode=2001ApJ...562L..55F |issn=0004-637X}}] |
rowspan="6" |1045
| rowspan="6" |
|~1045 J
|Estimated energy released in a hypernova and pair instability supernova[{{Cite journal |last1=Nakamura |first1=Takayoshi |last2=Umeda |first2=Hideyuki |last3=Iwamoto |first3=Koichi |last4=Nomoto |first4=Ken’ichi |last5=Hashimoto |first5=Masa-aki |last6=Hix |first6=W. Raphael |last7=Thielemann |first7=Friedrich-Karl |date=2001-07-10 |title=Explosive Nucleosynthesis in Hypernovae |url=https://iopscience.iop.org/article/10.1086/321495 |journal=The Astrophysical Journal |volume=555 |issue=2 |pages=880–899 |doi=10.1086/321495 |arxiv=astro-ph/0011184 |bibcode=2001ApJ...555..880N |issn=0004-637X}}] |
1045 J
|Energy released by the energetic supernova, SN 2016aps[{{Cite journal |last1=Nicholl |first1=Matt |last2=Blanchard |first2=Peter K. |last3=Berger |first3=Edo |last4=Chornock |first4=Ryan |last5=Margutti |first5=Raffaella |last6=Gomez |first6=Sebastian |last7=Lunnan |first7=Ragnhild |last8=Miller |first8=Adam A. |last9=Fong |first9=Wen-fai |last10=Terreran |first10=Giacomo |last11=Vigna-Gómez |first11=Alejandro |date=September 2020 |title=An extremely energetic supernova from a very massive star in a dense medium |url=https://www.nature.com/articles/s41550-020-1066-7 |journal=Nature Astronomy |language=en |volume=4 |issue=9 |pages=893–899 |doi=10.1038/s41550-020-1066-7 |arxiv=2004.05840 |bibcode=2020NatAs...4..893N |s2cid=215744925 |issn=2397-3366}}][{{Cite journal |last1=Suzuki |first1=Akihiro |last2=Nicholl |first2=Matt |last3=Moriya |first3=Takashi J. |last4=Takiwaki |first4=Tomoya |date=2021-02-01 |title=Extremely Energetic Supernova Explosions Embedded in a Massive Circumstellar Medium: The Case of SN 2016aps |journal=The Astrophysical Journal |volume=908 |issue=1 |pages=99 |doi=10.3847/1538-4357/abd6ce |doi-access=free |arxiv=2012.13283 |bibcode=2021ApJ...908...99S |issn=0004-637X}}] |
1.7–1.9×1045 J | Energy released by hypernova ASASSN-15lh[{{Cite journal |last1=Godoy-Rivera |first1=D. |last2=Stanek |first2=K. Z. |last3=Kochanek |first3=C. S. |last4=Chen |first4=Ping |last5=Dong |first5=Subo |last6=Prieto |first6=J. L. |last7=Shappee |first7=B. J. |last8=Jha |first8=S. W. |last9=Foley |first9=R. J. |last10=Pan |first10=Y.-C. |last11=Holoien |first11=T. W.-S. |last12=Thompson |first12=Todd. A. |last13=Grupe |first13=D. |last14=Beacom |first14=J. F. |date=2017-04-01 |title=The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=466 |issue=2 |pages=1428–1443 |doi=10.1093/mnras/stw3237 |doi-access=free |issn=0035-8711|arxiv=1605.00645 }}] |
2.3×1045 J
|Energy released by the energetic supernova PS1-10adi[{{Cite journal |last1=Kankare |first1=E. |last2=Kotak |first2=R. |last3=Mattila |first3=S. |last4=Lundqvist |first4=P. |last5=Ward |first5=M. J. |last6=Fraser |first6=M. |last7=Lawrence |first7=A. |last8=Smartt |first8=S. J. |last9=Meikle |first9=W. P. S. |last10=Bruce |first10=A. |last11=Harmanen |first11=J. |date=December 2017 |title=A population of highly energetic transient events in the centres of active galaxies |url=https://www.nature.com/articles/s41550-017-0290-2 |journal=Nature Astronomy |language=en |volume=1 |issue=12 |pages=865–871 |doi=10.1038/s41550-017-0290-2 |arxiv=1711.04577 |bibcode=2017NatAs...1..865K |s2cid=119421626 |issn=2397-3366}}][Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae] |
>1045 J
|Estimated energy of a magnetorotational hypernova[{{Cite journal |last1=Yong |first1=D. |last2=Kobayashi |first2=C. |last3=Da Costa |first3=G. S. |last4=Bessell |first4=M. S. |last5=Chiti |first5=A. |last6=Frebel |first6=A. |last7=Lind |first7=K.|author7-link= Karin Lind |last8=Mackey |first8=A. D. |last9=Nordlander |first9=T. |last10=Asplund |first10=M. |last11=Casey |first11=A. R. |date=2021-07-08 |title=R-Process elements from magnetorotational hypernovae |journal=Nature |volume=595 |issue=7866 |pages=223–226 |doi=10.1038/s41586-021-03611-2 |pmid=34234332 |arxiv=2107.03010 |bibcode=2021Natur.595..223Y |s2cid=235755170 |issn=0028-0836}}] |
>1045{{nbsp}}J | Total energy (energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst if collimated[{{Cite journal|arxiv=1003.3885|last1=McBreen|first1=S|title=Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies|journal=Astronomy and Astrophysics|volume=516|issue=71|pages=A71|last2=Krühler|first2=T|last3=Rau|first3=A|last4=Greiner|first4=J|last5=Kann|first5=D. A|last6=Savaglio|first6=S|last7=Afonso|first7=P|last8=Clemens|first8=C|last9=Filgas|first9=R|last10=Klose|first10=S|last11=Küpüc Yoldas|first11=A|last12=Olivares E|first12=F|last13=Rossi|first13=A|last14=Szokoly|first14=G. P|last15=Updike|first15=A|last16=Yoldas|first16=A|year=2010|doi=10.1051/0004-6361/200913734|bibcode=2010A&A...516A..71M|s2cid=119151764}}][{{Cite journal|arxiv=1004.2900|last1=Cenko|first1=S. B|title=Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events|journal=The Astrophysical Journal|volume=732|issue=1|pages=29|last2=Frail|first2=D. A|last3=Harrison|first3=F. A|last4=Haislip|first4=J. B|last5=Reichart|first5=D. E|last6=Butler|first6=N. R|last7=Cobb|first7=B. E|last8=Cucchiara|first8=A|last9=Berger|first9=E|last10=Bloom|first10=J. S|last11=Chandra|first11=P|last12=Fox|first12=D. B|last13=Perley|first13=D. A|last14=Prochaska|first14=J. X|last15=Filippenko|first15=A. V|last16=Glazebrook|first16=K|last17=Ivarsen|first17=K. M|last18=Kasliwal|first18=M. M|last19=Kulkarni|first19=S. R|last20=LaCluyze|first20=A. P|last21=Lopez|first21=S|last22=Morgan|first22=A. N|last23=Pettini|first23=M|last24=Rana|first24=V. R|year=2010|doi=10.1088/0004-637X/732/1/29|bibcode=2011ApJ...732...29C|s2cid=50964480}}][{{Cite journal|arxiv=0905.0690|last1=Cenko|first1=S. B|title=The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts|journal=The Astrophysical Journal|volume=711|issue=2|pages=641–654|last2=Frail|first2=D. A|last3=Harrison|first3=F. A|last4=Kulkarni|first4=S. R|last5=Nakar|first5=E|last6=Chandra|first6=P|last7=Butler|first7=N. R|last8=Fox|first8=D. B|last9=Gal-Yam|first9=A|last10=Kasliwal|first10=M. M|last11=Kelemen|first11=J|last12=Moon|first12=D. -S|last13=Price|first13=P. A|last14=Rau|first14=A|last15=Soderberg|first15=A. M|author15-link= Alicia M. Soderberg|last16=Teplitz|first16=H. I|last17=Werner|first17=M. W|last18=Bock|first18=D. C. -J|last19=Bloom|first19=J. S|last20=Starr|first20=D. A|last21=Filippenko|first21=A. V|last22=Chevalier|first22=R. A|last23=Gehrels|first23=N|last24=Nousek|first24=J. N|last25=Piran|first25=T|last26=Piran|first26=T|year=2010|doi=10.1088/0004-637X/711/2/641|bibcode=2010ApJ...711..641C|s2cid=32188849}}][{{Cite web |last=Frail |first=Dale A. |title=GRB ENERGETICS. Then and Now |url=http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf |archive-url=https://web.archive.org/web/20140801172839/http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf |archive-date=1 August 2014 |website=tsvi.phys.huji.ac.il}}][{{Cite web |last=Frail |first=Dale A. |title=Multi-wavelength afterglow observations |url=http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt |archive-url=https://web.archive.org/web/20231024160333/http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt |archive-date=24 October 2023 |archive-format=PPT |website=fermi.gsfc.nasa.gov |format=PPT}}] |
rowspan="3" | 1046 | rowspan="3" | | >1046{{nbsp}}J
| Estimated energy in theoretical quark-novae[{{cite journal |url=https://www.aanda.org/component/article?access=bibcode&bibcode=&bibcode=2002A%2526A...390L..39OFUL |title = Quark-Nova {{!}} Astronomy & Astrophysics (A&A)| journal=Astronomy & Astrophysics | date=August 2002 | volume=390 | issue=3 | pages=L39–L42 | doi=10.1051/0004-6361:20020982 | last1=Ouyed | first1=R. | last2=Dey | first2=J. | last3=Dey | first3=M. }}] |
~1046{{nbsp}}J
|Upper limit of the total energy of a supernova[{{Cite journal |last1=Kasen |first1=Daniel |last2=Woosley |first2=S. E. |last3=Heger |first3=Alexander |year=2011 |title=Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout |url=https://iopscience.iop.org/article/10.1088/0004-637X/734/2/102 |journal=The Astrophysical Journal |volume=734 |issue=2 |page=102 |arxiv=1101.3336 |bibcode=2011ApJ...734..102K |doi=10.1088/0004-637X/734/2/102 |s2cid=118508934}}][{{Cite journal |last1=Sukhbold |first1=Tuguldur |last2=Woosley |first2=S. E. |date=2016-03-30 |title=The Most Luminous Supernovae |journal=The Astrophysical Journal Letters |volume=820 |issue=2 |pages=L38 |doi=10.3847/2041-8205/820/2/l38 |doi-access=free |arxiv=1602.04865 |bibcode=2016ApJ...820L..38S |issn=2041-8205}}] |
1.5×1046{{nbsp}}J
|Total energy of the most energetic optical non-quasar transient, AT2021lwx[{{Cite journal |last1=Wiseman |first1=p. |last2=Wang |first2=Y. |last3=Hönig |first3=S. |last4=Castero-Segura |first4=N. |last5=Clark |first5=P. |last6=Frohmaier |first6=C. |last7=Fulton |first7=M. D. |last8=Leloudas |first8=G. |last9=Middleton |first9=M. |last10=Müller-Bravo |first10=T. E. |last11=Mummery |first11=A. |last12=Pursiainen |first12=M |last13=Smartt |first13=S. J. |last14=Smith |first14=K. |last15=Sullivan |first15=M. |date=July 2023 |title=Multiwavelength observations of the extraordinary accretion event AT 2021lwx |journal=Monthly Notices of the Royal Astronomical Society |volume=522 |issue=3 |pages=3992–4002 |doi=10.1093/mnras/stad1000 |doi-access=free |arxiv=2303.04412 }}] |
rowspan="7" |1047
| rowspan="7" |
|1045-47 J
|Estimated energy of stellar mass rotational black holes by vacuum polarization in an electromagnetic field[{{Cite journal |last1=Ruffini |first1=R. |last2=Salmonson |first2=J. D. |last3=Wilson |first3=J. R. |last4=Xue |first4=S. -S. |date=1999-10-01 |title=On the pair electromagnetic pulse of a black hole with electromagnetic structure |url=https://ui.adsabs.harvard.edu/abs/1999A&A...350..334R |journal=Astronomy and Astrophysics |volume=350 |pages=334–343 |arxiv=astro-ph/9907030 |bibcode=1999A&A...350..334R |issn=0004-6361}}][{{Cite journal |last1=Ruffini |first1=R. |last2=Salmonson |first2=J. D. |last3=Wilson |first3=J. R. |last4=Xue |first4=S. -S. |date=2000-07-01 |title=On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant |url=https://ui.adsabs.harvard.edu/abs/2000A&A...359..855R |journal=Astronomy and Astrophysics |volume=359 |pages=855–864 |arxiv=astro-ph/0004257 |bibcode=2000A&A...359..855R |issn=0004-6361}}] |
1047 J
|Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)[{{Cite journal |last1=De Colle |first1=Fabio |last2=Lu |first2=Wenbin |date=September 2020 |title=Jets from Tidal Disruption Events |journal=New Astronomy Reviews |volume=89 |pages=101538 |doi=10.1016/j.newar.2020.101538|arxiv=1911.01442 |bibcode=2020NewAR..8901538D |s2cid=207870076 }}] |
~1047 J
|Upper limit of collimated- corrected total energy of a gamma-ray burst[{{Cite journal |last1=Tamburini |first1=Fabrizio |last2=De Laurentis |first2=Mariafelicia |last3=Amati |first3=Lorenzo |last4=Thidé |first4=Bo |date=2017-11-06 |title=General relativistic electromagnetic and massive vector field effects with gamma-ray burst production |url=https://link.aps.org/doi/10.1103/PhysRevD.96.104003 |journal=Physical Review D |volume=96 |issue=10 |pages=104003 |doi=10.1103/PhysRevD.96.104003|arxiv=1603.01464 |bibcode=2017PhRvD..96j4003T }}][{{Cite journal |last1=Misra |first1=Kuntal |last2=Ghosh |first2=Ankur |last3=Resmi |first3=L. |date=2023 |title=The Detection of Very High Energy Photons in Gamma Ray Bursts |url=https://www.tifr.res.in/~ipa1970/news/V53-12/Vol53-12-A11.pdf |journal=Physics News |publisher=Tata Institute of Fundamental Research |volume=53 |pages=42–45}}][{{Cite journal |last1=Frederiks |first1=D. |last2=Svinkin |first2=D. |last3=Lysenko |first3=A. L. |last4=Molkov |first4=S. |last5=Tsvetkova |first5=A. |last6=Ulanov |first6=M. |last7=Ridnaia |first7=A. |last8=Lutovinov |first8=A. A. |last9=Lapshov |first9=I. |last10=Tkachenko |first10=A. |last11=Levin |first11=V. |date=2023-05-01 |title=Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations |journal=The Astrophysical Journal Letters |volume=949 |issue=1 |pages=L7 |doi=10.3847/2041-8213/acd1eb |issn=2041-8205|doi-access=free |arxiv=2302.13383 |bibcode=2023ApJ...949L...7F }}] |
1.8×1047{{nbsp}}J | Theoretical total mass–energy of the Sun[{{cite web |url= http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html |title= Sun Fact Sheet |publisher= NASA |access-date=15 October 2011 }}][{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=30&num=2.0&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}] |
5.4×1047{{nbsp}}J | Mass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[{{Cite journal | last1 = Abbott | first1 = B. | last2 = Abbott | first2 = R. | display-authors=1 | title = Observation of Gravitational Waves from a Binary Black Hole Merger | journal = Physical Review Letters | doi = 10.1103/PhysRevLett.116.061102 | volume = 116 | issue = 6 | year = 2016|arxiv = 1602.03837 |bibcode = 2016PhRvL.116f1102A | pmid=26918975 | pages=061102| s2cid = 124959784 }}] |
8.6×1047{{nbsp}}J | Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]] |
8.8×1047{{nbsp}}J | GRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/true[It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in an electromagnetic field, which are able to explain energetics up and over 1047 J] isotropic energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy[{{Cite arXiv |last=Tajima |first=Hiroyasu |date=2009 |title=Fermi Observations of high-energy gamma-ray emissions from GRB 080916C |class=astro-ph.HE |eprint=0907.0714 }}] |
rowspan="3" |1048
| rowspan="3" |
|1048 J
|Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."[{{Cite journal|last1=Whalen|first1=Daniel J.|last2=Johnson|first2=Jarrett L.|last3=Smidt|first3=Joseph|last4=Meiksin|first4=Avery|last5=Heger|first5=Alexander|last6=Even|first6=Wesley|last7=Fryer|first7=Chris L.|title=The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth|date=August 2013|url=https://doi.org/10.1088/0004-637x/774/1/64|journal=The Astrophysical Journal|language=en|volume=774|issue=1|pages=64|doi=10.1088/0004-637X/774/1/64|issn=0004-637X|arxiv=1305.6966|bibcode=2013ApJ...774...64W|s2cid=59289675}}][{{Cite journal|last1=Chen|first1=Ke-Jung|last2=Heger|first2=Alexander|last3=Woosley|first3=Stan|last4=Almgren|first4=Ann|last5=Whalen|first5=Daniel J.|last6=Johnson|first6=Jarrett L.|title=The General Relativistic Instability Supernova of a Supermassive Population III Star|date=July 2014|url=https://doi.org/10.1088/0004-637x/790/2/162|journal=The Astrophysical Journal|language=en|volume=790|issue=2|pages=162|doi=10.1088/0004-637X/790/2/162|issn=0004-637X|arxiv=1402.4777|bibcode=2014ApJ...790..162C|s2cid=119269181}}] |
~1.2×1048 J
|Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses][{{Cite journal |last1=Abbott |first1=R. |last2=Abbott |first2=T. D. |last3=Abraham |first3=S. |last4=Acernese |first4=F. |last5=Ackley |first5=K. |last6=Adams |first6=C. |last7=Adhikari |first7=R. X. |last8=Adya |first8=V. B. |last9=Affeldt |first9=C. |last10=Agathos |first10=M. |last11=Agatsuma |first11=K. |date=2020-09-02 |title=Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521 |journal=The Astrophysical Journal |language=en |volume=900 |issue=1 |pages=L13 |doi=10.3847/2041-8213/aba493 |arxiv=2009.01190 |bibcode=2020ApJ...900L..13A |s2cid=221447444 |issn=2041-8213 |doi-access=free }}][{{Cite journal |last1=LIGO Scientific Collaboration and Virgo Collaboration |last2=Abbott |first2=R. |last3=Abbott |first3=T. D. |last4=Abraham |first4=S. |last5=Acernese |first5=F. |last6=Ackley |first6=K. |last7=Adams |first7=C. |last8=Adhikari |first8=R. X. |last9=Adya |first9=V. B. |last10=Affeldt |first10=C. |last11=Agathos |first11=M. |date=2020-09-02 |title=GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙ |journal=Physical Review Letters |volume=125 |issue=10 |pages=101102 |doi=10.1103/PhysRevLett.125.101102|pmid=32955328 |s2cid=221447506 |doi-access=free |arxiv=2009.01075 |bibcode=2020PhRvL.125j1102A }}][A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[https://spaceaustralia.com/index.php/feature/black-holes-or-boson-stars-mystery-gw190521]]
See the following note for the link of the research[{{Cite journal |last1=Bustillo |first1=Juan Calderón |last2=Sanchis-Gual |first2=Nicolas |last3=Torres-Forné |first3=Alejandro |last4=Font |first4=José A. |last5=Vajpeyi |first5=Avi |last6=Smith |first6=Rory |last7=Herdeiro |first7=Carlos |last8=Radu |first8=Eugen |last9=Leong |first9=Samson H. W. |date=2021-02-24 |title=GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of {{val|8.7|e=-13|u=eV}} |url=https://link.aps.org/doi/10.1103/PhysRevLett.126.081101 |journal=Physical Review Letters |volume=126 |issue=8 |pages=081101 |doi=10.1103/PhysRevLett.126.081101|pmid=33709746 |arxiv=2009.05376 |hdl=10773/31565 |s2cid=231719224 |hdl-access=free }}] |
1.2–3×1048 J
|GRB 221009A – the most powerful gamma-ray burst (GRB) ever recorded – total/true[{{Cite journal |last1=Aimuratov |first1=Y. |last2=Becerra |first2=L. M. |last3=Bianco |first3=C. L. |last4=Cherubini |first4=C. |last5=Valle |first5=M. Della |last6=Filippi |first6=S. |last7=Li 李 |first7=Liang 亮 |last8=Moradi |first8=R. |last9=Rastegarnia |first9=F. |last10=Rueda |first10=J. A. |last11=Ruffini |first11=R. |last12=Sahakyan |first12=N. |last13=Wang 王 |first13=Y. 瑜 |last14=Zhang 张 |first14=S. R. 书瑞 |date=2023-09-22 |title=GRB-SN Association within the Binary-driven Hypernova Model |journal=The Astrophysical Journal |volume=955 |issue=2 |pages=93 |doi=10.3847/1538-4357/ace721 |doi-access=free |arxiv=2303.16902 |bibcode=2023ApJ...955...93A |issn=0004-637X}}] isotropic energy output estimated at 1.2–3 × 1048 joules (1.2–3 × 1055 erg)[{{Cite journal |last1=Burns |first1=Eric |last2=Svinkin |first2=Dmitry |last3=Fenimore |first3=Edward |last4=Kann |first4=D. Alexander |last5=Agüí Fernández |first5=José Feliciano |last6=Frederiks |first6=Dmitry |last7=Hamburg |first7=Rachel |last8=Lesage |first8=Stephen |last9=Temiraev |first9=Yuri |last10=Tsvetkova |first10=Anastasia |last11=Bissaldi |first11=Elisabetta |last12=Briggs |first12=Michael S. |last13=Dalessi |first13=Sarah |last14=Dunwoody |first14=Rachel |last15=Fletcher |first15=Cori |date=2023-03-01 |title=GRB 221009A: The BOAT |journal=The Astrophysical Journal Letters |volume=946 |issue=1 |pages=L31 |doi=10.3847/2041-8213/acc39c |issn=2041-8205|doi-access=free |arxiv=2302.14037 |bibcode=2023ApJ...946L..31B }}][{{Cite journal |last1=Abbasi |first1=R. |last2=Ackermann |first2=M. |last3=Adams |first3=J. |last4=Agarwalla |first4=S. K. |last5=Aguilar |first5=J. A. |last6=Ahlers |first6=M. |last7=Alameddine |first7=J. M. |last8=Amin |first8=N. M. |last9=Andeen |first9=K. |last10=Anton |first10=G. |last11=Argüelles |first11=C. |last12=Ashida |first12=Y. |last13=Athanasiadou |first13=S. |last14=Ausborm |first14=L. |last15=Axani |first15=S. N. |date=2024 |title=Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube |journal=The Astrophysical Journal |language=en |volume=964 |issue=2 |pages=126 |doi=10.3847/1538-4357/ad220b |doi-access=free |arxiv=2312.11515 |bibcode=2024ApJ...964..126A |issn=0004-637X}}][{{Cite journal |last1=Zhang 张 |first1=B. Theodore 兵 |last2=Murase |first2=Kohta |last3=Ioka |first3=Kunihito |last4=Song |first4=Deheng |last5=Yuan 袁 |first5=Chengchao 成超 |last6=Mészáros |first6=Péter |date=2023-04-01 |title=External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A |journal=The Astrophysical Journal Letters |volume=947 |issue=1 |pages=L14 |doi=10.3847/2041-8213/acc79f |doi-access=free |arxiv=2211.05754 |bibcode=2023ApJ...947L..14Z |issn=2041-8205}}] |
1050
|
|≳1050 J
|Upper limit of isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[{{Cite journal|last1=Toma|first1=Kenji|last2=Sakamoto|first2=Takanori|last3=Mészáros|first3=Peter|title=Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities|date=April 2011|url=https://doi.org/10.1088/0004-637x/731/2/127|journal=The Astrophysical Journal|language=en|volume=731|issue=2|pages=127|doi=10.1088/0004-637X/731/2/127|issn=0004-637X|arxiv=1008.1269|bibcode=2011ApJ...731..127T|s2cid=119288325}}] |
rowspan="3" |1053
| rowspan="3" |
|>1053 J
|Mechanical energy of very energetic so-called "quasar tsunamis"[{{Cite web |last=Garner |first=Rob |date=2020-03-18 |title=Quasar Tsunamis Rip Across Galaxies |url=http://www.nasa.gov/feature/goddard/2020/quasar-tsunamis-rip-across-galaxies |access-date=2022-03-28 |website=NASA}}][To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note] |
6×1053{{nbsp}}J | Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[{{Cite journal|arxiv=1103.0630|last1=Cavagnolo|first1=K. W|title=A Powerful AGN Outburst in RBS 797|journal=The Astrophysical Journal|volume=732|issue=2|pages=71|last2=McNamara|first2=B. R|last3=Wise|first3=M. W|last4=Nulsen|first4=P. E. J|last5=Brüggen|first5=M|last6=Gitti|first6=M|last7=Rafferty|first7=D. A|year=2011|doi=10.1088/0004-637X/732/2/71|bibcode=2011ApJ...732...71C|s2cid=73653317}}] |
7.65×1053{{nbsp}}J
|Mass-energy of Sagittarius A*, Milky Way's central supermassive black hole[{{Cite web |title=4.297e 6*1.9788e 30*9e16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=4.297e+6*1.9788e+30*9e16 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}][{{Cite journal |last1=Abuter |first1=R. |last2=Aimar |first2=N. |last3=Seoane |first3=P. Amaro |last4=Amorim |first4=A. |last5=Bauböck |first5=M. |last6=Berger |first6=J. P. |last7=Bonnet |first7=H. |last8=Bourdarot |first8=G. |last9=Brandner |first9=W. |last10=Cardoso |first10=V. |last11=Clénet |first11=Y. |last12=Davies |first12=R. |last13=Zeeuw |first13=P. T. de |last14=Dexter |first14=J. |last15=Drescher |first15=A. |date=2023-09-01 |title=Polarimetry and astrometry of NIR flares as event horizon scale, dynamical probes for the mass of Sgr A* |url=https://www.aanda.org/articles/aa/full_html/2023/09/aa47416-23/aa47416-23.html |journal=Astronomy & Astrophysics |language=en |volume=677 |pages=L10 |doi=10.1051/0004-6361/202347416 |issn=0004-6361|arxiv=2307.11821 |bibcode=2023A&A...677L..10G }}] |
1054
| | 3×1054{{nbsp}}J | Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[{{cite journal | url=http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html | doi=10.1086/430945 | title=The Powerful Outburst in Hercules A | date=2005 | last1=Nulsen | first1=P. E. J. | last2=Hambrick | first2=D. C. | last3=McNamara | first3=B. R. | last4=Rafferty | first4=D. | last5=Birzan | first5=L. | last6=Wise | first6=M. W. | last7=David | first7=L. P. | journal=The Astrophysical Journal | volume=625 | issue=1 | pages=L9–L12 | arxiv=astro-ph/0504350 | bibcode=2005ApJ...625L...9N }}] |
1055 | | >1055{{nbsp}}J | Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[{{Cite journal|last1=Li|first1=Shuang-Liang|last2=Cao|first2=Xinwu|date=June 2012|title=Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421|url=https://doi.org/10.1088/0004-637x/753/1/24|journal=The Astrophysical Journal|language=en|volume=753|issue=1|pages=24|doi=10.1088/0004-637X/753/1/24|issn=0004-637X|arxiv=1204.2327|bibcode=2012ApJ...753...24L |s2cid=119236058}}] Ophiucus Supercluster Explosion[{{Cite journal|last1=Giacintucci|first1=S.|last2=Markevitch|first2=M.|last3=Johnston-Hollitt|first3=M.|last4=Wik|first4=D. R.|last5=Wang|first5=Q. H. S.|last6=Clarke|first6=T. E.|date=February 2020|title=Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster|journal=The Astrophysical Journal|language=en|volume=891|issue=1|pages=1|doi=10.3847/1538-4357/ab6a9d|issn=0004-637X|arxiv=2002.01291|bibcode=2020ApJ...891....1G|s2cid=211020555 |doi-access=free }}] and supermassive black holes mergings[{{Cite web |last=Siegel |first=Ethan |title=Merging Supermassive Black Holes Will Become The Most Energetic Events Of All |url=https://www.forbes.com/sites/startswithabang/2020/03/03/the-most-energetic-event-in-the-universe-hasnt-been-discovered-yet/ |access-date=2022-03-21 |website=Forbes |language=en}}][{{Cite web |last=Siegel |first=Ethan |date=2020-03-10 |title=Merging Supermassive Black Holes Are The Universe's Most Energetic Events Of All |url=https://medium.com/starts-with-a-bang/merging-supermassive-black-holes-are-the-universes-most-energetic-events-of-all-be380cdb2975 |access-date=2022-03-21 |website=Starts With A Bang! |language=en}}] |
rowspan="3" |1057
| rowspan="3" |
|~1057 J
|Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[{{Cite web |last=Diodati |first=Michele |date=2020-04-11 |title=Rotating Black Holes, the Most Powerful Energy Generators in the Universe |url=https://medium.com/amazing-science/rotating-black-holes-the-most-powerful-energy-generators-in-the-universe-832439add442 |access-date=2022-03-28 |website=Amazing Science |language=en}}][{{Cite journal |last1=Tamburini |first1=Fabrizio |last2=Thidé |first2=Bo |last3=Della Valle |first3=Massimo |date=2020 |title=Measurement of the spin of the M87 black hole from its observed twisted light |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=492 |issue=1 |pages=L22–L27 |url=https://openaccess.inaf.it/handle/20.500.12386/31845 |language=en |doi=10.1093/mnrasl/slz176 |doi-access=free |issn=0035-8711|arxiv=1904.07923 |bibcode=2020MNRAS.492L..22T }}] |
~2×1057 J
|Estimated thermal energy of the Bullet Cluster of galaxies[{{Cite journal|last1=Tucker|first1=W.|last2=Blanco|first2=P.|last3=Rappoport|first3=S.|last4=David|first4=L.|last5=Fabricant|first5=D.|last6=Falco|first6=E. E.|last7=Forman|first7=W.|last8=Dressler|first8=A.|last9=Ramella|first9=M.|date=1998-03-02|title=1E 0657–56: A Contender for the Hottest Known Cluster of Galaxies|url=https://iopscience.iop.org/article/10.1086/311234/meta|journal=The Astrophysical Journal|language=en|volume=496|issue=1|pages=L5|doi=10.1086/311234|issn=0004-637X|arxiv=astro-ph/9801120|bibcode=1998ApJ...496L...5T|s2cid=16140198}}] |
7.3×1057 J
|Mass-energy equivalent of the ultramassive black hole TON 618, an extremely luminous quasar / active galactic nucleus (AGN).[{{Cite journal |last1=Ge |first1=Xue |last2=Zhao |first2=Bi-Xuan |last3=Bian |first3=Wei-Hao |last4=Frederick |first4=Green Richard |date=20 March 2019 |title=The Blueshift of the C iv Broad Emission Line in QSOs |journal=The Astronomical Journal |volume=157 |issue=4 |pages=148 |doi=10.3847/1538-3881/ab0956 |doi-access=free |arxiv=1903.08830 |bibcode=2019AJ....157..148G |issn=0004-6256}}][{{Cite web |title=40.7billion*2e30*9e16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=40.7billion*2e30*9e16 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}] |
rowspan="2" |1058
| rowspan="2" |
|~1058 J
|Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[{{Cite journal |last1=Markevitch |first1=Maxim |last2=Vikhlinin |first2=Alexey |date=May 2007 |title=Shocks and cold fronts in galaxy clusters |journal=Physics Reports |volume=443 |issue=1 |pages=1–53 |doi=10.1016/j.physrep.2007.01.001|arxiv=astro-ph/0701821 |bibcode=2007PhR...443....1M |s2cid=119326224 }}] |
4×1058{{nbsp}}J | Visible mass–energy in our galaxy, the Milky Way[{{cite web |url=http://physics.uoregon.edu/~jimbrau/astr123/Notes/Chapter23.html#mass |title=The Milky Way Galaxy |author=Jim Brau |access-date=4 November 2011 |author-link=James E. Brau }}][{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=41&num=4&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}] |
rowspan="2" | 1059 | rowspan="2" | | 1×1059{{nbsp}}J | Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy[{{cite journal | last1 = Karachentsev | first1 = I. D. | last2 = Kashibadze | first2 = O. G. | year = 2006 | title = Masses of the local group and of the M81 group estimated from distortions in the local velocity field | journal = Astrophysics | volume = 49 | issue = 1| pages = 3–18 | doi = 10.1007/s10511-006-0002-6 | bibcode=2006Ap.....49....3K| s2cid = 120973010 }}][{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=42&num=1.2&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}] |
1.4×1059{{nbsp}}J
|Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses.[{{Cite web |title=0.8e 12*1.988e 30kg*c^2 round to second digit - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=0.8e+12*1.988e+30kg*c%5E2+round+to+second+digit |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}][{{Cite web |date=10 January 2018 |title=The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy |url=https://academic.oup.com/mnras/article/475/3/4043/4797184 |access-date=13 September 2024 |website=Monthly Notices of the Royal Astronomical Society |quote=... derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 10^12 M⊙ and 240 ± 10 kpc, respectively.}}] |
1062 | | 1–2×1062{{nbsp}}J | Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[
]{{cite journal
| author = Einasto, M.
| title = The richest superclusters. I. Morphology
| journal = Astronomy and Astrophysics
| date = December 2007
| volume = 476
| issue = 2
| pages = 697–711
| bibcode = 2007A&A...476..697E
| doi = 10.1051/0004-6361:20078037
| display-authors = 1
| last2 = Saar
| first2 = E.
| last3 = Liivamägi
| first3 = L. J.
| last4 = Einasto
| first4 = J.
| last5 = Tago
| first5 = E.
| last6 = Martínez
| first6 = V. J.
| last7 = Starck
| first7 = J.-L.
| last8 = Müller
| first8 = V.
| last9 = Heinämäki
| first9 = P.
| arxiv = 0706.1122
| s2cid = 15004251
}} |
1070 | | 1.462×1070{{nbsp}}J | Rough estimate of total mass–energy of ordinary matter (atoms; baryons) present in the observable universe.[{{Cite web |title=9.9*10^-30*1000*3.566*10^80*0.046*9*10^16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9*10%5E-30*1000*3.566*10%5E80*0.046*9*10%5E16 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}][Details of calculation: WMAP 10 year survey's estimate of mass-energy density * volume of Observable Universe * percentage of which is ordinary matter: [9.9e-30 g/cm^3] * [3.566e+80 m^3] * [0.046] * [c^2] = 1.46e+70 Joules.
][{{Cite web |title=WMAP- Content of the Universe |url=https://wmap.gsfc.nasa.gov/universe/uni_matter.html |access-date=2024-09-11 |website=wmap.gsfc.nasa.gov}}] |
1071
|
|3.177×1071{{nbsp}}J
|Rough estimate of total mass-energy within our observable universe, accounting for all forms of matter and energy.[{{Cite web |title=9.9*10^-30*1000*3.566*10^80*9*10^16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9*10%5E-30*1000*3.566*10%5E80*9*10%5E16 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}] |