Orders of magnitude (energy)#1024 and above

{{Short description|none}}

{{Use dmy dates|date=October 2019}}

This list compares various energies in joules (J), organized by order of magnitude.

{{clear}}

Below 1 J

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

rowspan="2" |10−34 {{val|6.626|e=−34|u=J}}Energy of a photon with a frequency of 1 hertz.{{cite web|url=http://www.britannica.com/EBchecked/topic/462917/Plancks-constant|publisher=britannica.com|title=Planck's constant {{pipe}} physics {{pipe}} Britannica.com|access-date=26 December 2016}}
 {{val|8|e=-34|u=J}}Average kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvinCalculated: KE{{sub|avg}} = (3/2) × Boltzmann constant × Temperature {{As of|2021|lc=on}})
10−30{{Anchor|10-30}}quecto- (qJ)
10−28

|  

| 6.6×10−28{{nbsp}}J

| Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)Calculated: E{{sub|photon}} = hν = 6.626{{e

34}}{{nbsp}}J-s × 1{{e|6}} Hz = 6.6{{e
28}}{{nbsp}}J. In eV: 6.6{{e
28}}{{nbsp}}J / 1.6{{e
19}}{{nbsp}}J/eV = 4.1{{e
9}} eV.
10−27{{Anchor|10-27}}ronto- (rJ)
10−24{{Anchor|10-24}}yocto- (yJ)

| 1.6×10−24{{nbsp}}J

| Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV){{cite web

| url=https://hypertextbook.com/facts/1998/HowardCheung.shtml

| title=Frequency of a microwave oven

| first=Howard

| last=Cheung

| year=1998

| website=The Physics Factbook

| editor-last=Elert

| editor-first=Glenn

| accessdate=2022-01-25

}}Calculated: E{{sub|photon}} = hν = 6.626{{e

34}}{{nbsp}}J-s × 2.45{{e|8}} Hz = 1.62{{e
24}}{{nbsp}}J. In eV: 1.62{{e
24}}{{nbsp}}J / 1.6{{e
19}}{{nbsp}}J/eV = 1.0{{e
5}} eV.
10−23 2×10−23{{nbsp}}JAverage kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin{{cite web|title=Boomerang Nebula boasts the coolest spot in the Universe|url=http://www.jpl.nasa.gov/news/releases/97/coldspot.html|publisher=JPL|access-date=13 November 2011|archive-date=27 August 2009|archive-url=https://web.archive.org/web/20090827115717/http://jpl.nasa.gov/news/releases/97/coldspot.html|url-status=dead}}Calculated: KE{{sub|avg}} ≈ (3/2) × T × 1.38{{e
23}} = (3/2) × 1 × 1.38{{e
23}} ≈ 2.07{{e
23}}{{nbsp}}J
10−22

|  

| 2–3000×10−22{{nbsp}}J

| Energy of infrared light photons

rowspan=6|10−21{{Anchor|10-21}}

|rowspan=6| zepto- (zJ)

|1.7×10−21{{nbsp}}J

| 1{{nbsp}}kJ/mol, converted to energy per moleculeCalculated: 1{{e|3}}{{nbsp}}J / 6.022{{e|23}} entities per mole = 1.7{{e

21}}{{nbsp}}J per entity
2.1×10−21{{nbsp}}J

| Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)Calculated: 1.381{{e

23}}{{nbsp}}J/K × 298.15 K / 2 = 2.1{{e
21}}{{nbsp}}J
2.856×10−21{{nbsp}}J

| By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information

3–7×10−21{{nbsp}}J

| Energy of a van der Waals interaction between atoms (0.02–0.04 eV){{cite web|title=Bond Lengths and Energies|url=http://www.doe-mbi.ucla.edu/CHEM125/bonds.html|work=Chem 125 notes|publisher=UCLA|access-date=13 November 2011|archive-url=https://web.archive.org/web/20110823121639/http://www.doe-mbi.ucla.edu/CHEM125/bonds.html|archive-date=23 August 2011|url-status=dead}}Calculated: 2 to 4{{nbsp}}kJ/mol = 2{{e|3}}{{nbsp}}J / 6.022{{e|23}} molecules/mol = 3.3{{e

21}}{{nbsp}}J. In eV: 3.3{{e
21}}{{nbsp}}J / 1.6{{e
19}}{{nbsp}}J/eV = 0.02 eV. 4{{e|3}}{{nbsp}}J / 6.022{{e|23}} molecules/mol = 6.7{{e
21}}{{nbsp}}J. In eV: 6.7{{e
21}}{{nbsp}}J / 1.6{{e
19}}{{nbsp}}J/eV = 0.04 eV.
4.1×10−21{{nbsp}}J

| The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV){{cite web|last=Ansari|first=Anjum|title=Basic Physical Scales Relevant to Cells and Molecules|url=http://www.uic.edu/classes/phys/phys450/MARKO/N003.html|work=Physics 450|access-date=13 November 2011}}

7–22×10−21{{nbsp}}J

| Energy of a hydrogen bond (0.04 to 0.13 eV)Calculated: 4 to 13{{nbsp}}kJ/mol. 4{{nbsp}}kJ/mol = 4{{e|3}}{{nbsp}}J / 6.022{{e|23}} molecules/mol = 6.7{{e

21}}{{nbsp}}J. In eV: 6.7{{e
21}}{{nbsp}}J / 1.6{{e
19}} eV/J = 0.042 eV. 13{{nbsp}}kJ/mol = 13{{e|3}}{{nbsp}}J / 6.022{{e|23}} molecules/mol = 2.2{{e
20}}{{nbsp}}J. In eV: 13{{e|3}}{{nbsp}}J / 6.022{{e|23}} molecules/mol / 1.6{{e
19}} eV/J = 0.13 eV.
10−20

|  

| 4.5×10−20{{nbsp}}J

| Upper bound of the mass–energy of a neutrino in particle physics (0.28 eV){{Cite journal | last1 = Thomas | first1 = S. | last2 = Abdalla | first2 = F. | last3 = Lahav | first3 = O. | title = Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey | doi = 10.1103/PhysRevLett.105.031301 | journal = Physical Review Letters | volume = 105 | issue = 3 | year = 2010 | pmid = 20867754|arxiv = 0911.5291 |bibcode = 2010PhRvL.105c1301T | pages=031301| s2cid = 23349570 }}Calculated: 0.28 eV × 1.6{{e

19}}{{nbsp}}J/eV = 4.5{{e
20}}{{nbsp}}J
rowspan=4|10−19

|rowspan=4| 

|{{val|1.602176634e-19|u=J}}

1 electronvolt (eV) by definition. This value is exact as a result of the 2019 revision of SI units.{{Cite web |date=2022 |title=physics.nist.gov/cuu/Constants/Table/allascii.txt |url=https://physics.nist.gov/cuu/Constants/Table/allascii.txt |url-status=live |archive-url=https://web.archive.org/web/20240910031420/https://physics.nist.gov/cuu/Constants/Table/allascii.txt |archive-date=10 September 2024}}
3–5×10−19{{nbsp}}JEnergy range of photons in visible light (≈1.6–3.1 eV){{cite web|title=BASIC LAB KNOWLEDGE AND SKILLS|url=http://www.sci.sdsu.edu/classes/chemistry/chem467l/mardahl/basic.html|quote=Visible wavelengths are roughly from 390 nm to 780 nm|access-date=5 November 2011|archive-url=https://web.archive.org/web/20130515121940/http://www.sci.sdsu.edu/classes/chemistry/chem467l/mardahl/basic.html|archive-date=15 May 2013|url-status=dead}}Calculated: E = hc/λ. E{{sub|780 nm}} = 6.6{{e
34}} kg-m{{sup|2}}/s × 3{{e|8}} m/s / (780{{e
9}} m) = 2.5{{e
19}}{{nbsp}}J. E_390 _nm = 6.6{{e
34}} kg-m{{sup|2}}/s × 3{{e|8}} m/s / (390{{e
9}} m) = 5.1{{e
19}}{{nbsp}}J
3–14×10−19{{nbsp}}J

| Energy of a covalent bond (2–9 eV)Calculated: 50 kcal/mol × 4.184{{nbsp}}J/calorie / 6.0{{e|22}}e23 molecules/mol = 3.47{{e

19}}{{nbsp}}J. (3.47{{e
19}}{{nbsp}}J / 1.60{{e
19}} eV/J = 2.2 eV.) and 200 kcal/mol × 4.184{{nbsp}}J/calorie / 6.0{{e|22}}e23 molecules/mol = 1.389{{e
18}}{{nbsp}}J. (7.64{{e
19}}{{nbsp}}J / 1.60{{e
19}} eV/J = 8.68 eV.)
5–200×10−19{{nbsp}}J

| Energy of ultraviolet light photons

rowspan="2" |10−18{{Anchor|10-18}}

| rowspan="2" |atto- (aJ)

|1.78×10−18{{nbsp}}J

|Bond dissociation energy for the carbon monoxide (CO) triple bond, alternatively stated: 1072 kJ/mol; 11.11eV per molecule.{{Cite journal |last1=Kim |first1=Hahn |last2=Doan |first2=Van Dung |last3=Cho |first3=Woo Jong |last4=Valero |first4=Rosendo |last5=Aliakbar Tehrani |first5=Zahra |last6=Madridejos |first6=Jenica Marie L. |last7=Kim |first7=Kwang S. |date=2015-11-06 |title=Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface |journal=Scientific Reports |volume=5 |pages=16307 |doi=10.1038/srep16307 |issn=2045-2322 |pmc=4635358 |pmid=26542890|bibcode=2015NatSR...516307K }}

This is the strongest chemical bond known.

2.18×10−18{{nbsp}}JGround state ionization energy of hydrogen (13.6 eV)
10−17

|  

| 2–2000×10−17{{nbsp}}J

| Energy range of X-ray photons{{cite web|title=Wavelength, Frequency, and Energy|url=http://imagine.gsfc.nasa.gov/docs/science/know_l1/spectrum_chart.html|archive-url=https://web.archive.org/web/20011118152730/http://imagine.gsfc.nasa.gov/docs/science/know_l1/spectrum_chart.html|url-status=dead|archive-date=18 November 2001|work=Imagine the Universe|publisher=NASA|access-date=15 November 2011}}

10−16   
10−15{{Anchor|10-15}}femto- (fJ)3 × 10−15{{nbsp}}JAverage kinetic energy of one human red blood cell.{{cite journal| last1 = Phillips | first1 = Kevin | last2 = Jacques | first2 = Steven | last3 = McCarty | first3 = Owen | title=How much does a cell weigh?| journal = Physical Review Letters | volume = 109 | issue = 11 | pages = 118105 | year = 2012 | doi = 10.1103/PhysRevLett.109.118105 | pmid = 23005682 |quote = Roughly 27 picograms | bibcode=2012PhRvL.109k8105P| pmc=3621783 }}{{cite web|title=Our Bodies' Velocities, By the Numbers|author=Bob Berman|access-date=19 August 2016|url = http://discovermagazine.com/2014/julyaug/18-body-of-work | quote = The [...] blood [...] flow[s] at an average speed of 3 to 4 mph}}Calculated: 1/2 × 27{{e
12}} g × (3.5 miles per hour){{sup|2}} = 3{{e
15}}{{nbsp}}J
rowspan=4|10−14

|rowspan=4| 

| 1×10−14{{nbsp}}J

| Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.{{cite web|title=Physics of the Body|url=https://www3.nd.edu/~nsl/Lectures/mphysics/Medical%20Physics/Part%20I.%20Physics%20of%20the%20Body/Chapter%204.%20Acoustics%20of%20the%20Body/4.3%20Physics%20of%20the%20ear/Physics%20of%20the%20ear.pdf|publisher=Notre Dame|access-date=19 August 2016|archive-date=6 November 2016|archive-url=https://web.archive.org/web/20161106160152/https://www3.nd.edu/~nsl/Lectures/mphysics/Medical%20Physics/Part%20I.%20Physics%20of%20the%20Body/Chapter%204.%20Acoustics%20of%20the%20Body/4.3%20Physics%20of%20the%20ear/Physics%20of%20the%20ear.pdf|url-status=dead}}. "The eardrum is a [...] membran[e] with an area of 65 mm2."{{cite web|title=Intensity and the Decibel Scale|url=http://www.physicsclassroom.com/class/sound/Lesson-2/Intensity-and-the-Decibel-Scale|publisher=Physics Classroom|access-date=19 August 2016}}Calculated: two eardrums ≈ 1 cm2. 1{{e

6}} W/m2 × 1{{e
4}} m2 × 1 s = 1{{e
14}}{{nbsp}}J
> 2×10−14{{nbsp}}J

| Energy of gamma ray photons

2.7×10−14{{nbsp}}JUpper bound of the mass–energy of a muon neutrino{{cite book|title=Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998|year=2000|publisher=World Scientific|isbn=978-981-02-3887-2|url=https://books.google.com/books?id=QC5zi1N-1KMC&q=muon+neutrino+mass+170kev&pg=PA354|author=Thomas J Bowles|author-link=The Experimental Search for Finite Neutrino Mass|editor=P. Langacker|access-date=11 November 2011|page=354|quote=an upper limit ov m_v_u < 170 keV}}Calculated: 170{{e|3}} eV × 1.6{{e
19}}{{nbsp}}J/eV = 2.7{{e
14}}{{nbsp}}J
8.2×10−14{{nbsp}}J{{anchor|Electron energy}}Rest mass–energy of an electron{{cite web|title=electron mass energy equivalent|url=http://physics.nist.gov/cgi-bin/cuu/Value?mec2|publisher=NIST|access-date=4 November 2011}} (0.511 MeV){{Cite web |title=CODATA Value: electron mass energy equivalent in MeV |url=https://physics.nist.gov/cgi-bin/cuu/Value?mec2mev |access-date=2023-08-13 |website=physics.nist.gov}}
rowspan=2|10−13

|rowspan=2|  

| 1.6×10−13{{nbsp}}J

1 megaelectronvolt (MeV){{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=6&num=1&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
2.3×10−13{{nbsp}}JEnergy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV){{cite web|title=How much energy is released when hydrogen is fused to produce one kilo of helium?|date=11 November 2017|url=https://hbergeronx.medium.com/how-much-energy-is-released-when-hydrogen-is-fused-to-produce-one-kilo-of-helium-64e74b03b13e|access-date=21 July 2021}}
10−12{{Anchor|10-12}}pico- (pJ)2.3×10−12{{nbsp}}JKinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV){{cite web|last=Muller|first=Richard A.|title=The Sun, Hydrogen Bombs, and the physics of fusion|url=http://muller.lbl.gov/teaching/physics10/old%20physics%2010/chapters%20%28old%29/7-fusion.htm|access-date=5 November 2011|year=2002|quote=The neutron comes out with high energy of 14.1 MeV|archive-url=https://web.archive.org/web/20120402214226/http://muller.lbl.gov/teaching/physics10/old%20physics%2010/chapters%20(old)/7-fusion.htm|archive-date=2 April 2012|url-status=dead}}{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=7&num=1.41&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
rowspan=1|10−11

|rowspan=1| 

|3.4×10−11{{nbsp}}J

Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV){{cite web|title=Energy From Uranium Fission|url=http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/u235chn.html#c3|work=HyperPhysics|access-date=8 November 2011}}{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=8&num=2.15&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
rowspan="7" |10−10

| rowspan="7" | 

|1.492×10−10{{nbsp}}J

|Mass-energy equivalent of 1 Da{{Cite web |title=CODATA Value: atomic mass constant energy equivalent |url=https://physics.nist.gov/cgi-bin/cuu/Value?uj |access-date=2023-08-13 |website=physics.nist.gov}} (931.5 MeV){{Cite web |title=CODATA Value: atomic mass constant energy equivalent in MeV |url=https://physics.nist.gov/cgi-bin/cuu/Value?muc2mev |access-date=2023-08-13 |website=physics.nist.gov}}

1.503×10−10{{nbsp}}JRest mass–energy of a proton{{cite web|title=proton mass energy equivalent|url=http://physics.nist.gov/cgi-bin/cuu/Value?mpc2|publisher=NIST|access-date=4 November 2011}} (938.3 MeV){{Cite web |title=CODATA Value: proton mass energy equivalent in MeV |url=https://physics.nist.gov/cgi-bin/cuu/Value?mpc2mev |access-date=2023-08-13 |website=physics.nist.gov}}
1.505×10−10{{nbsp}}JRest mass–energy of a neutron{{cite web|title=neutron mass energy equivalent|url=http://physics.nist.gov/cgi-bin/cuu/Value?mnc2|publisher=NIST|access-date=4 November 2011}} (939.6 MeV){{Cite web |title=CODATA Value: neutron mass energy equivalent in MeV |url=https://physics.nist.gov/cgi-bin/cuu/Value?mnc2mev |access-date=2023-08-13 |website=physics.nist.gov}}
1.6×10−10{{nbsp}}J1 gigaelectronvolt (GeV){{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=1&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
3×10−10{{nbsp}}JRest mass–energy of a deuteron{{cite web|title=deuteron mass energy equivalent|url=http://physics.nist.gov/cgi-bin/cuu/Value?mdc2|publisher=NIST|access-date=4 November 2011}}
6×10−10{{nbsp}}JRest mass–energy of an alpha particle{{cite web|title=alpha particle mass energy equivalent|url=http://physics.nist.gov/cgi-bin/cuu/Value?malc2|publisher=NIST|access-date=4 November 2011}}
7×10−10{{nbsp}}JEnergy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).Calculated: 7{{e
4}} g × 9.8 m/s2 × 1{{e
4}} m
rowspan=2|10−9{{Anchor|10-9

}}

|rowspan=2| nano- (nJ)

| 1.6×10−9{{nbsp}}J

10 GeV{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=10&num=1&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
8×10−9{{nbsp}}JInitial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV){{cite web|last=Myers|first=Stephen|title=The LEP Collider|url=http://sl-div.web.cern.ch/sl-div/history/lep_doc.html|publisher=CERN|access-date=14 November 2011|quote=the LEP machine energy is about 50 GeV per beam|archive-date=25 August 2010|archive-url=https://web.archive.org/web/20100825192922/http://sl-div.web.cern.ch/sl-div/history/lep_doc.html|url-status=dead}}Calculated: 50{{e|9}} eV × 1.6{{e
19}}{{nbsp}}J/eV = 8{{e
9}}{{nbsp}}J
rowspan=5|10−8

|rowspan=5| 

| 1.3×10−8{{nbsp}}J

Mass–energy of a W boson (80.4 GeV){{cite web|title=W|url=http://pdglive.lbl.gov/Rsummary.brl?nodein=S043|archive-url=https://archive.today/20120717002128/http://pdglive.lbl.gov/Rsummary.brl?nodein=S043|url-status=dead|archive-date=17 July 2012|work=PDG Live|publisher=Particle Data Group|access-date=4 November 2011}}{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=80.4&From=ev&To=j&Action=Convert+value+and+show+factor&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
1.5×10−8{{nbsp}}JMass–energy of a Z boson (91.2 GeV){{Cite journal | last1 = Amsler | first1 = C. | last2 = Doser | first2 = M. | last3 = Antonelli | first3 = M. | last4 = Asner | first4 = D. | last5 = Babu | first5 = K. | last6 = Baer | first6 = H. | last7 = Band | first7 = H. | last8 = Barnett | first8 = R. | last9 = Bergren | first9 = E. | last10 = Beringer | first10 = J. | last11 = Bernardi | first11 = G. | last12 = Bertl | first12 = W. | last13 = Bichsel | first13 = H. | last14 = Biebel | first14 = O. | last15 = Bloch | first15 = P. | last16 = Blucher | first16 = E. | last17 = Blusk | first17 = S. | last18 = Cahn | first18 = R. N. | last19 = Carena | first19 = M. | last20 = Caso | first20 = C. | last21 = Ceccucci | first21 = A. | last22 = Chakraborty | first22 = D. | last23 = Chen | first23 = M. -C. | last24 = Chivukula | first24 = R. S. | last25 = Cowan | first25 = G. | last26 = Dahl | first26 = O. | last27 = d'Ambrosio | first27 = G. | last28 = Damour | first28 = T. | last29 = De Gouvêa | first29 = A. | last30 = Degrand | first30 = T. | title = Review of Particle Physics⁎ | doi = 10.1016/j.physletb.2008.07.018 | journal = Physics Letters B | volume = 667 | issue = 1 | pages = 1–6 | year = 2008 | url = http://pdglive.lbl.gov/Rsummary.brl?nodein=S044&fsizein=1 | archive-url = https://archive.today/20120712165412/http://pdglive.lbl.gov/Rsummary.brl?nodein=S044&fsizein=1 | url-status = dead | archive-date = 12 July 2012 | bibcode = 2008PhLB..667....1A | display-authors = 29 | hdl = 1854/LU-685594 | s2cid = 227119789 | hdl-access = free }}{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=9&num=91.2&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
1.6×10−8{{nbsp}}J100 GeV{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=11&num=1&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
2×10−8{{nbsp}}JMass–energy of the Higgs Boson (125.1 GeV){{cite journal|last1=ATLAS |last2=CMS |author-link1=ATLAS experiment|author-link2=Compact Muon Solenoid|arxiv=1503.07589 |title= Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments|date=26 March 2015 |doi=10.1103/PhysRevLett.114.191803 |pmid=26024162 |bibcode=2015PhRvL.114s1803A |volume=114 |issue=19 |pages=191803 |journal=Physical Review Letters|s2cid=1353272 }}
6.4×10−8{{nbsp}}JOperating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976{{cite web|last=Adams|first=John|title=400 GeV Proton Synchrotron|url=http://sl-div.web.cern.ch/sl-div/history/sps_doc.html|work=Excertp from the CERN Annual Report 1976|publisher=CERN|access-date=14 November 2011|quote=A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976|archive-date=26 October 2011|archive-url=https://web.archive.org/web/20111026162037/http://sl-div.web.cern.ch/sl-div/history/sps_doc.html|url-status=dead}}Calculated: 400{{e|9}} eV × 1.6{{e
19}}{{nbsp}}J/eV = 6.4{{e
8}}{{nbsp}}J
rowspan=2|10−7

|rowspan=2| 

| 1×10−7{{nbsp}}J

≡ 1 erg
1.6×10−7{{nbsp}}J1 TeV (teraelectronvolt),{{cite web|title=Conversion from eV to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=12&num=1&From=ev&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}} about the kinetic energy of a flying mosquito{{cite web|title=Chocolate bar yardstick|url=http://www.cernlove.org/blog/2010/04/chocolate-bar-yardstick/|access-date=24 January 2014|quote=A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.|archive-url=https://web.archive.org/web/20140226141339/http://www.cernlove.org/blog/2010/04/chocolate-bar-yardstick/|archive-date=26 February 2014|url-status=dead}}
10−6{{Anchor|10-6}}micro- (μJ)1.04×10−6{{nbsp}}JEnergy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV){{cite web|title=First successful beam at record energy of 6.5 TeV|url=http://home.web.cern.ch/about/updates/2015/04/first-successful-beam-record-energy-65-tev|access-date=28 April 2015}}Calculated: 6.5{{e|12}} eV per beam × 1.6{{e
19}}{{nbsp}}J/eV = 1.04{{e
6}}{{nbsp}}J
10−5   
10−4 1.0×10−4{{nbsp}}JEnergy released by a typical radioluminescent wristwatch in 1 hour{{Cite web |title=The radioactive series of radium-226 |url=https://indico.cern.ch/event/835006/contributions/3548764/attachments/1924479/3184497/Ra226Decays.pdf |website=CERN}}{{Cite journal |last1=Terrill |first1=James G. Jr. |last2=Ingraham |first2=Samuel C. II |last3=Moeller |first3=Dade W. |date=1954 |title=Radium in the Healing Arts and in Industry: Radiation Exposure in the United States |journal=Public Health Reports |language=en |volume=69 |issue=3 |pages=255–262 |doi=10.2307/4588736|jstor=4588736 |pmid=13134440 |pmc=2024184 }} (1 μCi × 4.871 MeV × 1 hr)
10−3{{Anchor|10-3}}milli- (mJ)3.0×10−3{{nbsp}}JEnergy released by a P100 atomic battery in 1 hour{{Cite web |title=NanoTritium™: Next-gen Tritium Battery with Decade-Long Betavoltaic Battery Power {{!}} CityLabs |url=https://citylabs.net/products/ |access-date=2022-04-04 |language=en-US}} (2.4 V × 350 nA × 1 hr)
10−2{{Anchor|10-2

}}

centi- (cJ)4.0×10−2{{nbsp}}JUse of a typical LED for 1 second{{Cite web |title=LED - Basic Red 5mm - COM-09590 - SparkFun Electronics |url=https://www.sparkfun.com/products/9590 |access-date=2022-04-04 |website=www.sparkfun.com}} (2.0 V × 20 mA × 1 s)
rowspan=1|10−1{{Anchor|10-1}}

|rowspan=1| deci- (dJ)

| 1.1×10−1{{nbsp}}J

Energy of an American half-dollar falling 1 metre{{cite web |url=http://www.usmint.gov/about_the_mint/?action=coin_specifications |title=Coin specifications |publisher=United States Mint |access-date=2 November 2011 |quote=11.340 g |archive-date=18 February 2015 |archive-url=https://web.archive.org/web/20150218061037/http://www.usmint.gov/about_the_mint/?action=coin_specifications |url-status=dead }}Calculated: m×g×h = 11.34{{e
3}} kg × 9.8 m/s{{sup|2}} × 1 m = 1.1{{e
1}}{{nbsp}}J

1 to 10<sup>5</sup> J

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

rowspan=8|100

|rowspan=8| J

| 1{{nbsp}}J

≡ 1 N·m (newtonmetre)
1{{nbsp}}J≡ 1 W·s (watt-second)
1{{nbsp}}JKinetic energy produced as an extra small apple (~100 grams{{cite web|url=http://www.nal.usda.gov/fnic/foodcomp/search/ |title=Apples, raw, with skin (NDB No. 09003) |work=USDA Nutrient Database |publisher=USDA |access-date=8 December 2011 |url-status=dead |archive-url=https://web.archive.org/web/20150303184216/http://www.nal.usda.gov/fnic/foodcomp/search/ |archive-date= 3 March 2015 }}) falls 1 meter against Earth's gravityCalculated: m×g×h = 1{{e
1}} kg × 9.8 m/s{{sup|2}} × 1 m = 1{{nbsp}}J
1{{nbsp}}JEnergy required to heat 1 gram of dry, cool air by 1 degree Celsius{{cite web|title=Specific Heat of Dry Air|url=http://www.engineeringtoolbox.com/air-specific-heat-capacity-d_705.html|publisher=Engineering Toolbox|access-date=2 November 2011}}
1.4{{nbsp}}J≈ 1 ft·lbf (foot-pound force){{cite web|title=Appendix B8—Factors for Units Listed Alphabetically|url=http://physics.nist.gov/Pubs/SP811/appenB8.html|work=NIST Guide for the Use of the International System of Units (SI)|publisher=NIST|quote=1.355818|date=2 July 2009}}
4.184{{nbsp}}J≡ 1 thermochemical calorie (small calorie)
4.1868{{nbsp}}J≡ 1 International (Steam) Table calorie{{cite web|title=Footnotes|url=http://physics.nist.gov/Pubs/SP811/footnotes.html#f09|work=NIST Guide to the SI|publisher=NIST|date=2 July 2009}}
8{{nbsp}}JGreisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source{{cite web|title=Physical Motivations|url=http://www.dfg.unito.it/euso/physical-motivation.html|work=ULTRA Home Page (EUSO project)|publisher=Dipartimento di Fisica di Torino|access-date=12 November 2011}}Calculated: 5{{e|19}} eV × 1.6{{e
19}}{{nbsp}}J/ev = 8{{nbsp}}J
rowspan="2" |101{{Anchor|101}}

| rowspan="2" | deca- (daJ)

| 1×101{{nbsp}}J

Flash energy of a typical pocket camera electronic flash capacitor {{nowrap|(100–400 μF}} @ {{nowrap|330 V)}}{{cite web|title=Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics|url=http://www.repairfaq.org/sam/strbfaq.htm|access-date=8 December 2011|quote=The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.}}{{cite web|title=Teardown: Digital Camera Canon PowerShot {{pipe}}|url=http://electroelvis.com/2012/09/02/teardown-digital-camera-canon-powershot/|date=2 September 2012|access-date=6 June 2013|publisher=electroelvis.com|archive-url=https://web.archive.org/web/20130801014811/http://electroelvis.com/2012/09/02/teardown-digital-camera-canon-powershot/|archive-date=1 August 2013|url-status=dead}}
5×101{{nbsp}}JThe most energetic cosmic ray ever detected.{{cite web|title=The Fly's Eye (1981–1993)|url=http://www.cosmic-ray.org/reading/flyseye.html#SEC10|publisher=HiRes|access-date=14 November 2011|archive-date=15 August 2009|archive-url=https://web.archive.org/web/20090815102123/http://www.cosmic-ray.org/reading/flyseye.html#SEC10|url-status=dead}} Most likely a single proton traveling only very slightly slower than the speed of light.

{{Cite journal

| author=Bird, D. J.

| date=March 1995

| title=Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation

| journal=Astrophysical Journal, Part 1

| volume=441 |issue=1 |pages=144–150

| bibcode=1995ApJ...441..144B

| arxiv=astro-ph/9410067

| doi=10.1086/175344

| s2cid=119092012

}}

rowspan="11" |102{{Anchor|100|102}}

| rowspan="11" |hecto- (hJ)

|1.25×102{{nbsp}}J

|Kinetic energy of a regulation (standard) baseball (5.1 oz / 145 g){{Cite web |date=2024-01-04 |title=How Much Does a Baseball Weigh? - Baseball Weight Facts |url=https://www.nations-baseball.com/how-much-does-a-baseball-weigh/ |access-date=2024-01-04 |url-status=usurped |archive-url=https://web.archive.org/web/20240104164703/https://www.nations-baseball.com/how-much-does-a-baseball-weigh/ |archive-date=4 January 2024 }} thrown at 93 mph / 150 km/h (MLB average pitch speed).{{Cite web |date=2024-01-04 |title=How fast does an average MLB pitcher throw? - TopVelocity |url=https://www.topvelocity.net/2023/06/05/how-fast-does-an-average-mlb-pitcher-throw/ |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20240104164625/https://www.topvelocity.net/2023/06/05/how-fast-does-an-average-mlb-pitcher-throw/ |archive-date=4 January 2024 }}

1.5×102 - 3.6×102{{nbsp}}JEnergy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest.
3×102{{nbsp}}JEnergy of a lethal dose of X-rays{{cite web|title=Ionizing Radiation|url=http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/radiation.php|work=General Chemistry Topic Review: Nuclear Chemistry|publisher=Bodner Research Web|access-date=5 November 2011}}
3×102{{nbsp}}JKinetic energy of an average person jumping as high as they can{{cite web|title=Vertical Jump Test|url=http://www.topendsports.com/testing/tests/vertjump.htm|publisher=Topend Sports|access-date=12 December 2011|quote=41–50 cm (males) 31–40 cm (females)}}{{cite web|title=Mass of an Adult|url=http://hypertextbook.com/facts/2003/AlexSchlessingerman.shtml|work=The Physics Factbook|access-date=13 December 2011|quote=70 kg}}Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s{{sup|2}} × 40{{e
2}} m = 274{{nbsp}}J
3.3×102{{nbsp}}JEnergy to melt 1 g of ice{{cite web|title=Latent Heat of Melting of some common Materials|url=http://www.engineeringtoolbox.com/latent-heat-melting-solids-d_96.html|publisher=Engineering Toolbox|access-date=10 June 2013|quote=334{{nbsp}}kJ/kg}}
> 3.6×102{{nbsp}}JKinetic energy of 800 gram{{cite web|title=Javelin Throw – Introduction|url=http://www.iaaf.org/community/athletics/trackfield/newsid=9427.html|publisher=IAAF|access-date=12 December 2011}} standard men's javelin thrown at > 30 m/s{{cite web|last=Young|first=Michael|title=Developing Event Specific Strength for the Javelin Throw|url=http://www.indianathrower.com/documents/javelinthrowbiomechanics.pdf|archive-url=https://web.archive.org/web/20110813094040/http://www.indianathrower.com/documents/javelinthrowbiomechanics.pdf|url-status=dead|archive-date=13 August 2011|access-date=13 December 2011|quote=For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s}} by elite javelin throwersCalculated: 1/2 × 0.8 kg × (30 m/s){{sup|2}} = 360{{nbsp}}J
5–20×102{{nbsp}}JEnergy output of a typical photography studio strobe light in a single flash{{cite web|last=Greenspun|first=Philip|title=Studio Photography|url=http://photo.net/learn/studio/primer|access-date=13 December 2011|quote=Most serious studio photographers start with about 2000 watts-seconds|url-status=dead|archive-url=https://web.archive.org/web/20070929104533/http://photo.net/learn/studio/primer|archive-date=29 September 2007}}
6×102{{nbsp}}JUse of a 10-watt flashlight for 1 minute
7.5×102{{nbsp}}JA power of 1 horsepower applied for 1 second
7.8×102{{nbsp}}JKinetic energy of 7.26 kg{{cite web|title=Shot Put – Introduction|url=http://www.iaaf.org/community/athletics/trackfield/newsid=9444.html|publisher=IAAF|access-date=12 December 2011}} standard men's shot thrown at 14.7 m/s{{Citation needed|date=November 2011}} by the world record holder Randy BarnesCalculated: 1/2 × 7.26 kg × (14.7 m/s){{sup|2}} = 784{{nbsp}}J
8.01×102{{nbsp}}J

|Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)

rowspan="11" |103{{Anchor|103}}

| rowspan="11" | kilo- (kJ)

|1.1×103{{nbsp}}J

≈ 1 British thermal unit (BTU), depending on the temperature
1.4×103{{nbsp}}JTotal solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant){{Cite journal | last1 = Kopp | first1 = G. | last2 = Lean | first2 = J. L. | author2-link=Judith Lean | doi = 10.1029/2010GL045777 | title = A new, lower value of total solar irradiance: Evidence and climate significance | journal = Geophysical Research Letters | volume = 38 | issue = 1 | pages = n/a | year = 2011 |bibcode = 2011GeoRL..38.1706K | doi-access = free }}
2.3×103{{nbsp}}JEnergy to vaporize 1 g of water into steam{{cite web|title=Fluids – Latent Heat of Evaporation|url=http://www.engineeringtoolbox.com/fluids-evaporation-latent-heat-d_147.html|publisher=Engineering Toolbox|access-date=10 June 2013|quote=2257 kJ/kg}}
3×103{{nbsp}}JLorentz force can crusher pinch[http://www.powerlabs.org/pssecc.htm powerlabs.org – The PowerLabs Solid State Can Crusher!], 2002
3.4×103{{nbsp}}JKinetic energy of world-record men's hammer throw (7.26 kg{{cite web|title=Hammer Throw – Introduction|url=http://www.iaaf.org/community/athletics/trackfield/newsid=9418.html|publisher=IAAF|access-date=12 December 2011}} thrown at 30.7 m/s{{cite web|last=Otto|first=Ralf M.|title=HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH|url=http://hammerthrow.org/wp-content/uploads/photosequences/otto_sedykh_wr.pdf|access-date=4 November 2011|quote=The total release velocity is 30.7 m/sec}} in 1986)Calculated: 1/2 × 7.26 kg × (30.7 m/s){{sup|2}} = 3420{{nbsp}}J
3.6×103{{nbsp}}J≡ 1 W·h (watt-hour)
4.2×103{{nbsp}}JEnergy released by explosion of 1 gram of TNT4.2{{e|9}}{{nbsp}}J/ton of TNT-equivalent × (1 ton/1{{e|6}} grams) = 4.2{{e|3}}{{nbsp}}J/gram of TNT-equivalent
4.2×103{{nbsp}}J≈ 1 food Calorie (large calorie)
~7×103{{nbsp}}JMuzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum{{cite web|title=.458 Winchester Magnum|url=http://www.accuratepowder.com/data/PerCaliber2Guide/Rifle/Standarddata(Rifle)/458Cal(11.63mm)/458%20Winchester%20Magnum%20pages%20339%20and%20340.pdf|work=Accurate Powder|publisher=Western Powders Inc|access-date=7 September 2010|archive-url=https://web.archive.org/web/20070928011847/http://www.accuratepowder.com/data/PerCaliber2Guide/Rifle/Standarddata(Rifle)/458Cal(11.63mm)/458%20Winchester%20Magnum%20pages%20339%20and%20340.pdf|archive-date=28 September 2007|url-status=dead}}
8.5×103{{nbsp}}J

|Kinetic energy of a regulation baseball thrown at the speed of sound (343{{nbsp}}m/s = 767{{nbsp}}mph = 1,235{{nbsp}}km/h. Air, 20°C).{{Cite web |date=2024-01-04 |title=speed of sound - Google Search |url=https://www.google.com/search?q=speed+of+sound#ip=1 |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20240104165125/https://www.google.com/search?q=speed+of+sound#ip=1 |archive-date=4 January 2024 }}

9×103{{nbsp}}JEnergy in an alkaline AA battery{{cite web|title=Battery energy storage in various battery sizes|url=http://www.allaboutbatteries.com/Energy-tables.html|publisher=AllAboutBatteries.com|access-date=15 December 2011|archive-url=https://web.archive.org/web/20111204090808/http://www.allaboutbatteries.com/Energy-tables.html|archive-date=4 December 2011|url-status=dead}}
rowspan=4|104

|rowspan=4|  

| 1.7×104{{nbsp}}J

Energy released by the metabolism of 1 gram of carbohydrates{{cite web|title=Energy Density of Carbohydrates|url=http://hypertextbook.com/facts/2007/AnuragPanda.shtml|work=The Physics Factbook|access-date=5 November 2011}} or protein{{cite web|title=Energy Density of Protein|url=http://hypertextbook.com/facts/2003/DavidDukhan.shtml|work=The Physics Factbook|access-date=5 November 2011}}
3.8×104{{nbsp}}JEnergy released by the metabolism of 1 gram of fat{{cite web|title=Energy Density of Fats|url=http://hypertextbook.com/facts/2004/PingZhang.shtml|work=The Physics Factbook|access-date=5 November 2011}}
4–5×104{{nbsp}}JEnergy released by the combustion of 1 gram of gasoline{{cite web|title=Energy Density of Gasoline|url=http://hypertextbook.com/facts/2003/ArthurGolnik.shtml|work=The Physics Factbook|access-date=5 November 2011}}
5×104{{nbsp}}JKinetic energy of 1 gram of matter moving at 10 km/sCalculated: E = 1/2 m×v{{sup|2}} = 1/2 × (1{{e
3}} kg) × (1{{e|4}} m/s){{sup|2}} = 5{{e|4}}{{nbsp}}J.
105

|  

| {{nowrap|3×105 – 15×105{{nbsp}}J}}

Kinetic energy of an automobile at highway speeds (1 to 5 tons{{cite web|title=List of Car Weights|url=http://cars.lovetoknow.com/List_of_Car_Weights|publisher=LoveToKnow|access-date=13 December 2011|quote=3000 to 12000 pounds}} at {{nowrap|89 km/h}} or {{nowrap|55 mph}})Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v{{sup|2}} = 1/2 × (1{{e|3}} kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0{{e|5}}{{nbsp}}J. E = 1/2 × (5{{e|3}} kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15{{e|5}}{{nbsp}}J.

10<sup>6</sup> to 10<sup>11</sup> J

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

rowspan="7" |106{{Anchor|106}}

| rowspan="7" | mega- (MJ)

|1×106{{nbsp}}J

Kinetic energy of a 2 tonne vehicle at 32 metres per second (115 km/h or 72 mph)Calculated: KE = 1/2 × 2{{e|3}} kg × (32 m/s){{sup|2}} = 1.0{{e|6}}{{nbsp}}J
1.2×106{{nbsp}}JApproximate food energy of a snack such as a Snickers bar (280 food calories){{cite web|url=http://www.nal.usda.gov/fnic/foodcomp/search/ |title=Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155) |work=USDA Nutrient Database |publisher=USDA |access-date=14 November 2011 |url-status=dead |archive-url=https://web.archive.org/web/20150303184216/http://www.nal.usda.gov/fnic/foodcomp/search/ |archive-date= 3 March 2015 }}
3.6×106{{nbsp}}J= 1 kWh (kilowatt-hour) (used for electricity)
4.2×106{{nbsp}}JEnergy released by explosion of 1 kilogram of TNT
6.1×106{{nbsp}}J

|Kinetic energy of the 4 kg tungsten APFSDS penetrator after being fired from a 120mm KE-W A1 cartridge with a nominal muzzle velocity of 1740 m/s.{{Cite web |title=1/2*4kg*(1740m/s)^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*4kg*(1740m/s)%5E2 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}{{Cite web |title=120mm KE-W A1 Armor-Piercing, Fin-Stabilizing, Discarding Sabot-Tracer |url=https://www.gd-ots.com/munitions/large-caliber-ammunition/120mm-kew-a1/ |access-date=2024-09-23 |website=General Dynamics Ordnance and Tactical Systems |language=en-US}}

8.4×106{{nbsp}}JRecommended food energy intake per day for a moderately active woman (2000 food calories){{cite web|title=How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity|url=http://www.nhlbi.nih.gov/health/public/heart/obesity/wecan/healthy-weight-basics/balance.htm|work=Healthy Weight Basics|publisher=National Heart Lung and Blood Institutde|access-date=14 November 2011}}Calculated: 2000 food calories = 2.0{{e|6}} cal × 4.184{{nbsp}}J/cal = 8.4{{e|6}}{{nbsp}}J
9.1×106{{nbsp}}J

|Kinetic energy of a regulation baseball thrown at Earth's escape velocity (First cosmic velocity ≈ 11.186 km/s = 25,020 mph = 40,270 km/h).{{Cite web |date=2024-01-04 |title=What is Earth's Escape Velocity? - Earth How |url=https://earthhow.com/escape-velocity-earth-closed-system/ |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20240104165536/https://earthhow.com/escape-velocity-earth-closed-system/ |archive-date=4 January 2024 }}

rowspan="8" |107

| rowspan="8" | 

| 1×107{{nbsp}}J

| Kinetic energy of the armor-piercing round fired by the ISU-152 assault gunCalculated: 1/2 × m × v{{sup|2}} = 1/2 × 48.78 kg × (655 m/s){{sup|2}} = 1.0{{e|7}}{{nbsp}}J.{{Citation needed|date=January 2012}}

1.1×107{{nbsp}}JRecommended food energy intake per day for a moderately active man (2600 food calories)Calculated: 2600 food calories = 2.6{{e|6}} cal × 4.184{{nbsp}}J/cal = 1.1{{e|7}}{{nbsp}}J
3.3×107{{nbsp}}JKinetic energy of a 23 lb projectile fired by the Navy's mach 8 railgun.{{Cite magazine |last=Ackerman |first=Spencer |title=Video: Navy's Mach 8 Railgun Obliterates Record |url=https://www.wired.com/2010/12/video-navys-mach-8-railgun-obliterates-record/ |access-date=2024-07-28 |magazine=Wired |language=en-US |issn=1059-1028}}
3.7×107{{nbsp}}J

| $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009){{cite web|title=Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009|url=http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0303|work=Annual Energy Review|publisher=US Energy Information Administration|access-date=17 December 2011|date=19 October 2011|quote=$28.90 per million BTU}}Calculated J per dollar: 1 million BTU/$28.90 = 1{{e|6}} BTU / 28.90 dollars × 1.055{{e|3}}{{nbsp}}J/BTU = 3.65{{e|7}}{{nbsp}}J/dollarCalculated cost per kWh: 1 kWh × 3.60{{e|6}}{{nbsp}}J/kWh / 3.65{{e|7}}{{nbsp}}J/dollar = 0.0986 dollar/kWh

4×107{{nbsp}}J

| Energy from the combustion of 1 cubic meter of natural gas{{cite web|title=Energy in a Cubic Meter of Natural Gas|url=http://hypertextbook.com/facts/2002/JanyTran.shtml|work=The Physics Factbook|access-date=15 December 2011}}

4.2×107{{nbsp}}J

| Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training{{cite web|title=The Olympic Diet of Michael Phelps|url=http://www.webmd.com/diet/news/20080813/the-olympic-diet-of-michael-phelps|work=WebMD|access-date=28 December 2011}}

6.3×107{{nbsp}}J

| Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere){{cite web|last=Cline|first=James E. D.|title=Energy to Space|url=http://home.earthlink.net/~jedcline/ets.html|access-date=13 November 2011|quote=6.27{{e|7}} Joules / Kg}}

9×107{{nbsp}}J

|Total mass-energy of 1 microgram of matter (25 kWh)

rowspan=4|108

|rowspan=4|  

| 1×108{{nbsp}}J

Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots){{Citation needed|date=November 2011}}
1.1×108{{nbsp}}J≈ 1 therm, depending on the temperature
1.1×108{{nbsp}}J≈ 1 Tour de France, or ~90 hours{{cite web|title=Tour de France Winners, Podium, Times|url=http://bikeraceinfo.com/tdf/tdfindex.html|publisher=Bike Race Info|access-date=10 December 2011}} ridden at 5 W/kg{{cite web|title=Watts/kg|url=http://www.flammerouge.je/content/3_factsheets/constant/wattkilobench.htm|publisher=Flamme Rouge|access-date=4 November 2011|archive-url=https://web.archive.org/web/20120102133701/http://www.flammerouge.je/content/3_factsheets/constant/wattkilobench.htm|archive-date=2 January 2012|url-status=dead}} by a 65 kg riderCalculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1{{e|8}}{{nbsp}}J
7.3×108{{nbsp}}J≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude){{Citation needed|date=December 2011}}
rowspan="13" |109{{Anchor|109}}

| rowspan="13" | giga- (GJ)

|1×109{{nbsp}}J

Energy in an average lightning bolt{{cite web|last=Smith|first=Chris|title=How do Thunderstorms Work?|date=6 March 2007|url=http://www.thenakedscientists.com/HTML/articles/article/howdothunderstormswork-2/|publisher=The Naked Scientists|access-date=15 November 2011|quote=It discharges about 1–10 billion joules of energy}} (thunder)
1.1×109{{nbsp}}JMagnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva{{cite web|title=Powering up ATLAS's mega magnet|url=http://user.web.cern.ch/public/en/Spotlight/SpotlightATLAS-en.html|work=Spotlight on...|publisher=CERN|access-date=10 December 2011|quote=magnetic energy of 1.1 Gigajoules|archive-url=https://web.archive.org/web/20111130024727/http://user.web.cern.ch/public/en/Spotlight/SpotlightATLAS-en.html|archive-date=30 November 2011|url-status=dead}}
1.2×109{{nbsp}}JInflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109{{nbsp}}JTheoretical minimum amount of energy required to melt a tonne of steel (380 kWh){{cite web|title=ITP Metal Casting: Melting Efficiency Improvement |url=http://www1.eere.energy.gov/industry/metalcasting/pdfs/umr22_fs.pdf|work=ITP Metal Casting|publisher=U.S. Department of Energy|access-date=14 November 2011|quote=377 kWh/mt}}Calculated: 380 kW-h × 3.6{{e|6}}{{nbsp}}J/kW-h = 1.37{{e|9}}{{nbsp}}J
2×109{{nbsp}}JEnergy of an ordinary {{nowrap|61 liter}} gasoline tank of a car.{{cite web | title = Lead-Free Gasoline Material Safety Data Sheet | author = Bell Fuels | publisher = NOAA | url = http://www.sefsc.noaa.gov/HTMLdocs/Gasoline.htm | access-date = 6 July 2008 | url-status = dead | archive-url = https://web.archive.org/web/20020820074636/http://www.sefsc.noaa.gov/HTMLdocs/Gasoline.htm | archive-date = 20 August 2002 | df = dmy-all }}[http://www.thepartsbin.com/guides/volvo/fuel_tank.html thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin]{{Dead link|date=April 2020 |bot=InternetArchiveBot |fix-attempted=yes }}, 6 May 2012
2×109{{nbsp}}JUnit of energy in Planck units,E_\text{P} = \sqrt{\frac{\hbar c^5}{G}} roughly the diesel tank energy of a mid-sized truck.
2.49×109{{nbsp}}J

|Kinetic energy carried by American Airlines Flight 11 (767-200ER) at the moment of impact{{Cite web |title=1/2*(440mph)^2*283,600lb - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*(440mph)%5E2*283,600lb |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}{{Cite web |date=September 2005 |title=Final Report on the Collapse of the World Trade Center Towers |url=https://www.nist.gov/publications/federal-building-and-fire-safety-investigation-world-trade-center-disaster-final-report |url-status=live |archive-url=https://web.archive.org/web/20240911112137/https://nvlpubs.nist.gov/nistpubs/Legacy/NCSTAR/ncstar1.pdf |archive-date=11 September 2024 |access-date=11 September 2024 |website=Final Report on the Collapse of the World Trade Center Towers: Federal Building and Fire Safety Investigation of the World Trade Center Disaster [NIST NCSTAR 1]}} with WTC 1, 8:46:30 A.M.p. 20 (70 of 302)

Section: 2.2 THE AIRCRAFT(EDT UTC−4:00), September 11, 2001

3×109{{nbsp}}JInflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109{{nbsp}}JApproximate average amount of energy expended by a human heart muscle over an 80-year lifetime{{cite web|title=Power of a Human Heart|url=http://hypertextbook.com/facts/2003/IradaMuslumova.shtml|work=The Physics Factbook|access-date=10 December 2011|quote=The mechanical power of the human heart is ~1.3 watts}}Calculated: 1.3{{nbsp}}J/s × 80 years × 3.16{{e|7}} s/year = 3.3{{e|9}}{{nbsp}}J
3.6×109{{nbsp}}J

|= 1 MW·h (megawatt-hour)

4.2×109{{nbsp}}JEnergy released by explosion of 1 ton of TNT.
4.5×109{{nbsp}}JAverage annual energy usage of a standard refrigerator{{cite web|title=U.S. Household Electricity Uses: A/C, Heating, Appliances|url=http://www.eia.gov/emeu/reps/enduse/er01_us.html|work=U.S. HOUSEHOLD ELECTRICITY REPORT|publisher=EIA|access-date=13 December 2011|quote=For refrigerators in 2001, the average UEC was 1,239 kWh}}Calculated: 1239 kWh × 3.6{{e|6}}{{nbsp}}J/kWh = 4.5{{e|9}}{{nbsp}}J
6.1×109{{nbsp}}J≈ 1 bboe (barrel of oil equivalent)[http://www.altenergyaction.org/mambo/index.php?option=com_content&task=view&id=9 Energy Units] {{Webarchive|url=https://web.archive.org/web/20161010120259/http://www.altenergyaction.org/mambo/index.php?option=com_content&task=view&id=9 |date=10 October 2016 }}, by Arthur Smith, 21 January 2005
rowspan="7" |1010

| rowspan="7" |  

|1.9×1010{{nbsp}}J

Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010{{nbsp}}J≈ 1 toe (ton of oil equivalent)
4.6×1010{{nbsp}}JYield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed{{cite web|title=Top 10 Biggest Explosions|url=http://listverse.com/2011/11/28/top-10-biggest-explosions/|publisher=Listverse|access-date=10 December 2011|quote=a yield of 11 tons of TNT|date=28 November 2011}}Calculated: 11 tons of TNT-equivalent × 4.184{{e|9}}{{nbsp}}J/ton of TNT-equivalent = 4.6{{e|10}}{{nbsp}}J
7.3×1010{{nbsp}}JEnergy consumed by the average U.S. automobile in the year 2000{{cite web|title=Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks |url=http://www.epa.gov/otaq/consumer/f00013.htm|publisher=EPA|access-date=12 December 2011|quote=581 gallons of gasoline}}{{cite web|title=200 Mile-Per-Gallon Cars?|url=http://www.uwgb.edu/dutchs/pseudosc/200mpgcar.htm|access-date=12 December 2011|quote=a gallon of gas ... 125 million joules of energy|archive-url=https://web.archive.org/web/20111219011152/http://www.uwgb.edu/dutchs/pseudosc/200mpgcar.htm|archive-date=19 December 2011|url-status=dead}}Calculated: 581 gallons × 125{{e|6}}{{nbsp}}J/gal = 7.26{{e|10}}{{nbsp}}J
8.6×1010{{nbsp}}J≈ 1 MW·d (megawatt-day), used in the context of power plants (24 MW·h)Calculated: 1{{e|6}} watts × 86400 seconds/day = 8.6{{e|10}}{{nbsp}}J
8.8×1010{{nbsp}}JTotal energy released in the nuclear fission of one gram of uranium-235Calculated: 3.44{{e
10}}{{nbsp}}J/U-235-fission × 1{{e
3}} kg / (235 amu per U-235-fission × 1.66{{e
27}} amu/kg) = 8.82{{e
10}}{{nbsp}}J
9×1010{{nbsp}}J

|Total mass-energy of 1 milligram of matter (25 MW·h)

rowspan="2" |1011

| rowspan="2" | 

|1.1×1011{{nbsp}}J

|Kinetic energy of a regulation baseball thrown at lightning speed (120 km/s = 270,000 mph = 435,000 km/h).{{Cite web |date=2024-01-04 |title=10 striking facts about lightning - Met Office |url=https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/thunder-and-lightning/facts-about-lightning |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20240104170325/https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/thunder-and-lightning/facts-about-lightning |archive-date=4 January 2024 }}

2.4×1011{{nbsp}}JApproximate food energy consumed by an average human in an 80-year lifetime.Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4{{e|11}}{{nbsp}}J

10<sup>12</sup> to 10<sup>17</sup> J

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

rowspan="6" |1012{{Anchor|1012}}

| rowspan="6" |tera- (TJ)

|1.85×1012{{nbsp}}J

|Gravitational potential energy of the Twin Towers, combined, accumulated throughout their construction and released during the collapse of the complex.{{Cite web |title=1/2*416m*1 million ton*9.81m/s^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*416m*1+million+ton*9.81m/s%5E2 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}Equation for calculating potential assumes that the towers' center of mass is located halfway along the building's height of ~416 meters.{{Cite web |title=Why Did the World Trade Center Collapse? Science, Engineering, and Speculation |url=https://www.tms.org/pubs/journals/JOM/0112/Eagar/Eagar-0112.html |access-date=2024-09-23 |website=www.tms.org |postscript=".... The total weight of each tower was about 500,000 t."}}

3.4×1012{{nbsp}}J

| Maximum fuel energy of an Airbus A330-300 (97,530 liters{{cite web|title=A330-300 Dimensions & key data|url=http://www.airbus.com/aircraftfamilies/passengeraircraft/a330family/a330-300/specifications/|publisher=Airbus|access-date=12 December 2011|quote=97530 litres|archive-date=16 January 2013|archive-url=https://web.archive.org/web/20130116222250/http://www.airbus.com/aircraftfamilies/passengeraircraft/a330family/a330-300/specifications/|url-status=dead}} of Jet A-1{{cite web |title=Air BP Handbook of Products |url=http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf |url-status=dead |archive-url=https://web.archive.org/web/20110608075828/http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf |archive-date=8 June 2011 |access-date=19 August 2011 |website=BP}})Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38{{e|12}}{{nbsp}}J

3.6×1012{{nbsp}}J

| 1 GW·h (gigawatt-hour)Calculated: 1{{e|9}} watts × 3600 seconds/hour

4×1012{{nbsp}}J

| Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%{{cite web|last=Weston|first=Kenneth|title=Chapter 10. Nuclear Power Plants|url=http://www.personal.utulsa.edu/~kenneth-weston/chapter10.pdf|work=Energy Conversion|access-date=13 December 2011|quote=The thermal efficiency of a CANDU plant is only about 29%|archive-date=5 October 2011|archive-url=https://web.archive.org/web/20111005120238/http://www.personal.utulsa.edu/~kenneth-weston/chapter10.pdf|url-status=dead}} thermal efficiency of reactor{{cite web|title=CANDU and Heavy Water Moderated Reactors|url=http://www.nucleartourist.com/type/candu.htm|access-date=12 December 2011|quote=fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium}}Calculated: 7500{{e|6}} watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3{{e|13}}{{nbsp}}J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8{{e|12}}{{nbsp}}J

4.2×1012{{nbsp}}J

| Chemical energy released by the detonation of 1 kiloton of TNTCalculated: 4.2{{e|9}}{{nbsp}}J/ton of TNT-equivalent × 1{{e|3}} tons/megaton = 4.2{{e|12}}{{nbsp}}J/megaton of TNT-equivalent

6.4×1012{{nbsp}}JEnergy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters{{cite web|title=747 Classics Technical Specs |url=http://www.boeing.com/commercial/747family/pf/pf_classics.html |publisher=Boeing |access-date=12 December 2011 |quote=183,380 L |url-status=dead |archive-url=https://web.archive.org/web/20071210173616/http://www.boeing.com/commercial/747family/pf/pf_classics.html |archive-date=10 December 2007 }} of Jet A-1)Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36{{e|12}}{{nbsp}}J
rowspan="5" |1013

| rowspan="5" |  

|1.1×1013{{nbsp}}J

Energy of the maximum fuel an Airbus A380 can carry (320,000 liters{{cite web|title=A380-800 Dimensions & key data|url=http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/a380-800/specifications/|publisher=Airbus|access-date=12 December 2011|quote=320,000 L|archive-date=8 July 2012|archive-url=https://web.archive.org/web/20120708071501/http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/a380-800/specifications/|url-status=dead}} of Jet A-1)Calculated: 320,000 L × 0.804 kg/L × 43.15  MJ/kg = 11.1{{e|12}}{{nbsp}}J
1.2×1013{{nbsp}}JOrbital kinetic energy of the International Space Station (417 tonnes{{cite web |url=http://www.nasa.gov/mission_pages/station/structure/isstodate.html |title=International Space Station: The ISS to Date |publisher=NASA |access-date=23 August 2011 |archive-date=11 June 2015 |archive-url=https://web.archive.org/web/20150611163133/http://www.nasa.gov/mission_pages/station/structure/isstodate.html |url-status=dead }} at 7.7 km/s{{cite web|title=The wizards of orbits|url=http://www.esa.int/esaCP/ESA104MBAMC_FeatureWeek_0.html|publisher=European Space Agency|access-date=10 December 2011|quote=The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits}})Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2{{e|13}}{{nbsp}}J
1.20×1013{{nbsp}}J

|Orbital kinetic energy of the Parker Solar Probe as it dives deep into the Sun's gravity well in December 2024, reaching a peak velocity of 430,000 mph.{{Cite web |last=Interrante |first=Abbey |date=2024-09-06 |title=Parker Solar Probe |url=https://blogs.nasa.gov/parkersolarprobe/ |access-date=2024-09-23 |website=blogs.nasa.gov |language=en-US}}{{Cite web |title=1/2*650kg*(430000mph)^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*650kg*(430000mph)%5E2 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}{{Cite web |title=NASA - NSSDCA - Spacecraft - Details |url=https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-065A |access-date=24 September 2024 |website=NASA}}

6.3×1013{{nbsp}}JYield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons){{cite web|title=What was the yield of the Hiroshima bomb?|url=http://www.warbirdforum.com/hiroshim.htm|publisher=Warbird's Forum|quote=21 kt|access-date=4 November 2011}}Calculated: 15 kt = 15{{e|9}} grams of TNT-equivalent × 4.2{{e|3}}{{nbsp}}J/gram TNT-equivalent = 6.3{{e|13}}{{nbsp}}J
9×1013{{nbsp}}JTheoretical total mass–energy of 1 gram of matter (25 GW·h) {{cite web|title=Conversion from kg to{{nbsp}}J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=-3&num=1&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
rowspan="3" |1014

| rowspan="3" | 

|1.8×1014{{nbsp}}J

|Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h)

3.75×1014{{nbsp}}JTotal energy released by the Chelyabinsk meteor.{{cite web|title=JPL – Fireballs and bolides|url=https://cneos.jpl.nasa.gov/fireballs/|website=Jet Propulsion Laboratory|publisher=NASA|access-date=13 April 2017}}
6×1014{{nbsp}}JEnergy released by an average hurricane per day{{cite web|title=How much energy does a hurricane release?|url=http://www.aoml.noaa.gov/hrd/tcfaq/D7.html|work=FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES|publisher=NOAA|access-date=12 November 2011}}
rowspan=3| 1015

|rowspan=3| peta- (PJ) {{anchor|1015}}

|> 1015{{nbsp}}J

Energy released by a severe thunderstorm{{cite web|title=The Gathering Storms|url=http://www.cosmosmagazine.com/node/3302/full|publisher=COSMOS|access-date=10 December 2011|archive-url=https://web.archive.org/web/20120404113209/http://www.cosmosmagazine.com/node/3302/full|archive-date=4 April 2012|url-status=dead}}
1×1015{{nbsp}}JYearly electricity consumption in Greenland as of 2008{{cite web|title=Country Comparison :: Electricity – consumption |url=https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html |work=The World Factbook |publisher=CIA |access-date=11 December 2011 |url-status=dead |archive-url=https://web.archive.org/web/20120128032332/https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html |archive-date=28 January 2012 }}Calculated: 288.6{{e|6}} kWh × 3.60{{e|6}}{{nbsp}}J/kWh = 1.04{{e|15}}{{nbsp}}J
4.2×1015{{nbsp}}JEnergy released by explosion of 1 megaton of TNTCalculated: 4.2{{e|9}}{{nbsp}}J/ton of TNT-equivalent × 1{{e|6}} tons/megaton = 4.2{{e|15}}{{nbsp}}J/megaton of TNT-equivalent
rowspan="5" | 1016

| rowspan="5" |  

| 1×1016{{nbsp}}J

Estimated impact energy released in forming Meteor Crater{{Citation needed|date=November 2011}}
1.1×1016{{nbsp}}JYearly electricity consumption in Mongolia as of 2010Calculated: 3.02{{e|9}} kWh × 3.60{{e|6}}{{nbsp}}J/kWh = 1.09{{e|16}}{{nbsp}}J
6.3×1016{{nbsp}}J

|Yield of Castle Bravo, the most powerful nuclear weapon tested by the United States{{Cite web |date=2024-01-04 |title=Castle Bravo: The Largest U.S. Nuclear Explosion {{!}} Brookings |url=https://www.brookings.edu/articles/castle-bravo-the-largest-u-s-nuclear-explosion/ |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20240104171317/https://www.brookings.edu/articles/castle-bravo-the-largest-u-s-nuclear-explosion/ |archive-date=4 January 2024 }}

7.9×1016{{nbsp}}J

|Kinetic energy of a regulation baseball thrown at 99% the speed of light (KE = mc^2 × [γ-1], where the Lorentz factor γ ≈ 7.09).{{Cite web |title=0.145kg*c^2*(1/sqrt(1-0.99^2)-1) - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/ |access-date=2024-01-04 |website=www.wolframalpha.com |language=en}}

9×1016{{nbsp}}JMass–energy of 1 kilogram of matterCalculated: E = mc{{sup|2}} = 1 kg × (2.998{{e|8}} m/s){{sup|2}} = 8.99{{e|16}}{{nbsp}}J
rowspan="7" | 1017

| rowspan="7" |  

|1.4×1017{{nbsp}}J

Seismic energy released by the 2004 Indian Ocean earthquake{{Cite journal |last1=Choy |first1=George L. |last2=Boatwright |first2=John |date=2007-01-01 |title=The Energy Radiated by the 26 December 2004 Sumatra–Andaman Earthquake Estimated from 10-Minute P -Wave Windows |url=https://pubs.geoscienceworld.org/bssa/article/97/1A/S18/146582/The-Energy-Radiated-by-the-26-December-2004 |journal=Bulletin of the Seismological Society of America |language=en |volume=97 |issue=1A |pages=S18–S24 |doi=10.1785/0120050623 |bibcode=2007BuSSA..97S..18C |issn=1943-3573}}
1.7×1017{{nbsp}}JTotal energy from the Sun that strikes the face of the Earth each secondThe Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter. Note, however, that because portions of Earth reflect light well, the actual energy absorbed is about 1.2*10^17 watts, from an average albedo of 0.3.
2.1×1017{{nbsp}}JYield of the Tsar Bomba, the most powerful nuclear weapon ever tested (50 megatons){{cite web|title=The Soviet Weapons Program – The Tsar Bomba|url=http://www.nuclearweaponarchive.org/Russia/TsarBomba.html|publisher=The Nuclear Weapon Archive|access-date=4 November 2011}}Calculated: 50{{e|6}} tons TNT-equivalent × 4.2{{e|9}}{{nbsp}}J/ton TNT-equivalent = 2.1{{e|17}}{{nbsp}}J
2.552×1017{{nbsp}}J

|Total energy of the 2022 Hunga Tonga–Hunga Haʻapai eruption{{Cite journal |last1=Díaz |first1=J. S. |last2=Rigby |first2=S. E. |date=2022-09-01 |title=Energetic output of the 2022 Hunga Tonga–Hunga Ha‘apai volcanic eruption from pressure measurements |journal=Shock Waves |language=en |volume=32 |issue=6 |pages=553–561 |doi=10.1007/s00193-022-01092-4 |bibcode=2022ShWav..32..553D |issn=1432-2153|doi-access=free }}Calculated to be 61 megatons of TNT, equivalent to 2.552{{e|17}}{{nbsp}}J

4.2×1017{{nbsp}}JYearly electricity consumption of Norway as of 2008Calculated: 115.6{{e|9}} kWh × 3.60{{e|6}}{{nbsp}}J/kWh = 4.16{{e|17}}{{nbsp}}J
4.516×1017{{nbsp}}JEnergy needed to accelerate one ton of mass to 0.1c (~30,000 km/s){{Cite web |title=1000*1/2*(0.1*299792458)^2*1/sqrt(1-0.1^2) joules - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1000*1/2*(0.1*299792458)%5E2*1/sqrt(1-0.1%5E2)+joules |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}
8.4x1017{{nbsp}}JEstimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883{{cite book|last=Alexander|first=R. McNeill|title=Dynamics of Dinosaurs and Other Extinct Giants|year=1989|publisher=Columbia University Press|isbn=978-0-231-06667-9|url=https://books.google.com/books?id=0q_1xk3SVKEC|page=144|quote=the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.}}Calculated: 200{{e|6}} tons of TNT equivalent × 4.2{{e|9}}{{nbsp}}J/ton of TNT equivalent = 8.4{{e|17}}{{nbsp}}JThis value appears to be referred only to the third explosion on 27 August, 10.02 a.m.

According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.[http://www.branchcollective.org/?ps_articles=monique-morgan-the-eruption-of-krakatoa-also-known-as-krakatau-in-1883][https://archive.org/details/eruptionkrakato00whipgoog/page/n12/mode/2up?view=theater]

10<sup>18</sup> to 10<sup>23</sup> J

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

1018

| exa- (EJ) {{Anchor|1018}}

|9.4×1018{{nbsp}}J

Worldwide nuclear-powered electricity output in 2023.{{Cite web |title=2602TWh to J - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=2602TWh+to+J |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}{{Cite web |title=WNA report: Nuclear power generation increased globally in 2023 |url=https://www.ans.org/news/article-6319/wna-report-nuclear-power-generation-increased-globally-in-2023/ |access-date=2024-09-23 |website=www.ans.org |language=en}}
rowspan="8" |1019

| rowspan="8" | 

|1×1019{{nbsp}}J

|Thermal energy released by the 1991 Pinatubo eruption

1.1×1019{{nbsp}}J

|Seismic energy released by the 1960 Valdivia Earthquake{{Cite journal |last1=Yoshida |first1=Masaki |last2=Santosh |first2=M. |date=2020-07-01 |title=Energetics of the Solid Earth: An integrated perspective |journal=Energy Geoscience |volume=1 |issue=1–2 |pages=28–35 |doi=10.1016/j.engeos.2020.04.001 |bibcode=2020EneG....1...28Y |issn=2666-7592|doi-access=free }}

1.2×1019{{nbsp}}J

|Explosive yield of global nuclear arsenal{{Cite web|last=Mizokami|first=Kyle|date=2019-04-01|title=Here's What Would Happen If We Blew Up All the World's Nukes at Once|url=https://www.popularmechanics.com/military/weapons/a27008390/blow-up-every-nuke/|access-date=2021-04-08|website=Popular Mechanics|language=en-US}} (2.86 Gigatons)

1.4×1019{{nbsp}}JYearly electricity consumption in the U.S. as of 2009Calculated: 3.741{{e|12}} kWh × 3.600{{e|6}}{{nbsp}}J/kWh = 1.347{{e|19}}{{nbsp}}J
1.4×1019JYearly electricity production in the U.S. as of 2009{{cite web|title=United States|url=https://www.cia.gov/the-world-factbook/countries/united-states/|work=The World Factbook|publisher=USA|access-date=11 December 2011}}Calculated: 3.953{{e|12}} kWh × 3.600{{e|6}}{{nbsp}}J/kWh = 1.423{{e|19}}{{nbsp}}J
5×1019{{nbsp}}JEnergy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)
6.4×1019{{nbsp}}JYearly electricity consumption of the world {{As of|2008|lc=on}}{{cite web|title=World|url=https://www.cia.gov/the-world-factbook/countries/world/|work=The World Factbook|publisher=CIA|access-date=11 December 2011}}Calculated: 17.8{{e|12}} kWh × 3.60{{e|6}}{{nbsp}}J/kWh = 6.41{{e|19}}{{nbsp}}J
6.8×1019{{nbsp}}JYearly electricity generation of the world {{As of|2008|lc=on}}Calculated: 18.95{{e|12}} kWh × 3.60{{e|6}}{{nbsp}}J/kWh = 6.82{{e|19}}{{nbsp}}J
rowspan="6" |1020

| rowspan="6" | 

|1.4×1020{{nbsp}}J

|Total energy released in the 1815 Mount Tambora eruption{{Cite magazine |last=Klemetti |first=Erik |date=2015-04-10 |title=Tambora 1815: Just How Big Was The Eruption? |url=https://www.wired.com/2015/04/tambora-1815-just-big-eruption/ |access-date=2024-05-25 |magazine=Wired |language=en-US |issn=1059-1028}}

2.33×1020{{nbsp}}J

|Kinetic energy of a carbonaceous chondrite meteor 1 km in diameter striking Earth's surface at 20 km/s.{{Cite web |title=1/6(1km^3)(3.5 g/cm^3)(20km/s)^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/6(1km%5E3)(3.5+g/cm%5E3)(20km/s)%5E2 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}} Such an impact occurs every ~500,000 years.{{Cite web |title=How often do asteroids strike Earth? |url=https://catalina.lpl.arizona.edu/faq/how-often-do-asteroids-strike-earth |access-date=2024-09-11 |website=Catalina Sky Survey |language=en}}

2.4×1020{{nbsp}}J

|Total latent heat energy released by Hurricane Katrina{{Cite web |title=Severe Weather: Hurricane energetics |url=http://www.atmo.arizona.edu/students/courselinks/spring07/atmo336s3/lectures/sec2/hurricanes4.html |access-date=2024-05-24 |website=www.atmo.arizona.edu}}

5×1020{{nbsp}}JTotal world annual energy consumption in 2010{{cite web|title=Statistical Review of World Energy 2011 |url=http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf |publisher=BP |access-date=9 December 2011 |url-status=dead |archive-url=https://web.archive.org/web/20110902033116/http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf |archive-date= 2 September 2011 }}Calculated: 12002.4{{e|6}} tonnes of oil equivalent × 42{{e|9}}{{nbsp}}J/tonne of oil equivalent = 5.0{{e|20}}{{nbsp}}J
6.2×1020{{nbsp}}J

|World primary energy generation in 2023 (620 EJ).{{Cite web |last=Institute |first=Energy |title=Home |url=https://www.energyinst.org/statistical-review |access-date=2024-09-11 |website=Statistical review of world energy |language=en-gb}}"2023 saw a second consecutive record year for global primary energy consumption as it grew by 2%, reaching 620 EJ."

8×1020{{nbsp}}JEstimated global uranium resources for generating electricity 2005{{cite web|url=http://www.iaea.org/NewsCenter/News/2006/uranium_resources.html|publisher=iaea.org|title=Global Uranium Resources to Meet Projected Demand {{pipe}} International Atomic Energy Agency|access-date=26 December 2016|date=June 2006}}{{cite web|url=http://www.eia.doe.gov/pub/international/iealf/table63.xls|title=U.S. Energy Information Administration, International Energy Generation}}{{cite web|url=http://www.eia.doe.gov/oiaf/ieo/electricity.html|publisher=eia.doe.gov|title=U.S. EIA International Energy Outlook 2007. |access-date=26 December 2016}}Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
rowspan="4" | 1021

| rowspan="4" | zetta- (ZJ) {{anchor|1021}}

|6.9×1021{{nbsp}}J

Estimated energy contained in the world's natural gas reserves as of 2010Calculated: "6608.9 trillion cubic feet" => 6608.9{{e|3}} billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1{{e|6}} tonnes of oil equivalent/million tonnes of oil equivalent × 42{{e|9}}{{nbsp}}J/tonne of oil equivalent = 6.9{{e|21}}{{nbsp}}J
7.0×1021{{nbsp}}J

|Thermal energy released by the Toba eruption

7.9×1021{{nbsp}}JEstimated energy contained in the world's petroleum reserves as of 2010Calculated: "188.8 thousand million tonnes" => 188.8{{e|9}} tonnes of oil × 42{{e|9}}{{nbsp}}J/tonne of oil = 7.9{{e|21}}{{nbsp}}J
9.3×1021{{nbsp}}JAnnual net uptake of thermal energy by the global ocean during 2003-2018{{Cite journal |last1=Cheng |first1=Lijing |last2=Foster |first2=Grant |last3=Hausfather |first3=Zeke |last4=Trenberth |first4=Kevin E. |last5=Abraham |first5=John |date=2022 |title=Improved Quantification of the Rate of Ocean Warming |journal=Journal of Climate |volume=35 |issue=14 |pages=4827–4840 |doi=10.1175/JCLI-D-21-0895.1 |bibcode=2022JCli...35.4827C |doi-access=free}}Calculated per reference: 0.58{{nbsp}}W·m−2 is 9.3{{e|21}}{{nbsp}}J·yr−1 in the global domain
rowspan="7" |1022

| rowspan="7" | 

|1.2×1022J

|Seismic energy of a magnitude 11 earthquake on Earth (M 11){{Cite journal |last=Matsuzawa |first=Toru |date=2014-06-01 |title=The Largest Earthquakes We Should Prepare for |url=https://www.fujipress.jp/jdr/dr/dsstr000900030248/ |journal=Journal of Disaster Research |volume=9 |issue=3 |pages=248–251 |doi=10.20965/jdr.2014.p0248|doi-access=free }}

1.5×1022JTotal energy from the Sun that strikes the face of the Earth each dayCalculated: 1.27{{e|14}} m{{sup|2}} × 1370 W/m{{sup|2}} × 86400 s/day = 1.5{{e|22}}{{nbsp}}J
1.94×1022J

|Impact event that formed the Siljan Ring, the largest impact structure in Europe{{Cite journal |last1=Holm-Alwmark |first1=Sanna |last2=Rae |first2=Auriol S. P. |last3=Ferrière |first3=Ludovic |last4=Alwmark |first4=Carl |last5=Collins |first5=Gareth S. |date=2017-10-02 |title=Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden) |url=https://onlinelibrary.wiley.com/doi/10.1111/maps.12955 |journal=Meteoritics & Planetary Science |language=en |volume=52 |issue=12 |pages=2521–2549 |doi=10.1111/maps.12955 |bibcode=2017M&PS...52.2521H |issn=1086-9379}}

2.4×1022{{nbsp}}JEstimated energy contained in the world's coal reserves as of 2010Calculated: 860938 million tonnes of coal => 860938{{e|6}} tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42{{e|9}}{{nbsp}}J/tonne of oil equivalent = 2.4{{e|22}}{{nbsp}}J
2.9×1022{{nbsp}}JIdentified global uranium-238 resources using fast reactor technology
3.9×1022{{nbsp}}JEstimated energy contained in the world's fossil fuel reserves as of 2010Calculated: natural gas + petroleum + coal = 6.9{{e|21}}{{nbsp}}J + 7.9{{e|21}}{{nbsp}}J + 2.4{{e|22}}{{nbsp}}J = 3.9{{e|22}}{{nbsp}}J
8.03×1022{{nbsp}}J

|Total energy of the 2004 Indian Ocean earthquake{{Cite journal |last1=Fujii |first1=Yushiro |last2=Satake |first2=Kenji |last3=Watada |first3=Shingo |last4=Ho |first4=Tung-Cheng |date=2021-12-01 |title=Re-examination of Slip Distribution of the 2004 Sumatra–Andaman Earthquake (Mw 9.2) by the Inversion of Tsunami Data Using Green's Functions Corrected for Compressible Seawater Over the Elastic Earth |journal=Pure and Applied Geophysics |language=en |volume=178 |issue=12 |pages=4777–4796 |doi=10.1007/s00024-021-02909-6 |issn=1420-9136|doi-access=free }}

rowspan="3" |1023

| rowspan="3" | 

|1.5×1023{{nbsp}}J

|Total energy of the 1960 Valdivia earthquake{{Cite journal |last=Gudmundsson |first=Agust |date=2014-05-27 |title=Elastic energy release in great earthquakes and eruptions |journal=Frontiers in Earth Science |language=English |volume=2 |page=10 |doi=10.3389/feart.2014.00010 |doi-access=free |bibcode=2014FrEaS...2...10G |issn=2296-6463}}

2.2×1023{{nbsp}}JTotal global uranium-238 resources using fast reactor technology
3×1023{{nbsp}}JThe energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula{{Cite journal |last1=Richards |first1=Mark A. |last2=Alvarez |first2=Walter |last3=Self |first3=Stephen |last4=Karlstrom |first4=Leif |last5=Renne |first5=Paul R. |last6=Manga |first6=Michael |last7=Sprain |first7=Courtney J. |last8=Smit |first8=Jan |last9=Vanderkluysen |first9=Loÿc |last10=Gibson |first10=Sally A. |date=2015-11-01 |title=Triggering of the largest Deccan eruptions by the Chicxulub impact |url=https://doi.org/10.1130/B31167.1 |journal=Geological Society of America Bulletin |volume=127 |issue=11–12 |pages=1507–1520 |doi=10.1130/B31167.1 |bibcode=2015GSAB..127.1507R |s2cid=3463018 |issn=0016-7606}}

Over 10<sup>24</sup> J

{{Anchor|1024 and above}}

class="wikitable"

|+ List of orders of magnitude for energy

! Factor (joules)

! SI prefix

! Value

! Item

rowspan="4" |1024

| rowspan="4" |yotta- (YJ)

|2.31×1024{{nbsp}}J

|Total energy of the Sudbury impact event{{Cite conference |last1=Echaurren |first1=J. C. |date=2010 |title=Numerical Estimations of Hydrothermal Zones, Trough Mathematical Calculations for Impact Conditions, on the Sudbury Structure, Ontario, Canada |url=https://ui.adsabs.harvard.edu/abs/2010LPICo1538.5192E/abstract |conference=Astrobiology Science Conference 2010 |bibcode=2010LPICo1538.5192E}}

2.69×1024{{nbsp}}J

|Rotational energy of Venus, which has a sidereal period of (-)243 Earth days.{{Cite journal |last1=Margot |first1=Jean-Luc |last2=Campbell |first2=Donald B. |last3=Giorgini |first3=Jon D. |last4=Jao |first4=Joseph S. |last5=Snedeker |first5=Lawrence G. |last6=Ghigo |first6=Frank D. |last7=Bonsall |first7=Amber |date=July 2024 |title=Spin state and moment of inertia of Venus |url=https://www.nature.com/articles/s41550-021-01339-7 |journal=Nature Astronomy |language=en |volume=5 |issue=7 |pages=676–683 |doi=10.1038/s41550-021-01339-7 |issn=2397-3366|arxiv=2103.01504 }}{{Cite web |title=1/2*0.337*4.87*10^24kg*(6052km)^2*(2pi/(243*86400s))^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1/2*0.337*4.87*10%5E24kg*(6052km)%5E2*(2pi/(243*86400s))%5E2 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}Clarification of calculation:

Rotational energy = (defined equal to) 1/2 * Moment of Inertia Factor * Mass * Radius^2 * Angular Velocity^2

The inertial factor has been normalized, and takes on a value between 0 and 1. In this case it is 0.337(24).

3.8×1024{{nbsp}}J

|Radiative heat energy released from the Earth’s surface each year

5.5×1024{{nbsp}}JTotal energy from the Sun that strikes the face of the Earth each yearCalculated: 1.27{{e|14}} m{{sup|2}} × 1370 W/m{{sup|2}} × 86400 s/day = 5.5{{e|24}}{{nbsp}}J
1025

|4×1025{{nbsp}}J

|Total energy of the Carrington Event in 1859{{Cite journal |last=Hudson |first=Hugh S. |date=2021-09-08 |title=Carrington Events |url=https://www.annualreviews.org/doi/10.1146/annurev-astro-112420-023324 |journal=Annual Review of Astronomy and Astrophysics |language=en |volume=59 |issue=1 |pages=445–477 |doi=10.1146/annurev-astro-112420-023324 |bibcode=2021ARA&A..59..445H |issn=0066-4146}}

rowspan="3" | 1026

| rowspan="3" |  

| >1026J

Estimated energy of early Archean asteroid impacts{{Cite journal|url=https://ntrs.nasa.gov/citations/20180006692|title = Climatic Effect of Impacts on the Ocean|date = 26 August 2018|bibcode = 2018LPICo2065.2056Z|last1 = Zahnle|first1 = K. J.|journal = Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces|volume = 2065|page = 2056}}
3.2×1026{{nbsp}}J

|Bolometric energy of Proxima Centauri's superflare in March 2016 (10^33.5 erg). In one year, potentially five similar superflares erupts from the surface of the red dwarf.{{Cite journal |last1=Howard |first1=Ward S. |last2=Tilley |first2=Matt A. |last3=Corbett |first3=Hank |last4=Youngblood |first4=Allison |last5=Loyd |first5=R. O. Parke |last6=Ratzloff |first6=Jeffrey K. |last7=Law |first7=Nicholas M. |last8=Fors |first8=Octavi |last9=del Ser |first9=Daniel |last10=Shkolnik |first10=Evgenya L. |last11=Ziegler |first11=Carl |last12=Goeke |first12=Erin E. |last13=Pietraallo |first13=Aaron D. |last14=Haislip |first14=Joshua |date=2018-06-20 |title=The First Naked-Eye Superflare Detected from Proxima Centauri |journal=The Astrophysical Journal Letters |volume=860 |issue=2 |pages=L30 |doi=10.3847/2041-8213/aacaf3 |doi-access=free |arxiv=1804.02001 |bibcode=2018ApJ...860L..30H |issn=2041-8205}}

3.828×1026{{nbsp}}JTotal radiative energy output of the Sun each second{{cite web|title=Ask Us: Sun: Amount of Energy the Earth Gets from the Sun|url=http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass|archive-url=https://web.archive.org/web/20000816180724/http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass|url-status=dead|archive-date=16 August 2000|work=Cosmicopia|publisher=NASA|access-date=4 November 2011}}
rowspan="4" | 1027rowspan="4" | ronna- (RJ)1×1027{{nbsp}}JEstimated energy released by the impact that created the Caloris basin on Mercury{{cite web|last1=Lii|first1=Jiangning|title=Seismic effects of the Caloris basin impact, Mercury|url=https://dspace.mit.edu/bitstream/handle/1721.1/69472/775585855-MIT.pdf?sequence=2|website=MIT}}
1×1027{{nbsp}}J

|Upper limit of the most energetic solar flares possible (X1000){{Cite journal |last1=Okamoto |first1=Soshi |last2=Notsu |first2=Yuta |last3=Maehara |first3=Hiroyuki |last4=Namekata |first4=Kosuke |last5=Honda |first5=Satoshi |last6=Ikuta |first6=Kai |last7=Nogami |first7=Daisaku |last8=Shibata |first8=Kazunari |date=2021-01-11 |title=Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data |journal=The Astrophysical Journal |language=en |volume=906 |issue=2 |pages=72 |doi=10.3847/1538-4357/abc8f5 |doi-access=free |arxiv=2011.02117 |bibcode=2021ApJ...906...72O |issn=0004-637X}}

5.19×1027{{nbsp}}J

|Thermal input necessary to evaporate all surface water on Earth.{{Cite web |title=1.386 billion km^3 * 1024kg/1m^3 * (2257J+4.19*(100-20)cal)/g - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1.386+billion+km%5E3+*+1024kg/1m%5E3+*+(2257J%2B4.19*(100-20)cal)/g |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}{{Cite web |title=Heat of Vaporization |url=http://www.kentchemistry.com/links/Energy/HeatVaporization.htm |url-status=live |archive-url=https://web.archive.org/web/20230407002457/http://www.kentchemistry.com/links/Energy/HeatVaporization.htm |archive-date=7 April 2023 |access-date=24 September 2024}}{{Cite web |title=SCTqh.png (PNG Image, 500 x 300 pixels) |url=https://i.sstatic.net/SCTqh.png |access-date=24 September 2024 |website=i.sstatic.net |postscript=Heat Capacity v.s. Temperature graph for water. 4.19 taken as average value for 20 to 100 degrees C.}} Note that the evaporated water still remains on Earth, merely in vapor form.

4.2×1027{{nbsp}}J

|Kinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60{{nbsp}}mph (~50{{nbsp}}J).{{Cite web |title=0.145kg*c^2*(1/sqrt(1-0.9999999999999999999999951^2)-1) - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/ |access-date=2024-01-04 |website=www.wolframalpha.com |language=en}}

rowspan="2" | 1028rowspan="2" |3.8×1028{{nbsp}}JKinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth){{cite web | url= http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html | title= Moon Fact Sheet | publisher=NASA | access-date=16 December 2011 }}Calculated: KE = 1/2 × m × v{{sup|2}}. v = 1.023{{e|3}} m/s. m = 7.349{{e|22}} kg. KE = 1/2 × (7.349{{e|22}} kg) × (1.023{{e|3}} m/s){{sup|2}} = 3.845{{e|28}}{{nbsp}}J.
7×1028{{nbsp}}J

|Total energy of the stellar superflare from V1355 Orionis{{Cite journal |last1=Inoue |first1=Shun |last2=Maehara |first2=Hiroyuki |last3=Notsu |first3=Yuta |last4=Namekata |first4=Kosuke |last5=Honda |first5=Satoshi |last6=Namizaki |first6=Keiichi |last7=Nogami |first7=Daisaku |last8=Shibata |first8=Kazunari |date=2023 |title=Detection of a High-velocity Prominence Eruption Leading to a CME Associated with a Superflare on the RS CVn-type Star V1355 Orionis |journal=The Astrophysical Journal |language=en |volume=948 |issue=1 |pages=9 |doi=10.3847/1538-4357/acb7e8 |doi-access=free |arxiv=2301.13453 |bibcode=2023ApJ...948....9I |issn=0004-637X}}{{Cite web |last=Cowing |first=Keith |date=2023-04-28 |title=Superflare With Massive, High-velocity Prominence Eruption |url=https://spaceref.com/science-and-exploration/superflare-with-massive-high-velocity-prominence-eruption/ |access-date=2024-05-26 |website=SpaceRef |language=en-US}}

1029 2.1×1029{{nbsp}}JRotational energy of the Earth{{cite web|title=Moment of Inertia—Earth|url=http://scienceworld.wolfram.com/physics/MomentofInertiaEarth.html|work=Eric Weisstein's World of Physics|access-date=5 November 2011}}{{cite web|last=Allain|first=Rhett|title=Rotational energy of the Earth as an energy source|url=http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php|work=.dotphysics|publisher=Science Blogs|access-date=5 November 2011|quote=the Earth takes 23.9345 hours to rotate|archive-url=https://web.archive.org/web/20111117014824/http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php|archive-date=17 November 2011|url-status=dead}}Calculated: E_rotational = 1/2 × I × w{{sup|2}} = 1/2 × (8.0{{e|37}} kg m{{sup|2}}) × (2×pi/(23.9345 hour period × 3600 seconds/hour)){{sup|2}} = 2.1{{e|29}}{{nbsp}}J
1030quetta- (QJ)1.79×1030{{nbsp}}JRough estimate of the gravitational binding energy of Mercury.{{Cite web |title=gravitational binding energy calculator - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=gravitational+binding+energy+calculator&assumption=%7B%22F%22,+%22UniformDensitySphereGravitationalBindingEnergy%22,+%22r%22%7D+-%3E%222439.7+km%22&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22U%22%7D,+%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22m%22%7D,+%7B%22UniformDensitySphereGravitationalBindingEnergy%22,+%22r%22%7D%7D&assumption=%7B%22F%22,+%22UniformDensitySphereGravitationalBindingEnergy%22,+%22m%22%7D+-%3E%223.3011e+23+kg%22 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}
rowspan="2" |1031

| rowspan="2" | 

|2×1031{{nbsp}}J

|The Theia Impact, the most energetic event ever in Earth's history{{Cite web |last=Dhar |first=Michael |date=2022-11-06 |title=What was Earth's biggest explosion? |url=https://www.livescience.com/biggest-explosions-on-earth |access-date=2024-05-27 |website=livescience.com |language=en}}{{cite arXiv |eprint=2305.18635 |first=Richard B. |last=Firestone |title=The origin of the terrestrial planets |date=2023-05-29|class=astro-ph.EP }}

 3.3×1031JTotal energy output of the Sun each dayCalculated: 3.8{{e|26}}{{nbsp}}J/s × 86400 s/day = 3.3{{e|31}}{{nbsp}}J
rowspan="2" | 1032rowspan="2" |  1.71×1032{{nbsp}}JGravitational binding energy of the Earth{{Cite web |last=Typinski |first=Dave |date=January 2009 |title=Earth's Gravitational Binding Energy |url=http://typnet.net/Essays/EarthBindGraphics/EarthBind.pdf |archive-url=https://web.archive.org/web/20240104173513/http://typnet.net/Essays/EarthBindGraphics/EarthBind.pdf |archive-date=4 January 2024 |access-date=2024-01-04}}
3.10×1032{{nbsp}}J

|Yearly energy output of Sirius B, the ultra-dense and Earth-sized white dwarf companion of Sirius, the Dog Star. It has a surface temperature of about 25,200 K.{{Cite web |title=pi*(11700km)^2*stefan boltzmann constant*(25200K)^4*yr - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=pi*(11700km)%5E2*stefan+boltzmann+constant*(25200K)%5E4*yr |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}

1033 2.7×1033{{nbsp}}JEarth's kinetic energy at perihelion in its orbit around the Sun{{Cite web |date=2023-12-26 |title=Earth Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |access-date=2024-01-04 |archive-url=https://web.archive.org/web/20231226062838/https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |archive-date=26 December 2023 }}KE = 1/2 × 5.9722×10^24 kg × (30.29 km/s)^2 = 2.74×10^33 J
1034 1.2×1034{{nbsp}}JTotal energy output of the Sun each yearCalculated: 3.8{{e|26}}{{nbsp}}J/s × 86400 s/day × 365.25 days/year = 1.2{{e|34}}{{nbsp}}J
1035

|

|3.5×1035{{nbsp}}J

|The most energetic stellar superflare to date (V2487 Ophiuchi){{cite arXiv |eprint=2405.01210 |first=Bradley E. |last=Schaefer |title=Recurrent Nova V2487 Oph Had Superflares in 1941 and 1942 With Radiant Energies 1042.5±1.6 Ergs |date=2024-05-02|class=astro-ph.SR }}

1038

|

|7.53×1038{{nbsp}}J

|Baryonic (ordinary) mass-energy contained in a volume of one cubic light-year, on average.{{Cite web |title=9.9e-30g/cm3*1ly3*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9e-30g/cm3*1ly3*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}

rowspan="2" |1039  

|

|2–5×1039 J

|Energy of the giant flare (starquake) released by SGR 1806-20{{Cite web |title=NASA - Cosmic Explosion Among the Brightest in Recorded History |url=https://www.nasa.gov/vision/universe/watchtheskies/swift_nsu_0205.html |access-date=2022-03-27 |website=www.nasa.gov |language=en}}{{Cite journal |last1=Palmer |first1=D. M. |last2=Barthelmy |first2=S. |last3=Gehrels |first3=N. |last4=Kippen |first4=R. M. |last5=Cayton |first5=T. |last6=Kouveliotou |first6=C. |last7=Eichler |first7=D. |last8=Wijers |first8=R. a. M. J. |last9=Woods |first9=P. M. |last10=Granot |first10=J. |last11=Lyubarsky |first11=Y. E. |date=April 2005 |title=A giant γ-ray flare from the magnetar SGR 1806–20 |url=https://www.nature.com/articles/nature03525 |journal=Nature |language=en |volume=434 |issue=7037 |pages=1107–1109 |doi=10.1038/nature03525 |pmid=15858567 |arxiv=astro-ph/0503030 |bibcode=2005Natur.434.1107P |s2cid=16579885 |issn=1476-4687}}{{Cite journal |last1=Stella |first1=L. |last2=Dall'Osso |first2=S. |last3=Israel |first3=G. L. |last4=Vecchio |first4=A. |date=2005-11-17 |title=Gravitational Radiation from Newborn Magnetars in the Virgo Cluster |url=https://iopscience.iop.org/article/10.1086/498685 |journal=The Astrophysical Journal |language=en |volume=634 |issue=2 |pages=L165–L168 |doi=10.1086/498685 |arxiv=astro-ph/0511068 |bibcode=2005ApJ...634L.165S |s2cid=18172538 |issn=0004-637X}}

| 6.602×1039 J{{nbsp}}Theoretical total mass–energy of the Moon{{Cite web |title=7.346e 22kg*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=7.346e+22kg*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}{{Cite web |title=Moon Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |access-date=2024-09-13 |website=nssdc.gsfc.nasa.gov}}
1040  

|

|1.61×1040{{nbsp}}J

|Baryonic mass-energy contained in a volume of one cubic parsec, on average.{{Cite web |title=9.9e-30g/cm3*1pc3*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9e-30g/cm3*1pc3*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}

rowspan=2 | 1041

|rowspan=2 |  

| 2.276×1041{{nbsp}}J

Gravitational binding energy of the SunU = \frac{(3/5)GM^2}{r}{{br}}Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition){{br}}Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
5.3675×1041{{nbsp}}JTheoretical total mass–energy of the Earth{{Cite web |title=Earth Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |access-date=2024-09-13 |website=nssdc.gsfc.nasa.gov}}{{Cite web |title=5.9722e 24kg*c^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=5.9722e+24kg*c%5E2 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}
rowspan="2" |1043

| rowspan="2" |  

| 5×1043{{nbsp}}J

| Total energy of all gamma rays in a typical gamma-ray burst if collimated{{Cite journal | last1 = Frail | first1 = D. A. | last2 = Kulkarni | first2 = S. R. | last3 = Sari | first3 = R. | last4 = Djorgovski | first4 = S. G. | last5 = Bloom | first5 = J. S. | last6 = Galama | first6 = T. J. | last7 = Reichart | first7 = D. E. | last8 = Berger | first8 = E. | last9 = Harrison | first9 = F. A. | last10 = Price | first10 = P. A. | last11 = Yost | first11 = S. A. | last12 = Diercks | first12 = A. | last13 = Goodrich | first13 = R. W. | last14 = Chaffee | first14 = F. | title = Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir | doi = 10.1086/338119 | journal = The Astrophysical Journal | volume = 562 | issue = 1 | pages = L55 | year = 2001 |arxiv = astro-ph/0102282 |bibcode = 2001ApJ...562L..55F | s2cid = 1047372 }} "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 10{{sup|50}} erg"Calculated: 5{{e|50}} erg × 1{{e

7}}{{nbsp}}J/erg = 5{{e|43}}{{nbsp}}J
>1043 J

|Total energy in a typical fast blue optical transient (FBOT){{Cite journal |last=Lyutikov |first=Maxim |date=2022 |title=On the nature of fast blue optical transients |url=https://academic.oup.com/mnras/article/515/2/2293/6612740 |journal=Monthly Notices of the Royal Astronomical Society |volume=515 |issue=2 |pages=2293–2304 |doi=10.1093/mnras/stac1717 |doi-access=free |via=Oxford Academic|arxiv=2204.08366 }}

rowspan="5" |1044

| rowspan="5" | 

|~1044 J

|Average value of a Tidal Disruption Event (TDE) in optical/UV bands{{Cite journal |last1=Lu |first1=Wenbin |last2=Kumar |first2=Pawan |date=2018-09-28 |title=On the Missing Energy Puzzle of Tidal Disruption Events |journal=The Astrophysical Journal |volume=865 |issue=2 |pages=128 |doi=10.3847/1538-4357/aad54a |arxiv=1802.02151 |bibcode=2018ApJ...865..128L |s2cid=56015417 |issn=1538-4357 |doi-access=free }}

~1044 J

|Estimated kinetic energy released by FBOT CSS161010{{Cite journal |last1=Coppejans |first1=D. L. |last2=Margutti |first2=R. |last3=Terreran |first3=G. |last4=Nayana |first4=A. J. |last5=Coughlin |first5=E. R. |last6=Laskar |first6=T. |last7=Alexander |first7=K. D. |last8=Bietenholz |first8=M. |last9=Caprioli |first9=D. |last10=Chandra |first10=P. |last11=Drout |first11=M. R. |date=2020-05-26 |title=A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy |journal=The Astrophysical Journal |language=en |volume=895 |issue=1 |pages=L23 |doi=10.3847/2041-8213/ab8cc7 |arxiv=2003.10503 |bibcode=2020ApJ...895L..23C |s2cid=214623364 |issn=2041-8213 |doi-access=free }}

~1044{{nbsp}}JTotal energy released in a typical supernova,{{Cite journal |last1=Li |first1=Miao |last2=Li |first2=Yuan |last3=Bryan |first3=Greg L. |last4=Ostriker |first4=Eve C. |last5=Quataert |first5=Eliot |date=2020-05-05 |title=The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium |journal=The Astrophysical Journal |language=en |volume=894 |issue=1 |pages=44 |doi=10.3847/1538-4357/ab86b4 |doi-access=free |arxiv=1909.03138 |bibcode=2020ApJ...894...44L |issn=0004-637X}} sometimes referred to as a foe.
1.233×1044{{nbsp}}JApproximate lifetime energy output of the Sun.{{Cite web |title=Astronomy with an online telescope |url=https://www.open.edu/openlearn/mod/oucontent/view.php?id=114771§ion=3.3 |access-date=2024-09-11 |website=Open Learning |language=en}}{{Cite web |title=1.37e27 kg * 9e16 m^2/s^2 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=1.37e27+kg+*+9e16+m%5E2/s%5E2 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}
{{Val|3|u=J|e=44}}

|Total energy of a typical gamma-ray burst if collimated{{Cite journal |last1=Frail |first1=D. A. |last2=Kulkarni |first2=S. R. |last3=Sari |first3=R. |last4=Djorgovski |first4=S. G. |last5=Bloom |first5=J. S. |last6=Galama |first6=T. J. |last7=Reichart |first7=D. E. |last8=Berger |first8=E. |last9=Harrison |first9=F. A. |last10=Price |first10=P. A. |last11=Yost |first11=S. A. |last12=Diercks |first12=A. |last13=Goodrich |first13=R. W. |last14=Chaffee |first14=F. |date=2001-11-01 |title=Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir |url=https://iopscience.iop.org/article/10.1086/338119/meta |journal=The Astrophysical Journal |language=en |volume=562 |issue=1 |pages=L55 |doi=10.1086/338119 |arxiv=astro-ph/0102282 |bibcode=2001ApJ...562L..55F |issn=0004-637X}}

rowspan="6" |1045

| rowspan="6" | 

|~1045 J

|Estimated energy released in a hypernova and pair instability supernova{{Cite journal |last1=Nakamura |first1=Takayoshi |last2=Umeda |first2=Hideyuki |last3=Iwamoto |first3=Koichi |last4=Nomoto |first4=Ken’ichi |last5=Hashimoto |first5=Masa-aki |last6=Hix |first6=W. Raphael |last7=Thielemann |first7=Friedrich-Karl |date=2001-07-10 |title=Explosive Nucleosynthesis in Hypernovae |url=https://iopscience.iop.org/article/10.1086/321495 |journal=The Astrophysical Journal |volume=555 |issue=2 |pages=880–899 |doi=10.1086/321495 |arxiv=astro-ph/0011184 |bibcode=2001ApJ...555..880N |issn=0004-637X}}

1045 J

|Energy released by the energetic supernova, SN 2016aps{{Cite journal |last1=Nicholl |first1=Matt |last2=Blanchard |first2=Peter K. |last3=Berger |first3=Edo |last4=Chornock |first4=Ryan |last5=Margutti |first5=Raffaella |last6=Gomez |first6=Sebastian |last7=Lunnan |first7=Ragnhild |last8=Miller |first8=Adam A. |last9=Fong |first9=Wen-fai |last10=Terreran |first10=Giacomo |last11=Vigna-Gómez |first11=Alejandro |date=September 2020 |title=An extremely energetic supernova from a very massive star in a dense medium |url=https://www.nature.com/articles/s41550-020-1066-7 |journal=Nature Astronomy |language=en |volume=4 |issue=9 |pages=893–899 |doi=10.1038/s41550-020-1066-7 |arxiv=2004.05840 |bibcode=2020NatAs...4..893N |s2cid=215744925 |issn=2397-3366}}{{Cite journal |last1=Suzuki |first1=Akihiro |last2=Nicholl |first2=Matt |last3=Moriya |first3=Takashi J. |last4=Takiwaki |first4=Tomoya |date=2021-02-01 |title=Extremely Energetic Supernova Explosions Embedded in a Massive Circumstellar Medium: The Case of SN 2016aps |journal=The Astrophysical Journal |volume=908 |issue=1 |pages=99 |doi=10.3847/1538-4357/abd6ce |doi-access=free |arxiv=2012.13283 |bibcode=2021ApJ...908...99S |issn=0004-637X}}

1.7–1.9×1045 JEnergy released by hypernova ASASSN-15lh{{Cite journal |last1=Godoy-Rivera |first1=D. |last2=Stanek |first2=K. Z. |last3=Kochanek |first3=C. S. |last4=Chen |first4=Ping |last5=Dong |first5=Subo |last6=Prieto |first6=J. L. |last7=Shappee |first7=B. J. |last8=Jha |first8=S. W. |last9=Foley |first9=R. J. |last10=Pan |first10=Y.-C. |last11=Holoien |first11=T. W.-S. |last12=Thompson |first12=Todd. A. |last13=Grupe |first13=D. |last14=Beacom |first14=J. F. |date=2017-04-01 |title=The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=466 |issue=2 |pages=1428–1443 |doi=10.1093/mnras/stw3237 |doi-access=free |issn=0035-8711|arxiv=1605.00645 }}
2.3×1045 J

|Energy released by the energetic supernova PS1-10adi{{Cite journal |last1=Kankare |first1=E. |last2=Kotak |first2=R. |last3=Mattila |first3=S. |last4=Lundqvist |first4=P. |last5=Ward |first5=M. J. |last6=Fraser |first6=M. |last7=Lawrence |first7=A. |last8=Smartt |first8=S. J. |last9=Meikle |first9=W. P. S. |last10=Bruce |first10=A. |last11=Harmanen |first11=J. |date=December 2017 |title=A population of highly energetic transient events in the centres of active galaxies |url=https://www.nature.com/articles/s41550-017-0290-2 |journal=Nature Astronomy |language=en |volume=1 |issue=12 |pages=865–871 |doi=10.1038/s41550-017-0290-2 |arxiv=1711.04577 |bibcode=2017NatAs...1..865K |s2cid=119421626 |issn=2397-3366}}Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae

>1045 J

|Estimated energy of a magnetorotational hypernova{{Cite journal |last1=Yong |first1=D. |last2=Kobayashi |first2=C. |last3=Da Costa |first3=G. S. |last4=Bessell |first4=M. S. |last5=Chiti |first5=A. |last6=Frebel |first6=A. |last7=Lind |first7=K.|author7-link= Karin Lind |last8=Mackey |first8=A. D. |last9=Nordlander |first9=T. |last10=Asplund |first10=M. |last11=Casey |first11=A. R. |date=2021-07-08 |title=R-Process elements from magnetorotational hypernovae |journal=Nature |volume=595 |issue=7866 |pages=223–226 |doi=10.1038/s41586-021-03611-2 |pmid=34234332 |arxiv=2107.03010 |bibcode=2021Natur.595..223Y |s2cid=235755170 |issn=0028-0836}}

>1045{{nbsp}}JTotal energy (energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst if collimated{{Cite journal|arxiv=1003.3885|last1=McBreen|first1=S|title=Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies|journal=Astronomy and Astrophysics|volume=516|issue=71|pages=A71|last2=Krühler|first2=T|last3=Rau|first3=A|last4=Greiner|first4=J|last5=Kann|first5=D. A|last6=Savaglio|first6=S|last7=Afonso|first7=P|last8=Clemens|first8=C|last9=Filgas|first9=R|last10=Klose|first10=S|last11=Küpüc Yoldas|first11=A|last12=Olivares E|first12=F|last13=Rossi|first13=A|last14=Szokoly|first14=G. P|last15=Updike|first15=A|last16=Yoldas|first16=A|year=2010|doi=10.1051/0004-6361/200913734|bibcode=2010A&A...516A..71M|s2cid=119151764}}{{Cite journal|arxiv=1004.2900|last1=Cenko|first1=S. B|title=Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events|journal=The Astrophysical Journal|volume=732|issue=1|pages=29|last2=Frail|first2=D. A|last3=Harrison|first3=F. A|last4=Haislip|first4=J. B|last5=Reichart|first5=D. E|last6=Butler|first6=N. R|last7=Cobb|first7=B. E|last8=Cucchiara|first8=A|last9=Berger|first9=E|last10=Bloom|first10=J. S|last11=Chandra|first11=P|last12=Fox|first12=D. B|last13=Perley|first13=D. A|last14=Prochaska|first14=J. X|last15=Filippenko|first15=A. V|last16=Glazebrook|first16=K|last17=Ivarsen|first17=K. M|last18=Kasliwal|first18=M. M|last19=Kulkarni|first19=S. R|last20=LaCluyze|first20=A. P|last21=Lopez|first21=S|last22=Morgan|first22=A. N|last23=Pettini|first23=M|last24=Rana|first24=V. R|year=2010|doi=10.1088/0004-637X/732/1/29|bibcode=2011ApJ...732...29C|s2cid=50964480}}{{Cite journal|arxiv=0905.0690|last1=Cenko|first1=S. B|title=The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts|journal=The Astrophysical Journal|volume=711|issue=2|pages=641–654|last2=Frail|first2=D. A|last3=Harrison|first3=F. A|last4=Kulkarni|first4=S. R|last5=Nakar|first5=E|last6=Chandra|first6=P|last7=Butler|first7=N. R|last8=Fox|first8=D. B|last9=Gal-Yam|first9=A|last10=Kasliwal|first10=M. M|last11=Kelemen|first11=J|last12=Moon|first12=D. -S|last13=Price|first13=P. A|last14=Rau|first14=A|last15=Soderberg|first15=A. M|author15-link= Alicia M. Soderberg|last16=Teplitz|first16=H. I|last17=Werner|first17=M. W|last18=Bock|first18=D. C. -J|last19=Bloom|first19=J. S|last20=Starr|first20=D. A|last21=Filippenko|first21=A. V|last22=Chevalier|first22=R. A|last23=Gehrels|first23=N|last24=Nousek|first24=J. N|last25=Piran|first25=T|last26=Piran|first26=T|year=2010|doi=10.1088/0004-637X/711/2/641|bibcode=2010ApJ...711..641C|s2cid=32188849}}{{Cite web |last=Frail |first=Dale A. |title=GRB ENERGETICS. Then and Now |url=http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf |archive-url=https://web.archive.org/web/20140801172839/http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf |archive-date=1 August 2014 |website=tsvi.phys.huji.ac.il}}{{Cite web |last=Frail |first=Dale A. |title=Multi-wavelength afterglow observations |url=http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt |archive-url=https://web.archive.org/web/20231024160333/http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt |archive-date=24 October 2023 |archive-format=PPT |website=fermi.gsfc.nasa.gov |format=PPT}}
rowspan="3" | 1046rowspan="3" |>1046{{nbsp}}J

| Estimated energy in theoretical quark-novae{{cite journal |url=https://www.aanda.org/component/article?access=bibcode&bibcode=&bibcode=2002A%2526A...390L..39OFUL |title = Quark-Nova {{!}} Astronomy & Astrophysics (A&A)| journal=Astronomy & Astrophysics | date=August 2002 | volume=390 | issue=3 | pages=L39–L42 | doi=10.1051/0004-6361:20020982 | last1=Ouyed | first1=R. | last2=Dey | first2=J. | last3=Dey | first3=M. }}

~1046{{nbsp}}J

|Upper limit of the total energy of a supernova{{Cite journal |last1=Kasen |first1=Daniel |last2=Woosley |first2=S. E. |last3=Heger |first3=Alexander |year=2011 |title=Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout |url=https://iopscience.iop.org/article/10.1088/0004-637X/734/2/102 |journal=The Astrophysical Journal |volume=734 |issue=2 |page=102 |arxiv=1101.3336 |bibcode=2011ApJ...734..102K |doi=10.1088/0004-637X/734/2/102 |s2cid=118508934}}{{Cite journal |last1=Sukhbold |first1=Tuguldur |last2=Woosley |first2=S. E. |date=2016-03-30 |title=The Most Luminous Supernovae |journal=The Astrophysical Journal Letters |volume=820 |issue=2 |pages=L38 |doi=10.3847/2041-8205/820/2/l38 |doi-access=free |arxiv=1602.04865 |bibcode=2016ApJ...820L..38S |issn=2041-8205}}

1.5×1046{{nbsp}}J

|Total energy of the most energetic optical non-quasar transient, AT2021lwx{{Cite journal |last1=Wiseman |first1=p. |last2=Wang |first2=Y. |last3=Hönig |first3=S. |last4=Castero-Segura |first4=N. |last5=Clark |first5=P. |last6=Frohmaier |first6=C. |last7=Fulton |first7=M. D. |last8=Leloudas |first8=G. |last9=Middleton |first9=M. |last10=Müller-Bravo |first10=T. E. |last11=Mummery |first11=A. |last12=Pursiainen |first12=M |last13=Smartt |first13=S. J. |last14=Smith |first14=K. |last15=Sullivan |first15=M. |date=July 2023 |title=Multiwavelength observations of the extraordinary accretion event AT 2021lwx |journal=Monthly Notices of the Royal Astronomical Society |volume=522 |issue=3 |pages=3992–4002 |doi=10.1093/mnras/stad1000 |doi-access=free |arxiv=2303.04412 }}

rowspan="7" |1047

| rowspan="7" | 

|1045-47 J

|Estimated energy of stellar mass rotational black holes by vacuum polarization in an electromagnetic field{{Cite journal |last1=Ruffini |first1=R. |last2=Salmonson |first2=J. D. |last3=Wilson |first3=J. R. |last4=Xue |first4=S. -S. |date=1999-10-01 |title=On the pair electromagnetic pulse of a black hole with electromagnetic structure |url=https://ui.adsabs.harvard.edu/abs/1999A&A...350..334R |journal=Astronomy and Astrophysics |volume=350 |pages=334–343 |arxiv=astro-ph/9907030 |bibcode=1999A&A...350..334R |issn=0004-6361}}{{Cite journal |last1=Ruffini |first1=R. |last2=Salmonson |first2=J. D. |last3=Wilson |first3=J. R. |last4=Xue |first4=S. -S. |date=2000-07-01 |title=On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant |url=https://ui.adsabs.harvard.edu/abs/2000A&A...359..855R |journal=Astronomy and Astrophysics |volume=359 |pages=855–864 |arxiv=astro-ph/0004257 |bibcode=2000A&A...359..855R |issn=0004-6361}}

1047 J

|Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE){{Cite journal |last1=De Colle |first1=Fabio |last2=Lu |first2=Wenbin |date=September 2020 |title=Jets from Tidal Disruption Events |journal=New Astronomy Reviews |volume=89 |pages=101538 |doi=10.1016/j.newar.2020.101538|arxiv=1911.01442 |bibcode=2020NewAR..8901538D |s2cid=207870076 }}

~1047 J

|Upper limit of collimated- corrected total energy of a gamma-ray burst{{Cite journal |last1=Tamburini |first1=Fabrizio |last2=De Laurentis |first2=Mariafelicia |last3=Amati |first3=Lorenzo |last4=Thidé |first4=Bo |date=2017-11-06 |title=General relativistic electromagnetic and massive vector field effects with gamma-ray burst production |url=https://link.aps.org/doi/10.1103/PhysRevD.96.104003 |journal=Physical Review D |volume=96 |issue=10 |pages=104003 |doi=10.1103/PhysRevD.96.104003|arxiv=1603.01464 |bibcode=2017PhRvD..96j4003T }}{{Cite journal |last1=Misra |first1=Kuntal |last2=Ghosh |first2=Ankur |last3=Resmi |first3=L. |date=2023 |title=The Detection of Very High Energy Photons in Gamma Ray Bursts |url=https://www.tifr.res.in/~ipa1970/news/V53-12/Vol53-12-A11.pdf |journal=Physics News |publisher=Tata Institute of Fundamental Research |volume=53 |pages=42–45}}{{Cite journal |last1=Frederiks |first1=D. |last2=Svinkin |first2=D. |last3=Lysenko |first3=A. L. |last4=Molkov |first4=S. |last5=Tsvetkova |first5=A. |last6=Ulanov |first6=M. |last7=Ridnaia |first7=A. |last8=Lutovinov |first8=A. A. |last9=Lapshov |first9=I. |last10=Tkachenko |first10=A. |last11=Levin |first11=V. |date=2023-05-01 |title=Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations |journal=The Astrophysical Journal Letters |volume=949 |issue=1 |pages=L7 |doi=10.3847/2041-8213/acd1eb |issn=2041-8205|doi-access=free |arxiv=2302.13383 |bibcode=2023ApJ...949L...7F }}

1.8×1047{{nbsp}}JTheoretical total mass–energy of the Sun{{cite web |url= http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html |title= Sun Fact Sheet |publisher= NASA |access-date=15 October 2011 }}{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=30&num=2.0&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
5.4×1047{{nbsp}}JMass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914){{Cite journal | last1 = Abbott | first1 = B. | last2 = Abbott | first2 = R. | display-authors=1 | title = Observation of Gravitational Waves from a Binary Black Hole Merger | journal = Physical Review Letters | doi = 10.1103/PhysRevLett.116.061102 | volume = 116 | issue = 6 | year = 2016|arxiv = 1602.03837 |bibcode = 2016PhRvL.116f1102A | pmid=26918975 | pages=061102| s2cid = 124959784 }}
8.6×1047{{nbsp}}JMass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
8.8×1047{{nbsp}}JGRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/trueIt is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in an electromagnetic field, which are able to explain energetics up and over 1047 J isotropic energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy{{Cite arXiv |last=Tajima |first=Hiroyasu |date=2009 |title=Fermi Observations of high-energy gamma-ray emissions from GRB 080916C |class=astro-ph.HE |eprint=0907.0714 }}
rowspan="3" |1048

| rowspan="3" |

|1048 J

|Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."{{Cite journal|last1=Whalen|first1=Daniel J.|last2=Johnson|first2=Jarrett L.|last3=Smidt|first3=Joseph|last4=Meiksin|first4=Avery|last5=Heger|first5=Alexander|last6=Even|first6=Wesley|last7=Fryer|first7=Chris L.|title=The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth|date=August 2013|url=https://doi.org/10.1088/0004-637x/774/1/64|journal=The Astrophysical Journal|language=en|volume=774|issue=1|pages=64|doi=10.1088/0004-637X/774/1/64|issn=0004-637X|arxiv=1305.6966|bibcode=2013ApJ...774...64W|s2cid=59289675}}{{Cite journal|last1=Chen|first1=Ke-Jung|last2=Heger|first2=Alexander|last3=Woosley|first3=Stan|last4=Almgren|first4=Ann|last5=Whalen|first5=Daniel J.|last6=Johnson|first6=Jarrett L.|title=The General Relativistic Instability Supernova of a Supermassive Population III Star|date=July 2014|url=https://doi.org/10.1088/0004-637x/790/2/162|journal=The Astrophysical Journal|language=en|volume=790|issue=2|pages=162|doi=10.1088/0004-637X/790/2/162|issn=0004-637X|arxiv=1402.4777|bibcode=2014ApJ...790..162C|s2cid=119269181}}

~1.2×1048 J

|Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detectedAssuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses{{Cite journal |last1=Abbott |first1=R. |last2=Abbott |first2=T. D. |last3=Abraham |first3=S. |last4=Acernese |first4=F. |last5=Ackley |first5=K. |last6=Adams |first6=C. |last7=Adhikari |first7=R. X. |last8=Adya |first8=V. B. |last9=Affeldt |first9=C. |last10=Agathos |first10=M. |last11=Agatsuma |first11=K. |date=2020-09-02 |title=Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521 |journal=The Astrophysical Journal |language=en |volume=900 |issue=1 |pages=L13 |doi=10.3847/2041-8213/aba493 |arxiv=2009.01190 |bibcode=2020ApJ...900L..13A |s2cid=221447444 |issn=2041-8213 |doi-access=free }}{{Cite journal |last1=LIGO Scientific Collaboration and Virgo Collaboration |last2=Abbott |first2=R. |last3=Abbott |first3=T. D. |last4=Abraham |first4=S. |last5=Acernese |first5=F. |last6=Ackley |first6=K. |last7=Adams |first7=C. |last8=Adhikari |first8=R. X. |last9=Adya |first9=V. B. |last10=Affeldt |first10=C. |last11=Agathos |first11=M. |date=2020-09-02 |title=GW190521: A Binary Black Hole Merger with a Total Mass of 150 M |journal=Physical Review Letters |volume=125 |issue=10 |pages=101102 |doi=10.1103/PhysRevLett.125.101102|pmid=32955328 |s2cid=221447506 |doi-access=free |arxiv=2009.01075 |bibcode=2020PhRvL.125j1102A }}A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[https://spaceaustralia.com/index.php/feature/black-holes-or-boson-stars-mystery-gw190521]

See the following note for the link of the research{{Cite journal |last1=Bustillo |first1=Juan Calderón |last2=Sanchis-Gual |first2=Nicolas |last3=Torres-Forné |first3=Alejandro |last4=Font |first4=José A. |last5=Vajpeyi |first5=Avi |last6=Smith |first6=Rory |last7=Herdeiro |first7=Carlos |last8=Radu |first8=Eugen |last9=Leong |first9=Samson H. W. |date=2021-02-24 |title=GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of {{val|8.7|e=-13|u=eV}} |url=https://link.aps.org/doi/10.1103/PhysRevLett.126.081101 |journal=Physical Review Letters |volume=126 |issue=8 |pages=081101 |doi=10.1103/PhysRevLett.126.081101|pmid=33709746 |arxiv=2009.05376 |hdl=10773/31565 |s2cid=231719224 |hdl-access=free }}

1.2–3×1048 J

|GRB 221009A – the most powerful gamma-ray burst (GRB) ever recorded – total/true{{Cite journal |last1=Aimuratov |first1=Y. |last2=Becerra |first2=L. M. |last3=Bianco |first3=C. L. |last4=Cherubini |first4=C. |last5=Valle |first5=M. Della |last6=Filippi |first6=S. |last7=Li 李 |first7=Liang 亮 |last8=Moradi |first8=R. |last9=Rastegarnia |first9=F. |last10=Rueda |first10=J. A. |last11=Ruffini |first11=R. |last12=Sahakyan |first12=N. |last13=Wang 王 |first13=Y. 瑜 |last14=Zhang 张 |first14=S. R. 书瑞 |date=2023-09-22 |title=GRB-SN Association within the Binary-driven Hypernova Model |journal=The Astrophysical Journal |volume=955 |issue=2 |pages=93 |doi=10.3847/1538-4357/ace721 |doi-access=free |arxiv=2303.16902 |bibcode=2023ApJ...955...93A |issn=0004-637X}} isotropic energy output estimated at 1.2–3 × 1048 joules (1.2–3 × 1055 erg){{Cite journal |last1=Burns |first1=Eric |last2=Svinkin |first2=Dmitry |last3=Fenimore |first3=Edward |last4=Kann |first4=D. Alexander |last5=Agüí Fernández |first5=José Feliciano |last6=Frederiks |first6=Dmitry |last7=Hamburg |first7=Rachel |last8=Lesage |first8=Stephen |last9=Temiraev |first9=Yuri |last10=Tsvetkova |first10=Anastasia |last11=Bissaldi |first11=Elisabetta |last12=Briggs |first12=Michael S. |last13=Dalessi |first13=Sarah |last14=Dunwoody |first14=Rachel |last15=Fletcher |first15=Cori |date=2023-03-01 |title=GRB 221009A: The BOAT |journal=The Astrophysical Journal Letters |volume=946 |issue=1 |pages=L31 |doi=10.3847/2041-8213/acc39c |issn=2041-8205|doi-access=free |arxiv=2302.14037 |bibcode=2023ApJ...946L..31B }}{{Cite journal |last1=Abbasi |first1=R. |last2=Ackermann |first2=M. |last3=Adams |first3=J. |last4=Agarwalla |first4=S. K. |last5=Aguilar |first5=J. A. |last6=Ahlers |first6=M. |last7=Alameddine |first7=J. M. |last8=Amin |first8=N. M. |last9=Andeen |first9=K. |last10=Anton |first10=G. |last11=Argüelles |first11=C. |last12=Ashida |first12=Y. |last13=Athanasiadou |first13=S. |last14=Ausborm |first14=L. |last15=Axani |first15=S. N. |date=2024 |title=Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube |journal=The Astrophysical Journal |language=en |volume=964 |issue=2 |pages=126 |doi=10.3847/1538-4357/ad220b |doi-access=free |arxiv=2312.11515 |bibcode=2024ApJ...964..126A |issn=0004-637X}}{{Cite journal |last1=Zhang 张 |first1=B. Theodore 兵 |last2=Murase |first2=Kohta |last3=Ioka |first3=Kunihito |last4=Song |first4=Deheng |last5=Yuan 袁 |first5=Chengchao 成超 |last6=Mészáros |first6=Péter |date=2023-04-01 |title=External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A |journal=The Astrophysical Journal Letters |volume=947 |issue=1 |pages=L14 |doi=10.3847/2041-8213/acc79f |doi-access=free |arxiv=2211.05754 |bibcode=2023ApJ...947L..14Z |issn=2041-8205}}

1050

|

|≳1050 J

|Upper limit of isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).{{Cite journal|last1=Toma|first1=Kenji|last2=Sakamoto|first2=Takanori|last3=Mészáros|first3=Peter|title=Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities|date=April 2011|url=https://doi.org/10.1088/0004-637x/731/2/127|journal=The Astrophysical Journal|language=en|volume=731|issue=2|pages=127|doi=10.1088/0004-637X/731/2/127|issn=0004-637X|arxiv=1008.1269|bibcode=2011ApJ...731..127T|s2cid=119288325}}

rowspan="3" |1053

| rowspan="3" | 

|>1053 J

|Mechanical energy of very energetic so-called "quasar tsunamis"{{Cite web |last=Garner |first=Rob |date=2020-03-18 |title=Quasar Tsunamis Rip Across Galaxies |url=http://www.nasa.gov/feature/goddard/2020/quasar-tsunamis-rip-across-galaxies |access-date=2022-03-28 |website=NASA}}To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note

6×1053{{nbsp}}JTotal mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797{{Cite journal|arxiv=1103.0630|last1=Cavagnolo|first1=K. W|title=A Powerful AGN Outburst in RBS 797|journal=The Astrophysical Journal|volume=732|issue=2|pages=71|last2=McNamara|first2=B. R|last3=Wise|first3=M. W|last4=Nulsen|first4=P. E. J|last5=Brüggen|first5=M|last6=Gitti|first6=M|last7=Rafferty|first7=D. A|year=2011|doi=10.1088/0004-637X/732/2/71|bibcode=2011ApJ...732...71C|s2cid=73653317}}
7.65×1053{{nbsp}}J

|Mass-energy of Sagittarius A*, Milky Way's central supermassive black hole{{Cite web |title=4.297e 6*1.9788e 30*9e16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=4.297e+6*1.9788e+30*9e16 |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}{{Cite journal |last1=Abuter |first1=R. |last2=Aimar |first2=N. |last3=Seoane |first3=P. Amaro |last4=Amorim |first4=A. |last5=Bauböck |first5=M. |last6=Berger |first6=J. P. |last7=Bonnet |first7=H. |last8=Bourdarot |first8=G. |last9=Brandner |first9=W. |last10=Cardoso |first10=V. |last11=Clénet |first11=Y. |last12=Davies |first12=R. |last13=Zeeuw |first13=P. T. de |last14=Dexter |first14=J. |last15=Drescher |first15=A. |date=2023-09-01 |title=Polarimetry and astrometry of NIR flares as event horizon scale, dynamical probes for the mass of Sgr A* |url=https://www.aanda.org/articles/aa/full_html/2023/09/aa47416-23/aa47416-23.html |journal=Astronomy & Astrophysics |language=en |volume=677 |pages=L10 |doi=10.1051/0004-6361/202347416 |issn=0004-6361|arxiv=2307.11821 |bibcode=2023A&A...677L..10G }}

1054

|  

3×1054{{nbsp}}JTotal mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348){{cite journal | url=http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html | doi=10.1086/430945 | title=The Powerful Outburst in Hercules A | date=2005 | last1=Nulsen | first1=P. E. J. | last2=Hambrick | first2=D. C. | last3=McNamara | first3=B. R. | last4=Rafferty | first4=D. | last5=Birzan | first5=L. | last6=Wise | first6=M. W. | last7=David | first7=L. P. | journal=The Astrophysical Journal | volume=625 | issue=1 | pages=L9–L12 | arxiv=astro-ph/0504350 | bibcode=2005ApJ...625L...9N }}
1055 >1055{{nbsp}}JTotal mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,{{Cite journal|last1=Li|first1=Shuang-Liang|last2=Cao|first2=Xinwu|date=June 2012|title=Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421|url=https://doi.org/10.1088/0004-637x/753/1/24|journal=The Astrophysical Journal|language=en|volume=753|issue=1|pages=24|doi=10.1088/0004-637X/753/1/24|issn=0004-637X|arxiv=1204.2327|bibcode=2012ApJ...753...24L |s2cid=119236058}} Ophiucus Supercluster Explosion{{Cite journal|last1=Giacintucci|first1=S.|last2=Markevitch|first2=M.|last3=Johnston-Hollitt|first3=M.|last4=Wik|first4=D. R.|last5=Wang|first5=Q. H. S.|last6=Clarke|first6=T. E.|date=February 2020|title=Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster|journal=The Astrophysical Journal|language=en|volume=891|issue=1|pages=1|doi=10.3847/1538-4357/ab6a9d|issn=0004-637X|arxiv=2002.01291|bibcode=2020ApJ...891....1G|s2cid=211020555 |doi-access=free }} and supermassive black holes mergings{{Cite web |last=Siegel |first=Ethan |title=Merging Supermassive Black Holes Will Become The Most Energetic Events Of All |url=https://www.forbes.com/sites/startswithabang/2020/03/03/the-most-energetic-event-in-the-universe-hasnt-been-discovered-yet/ |access-date=2022-03-21 |website=Forbes |language=en}}{{Cite web |last=Siegel |first=Ethan |date=2020-03-10 |title=Merging Supermassive Black Holes Are The Universe's Most Energetic Events Of All |url=https://medium.com/starts-with-a-bang/merging-supermassive-black-holes-are-the-universes-most-energetic-events-of-all-be380cdb2975 |access-date=2022-03-21 |website=Starts With A Bang! |language=en}}
rowspan="3" |1057

| rowspan="3" |

|~1057 J

|Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales{{Cite web |last=Diodati |first=Michele |date=2020-04-11 |title=Rotating Black Holes, the Most Powerful Energy Generators in the Universe |url=https://medium.com/amazing-science/rotating-black-holes-the-most-powerful-energy-generators-in-the-universe-832439add442 |access-date=2022-03-28 |website=Amazing Science |language=en}}{{Cite journal |last1=Tamburini |first1=Fabrizio |last2=Thidé |first2=Bo |last3=Della Valle |first3=Massimo |date=2020 |title=Measurement of the spin of the M87 black hole from its observed twisted light |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=492 |issue=1 |pages=L22–L27 |url=https://openaccess.inaf.it/handle/20.500.12386/31845 |language=en |doi=10.1093/mnrasl/slz176 |doi-access=free |issn=0035-8711|arxiv=1904.07923 |bibcode=2020MNRAS.492L..22T }}

~2×1057 J

|Estimated thermal energy of the Bullet Cluster of galaxies{{Cite journal|last1=Tucker|first1=W.|last2=Blanco|first2=P.|last3=Rappoport|first3=S.|last4=David|first4=L.|last5=Fabricant|first5=D.|last6=Falco|first6=E. E.|last7=Forman|first7=W.|last8=Dressler|first8=A.|last9=Ramella|first9=M.|date=1998-03-02|title=1E 0657–56: A Contender for the Hottest Known Cluster of Galaxies|url=https://iopscience.iop.org/article/10.1086/311234/meta|journal=The Astrophysical Journal|language=en|volume=496|issue=1|pages=L5|doi=10.1086/311234|issn=0004-637X|arxiv=astro-ph/9801120|bibcode=1998ApJ...496L...5T|s2cid=16140198}}

7.3×1057 J

|Mass-energy equivalent of the ultramassive black hole TON 618, an extremely luminous quasar / active galactic nucleus (AGN).{{Cite journal |last1=Ge |first1=Xue |last2=Zhao |first2=Bi-Xuan |last3=Bian |first3=Wei-Hao |last4=Frederick |first4=Green Richard |date=20 March 2019 |title=The Blueshift of the C iv Broad Emission Line in QSOs |journal=The Astronomical Journal |volume=157 |issue=4 |pages=148 |doi=10.3847/1538-3881/ab0956 |doi-access=free |arxiv=1903.08830 |bibcode=2019AJ....157..148G |issn=0004-6256}}{{Cite web |title=40.7billion*2e30*9e16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=40.7billion*2e30*9e16 |access-date=2024-09-23 |website=www.wolframalpha.com |language=en}}

rowspan="2" |1058

| rowspan="2" | 

|~1058 J

|Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings{{Cite journal |last1=Markevitch |first1=Maxim |last2=Vikhlinin |first2=Alexey |date=May 2007 |title=Shocks and cold fronts in galaxy clusters |journal=Physics Reports |volume=443 |issue=1 |pages=1–53 |doi=10.1016/j.physrep.2007.01.001|arxiv=astro-ph/0701821 |bibcode=2007PhR...443....1M |s2cid=119326224 }}

4×1058{{nbsp}}JVisible mass–energy in our galaxy, the Milky Way{{cite web |url=http://physics.uoregon.edu/~jimbrau/astr123/Notes/Chapter23.html#mass |title=The Milky Way Galaxy |author=Jim Brau |access-date=4 November 2011 |author-link=James E. Brau }}{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=41&num=4&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
rowspan="2" | 1059rowspan="2" |  1×1059{{nbsp}}JTotal mass–energy of our galaxy, the Milky Way, including dark matter and dark energy{{cite journal | last1 = Karachentsev | first1 = I. D. | last2 = Kashibadze | first2 = O. G. | year = 2006 | title = Masses of the local group and of the M81 group estimated from distortions in the local velocity field | journal = Astrophysics | volume = 49 | issue = 1| pages = 3–18 | doi = 10.1007/s10511-006-0002-6 | bibcode=2006Ap.....49....3K| s2cid = 120973010 }}{{cite web|title=Conversion from kg to J|url=http://physics.nist.gov/cgi-bin/cuu/Convert?exp=42&num=1.2&From=kg&To=j&Action=Convert+value+and+show+factor|publisher=NIST|access-date=4 November 2011}}
1.4×1059{{nbsp}}J

|Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses.{{Cite web |title=0.8e 12*1.988e 30kg*c^2 round to second digit - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=0.8e+12*1.988e+30kg*c%5E2+round+to+second+digit |access-date=2024-09-13 |website=www.wolframalpha.com |language=en}}{{Cite web |date=10 January 2018 |title=The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy |url=https://academic.oup.com/mnras/article/475/3/4043/4797184 |access-date=13 September 2024 |website=Monthly Notices of the Royal Astronomical Society |quote=... derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 10^12 M⊙ and 240 ± 10 kpc, respectively.}}

1062 1–2×1062{{nbsp}}JTotal mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way

{{cite journal

| author = Einasto, M.

| title = The richest superclusters. I. Morphology

| journal = Astronomy and Astrophysics

| date = December 2007

| volume = 476

| issue = 2

| pages = 697–711

| bibcode = 2007A&A...476..697E

| doi = 10.1051/0004-6361:20078037

| display-authors = 1

| last2 = Saar

| first2 = E.

| last3 = Liivamägi

| first3 = L. J.

| last4 = Einasto

| first4 = J.

| last5 = Tago

| first5 = E.

| last6 = Martínez

| first6 = V. J.

| last7 = Starck

| first7 = J.-L.

| last8 = Müller

| first8 = V.

| last9 = Heinämäki

| first9 = P.

| arxiv = 0706.1122

| s2cid = 15004251

}}

10701.462×1070{{nbsp}}JRough estimate of total mass–energy of ordinary matter (atoms; baryons) present in the observable universe.{{Cite web |title=9.9*10^-30*1000*3.566*10^80*0.046*9*10^16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9*10%5E-30*1000*3.566*10%5E80*0.046*9*10%5E16 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}Details of calculation: WMAP 10 year survey's estimate of mass-energy density * volume of Observable Universe * percentage of which is ordinary matter: [9.9e-30 g/cm^3] * [3.566e+80 m^3] * [0.046] * [c^2] = 1.46e+70 Joules.

{{Cite web |title=WMAP- Content of the Universe |url=https://wmap.gsfc.nasa.gov/universe/uni_matter.html |access-date=2024-09-11 |website=wmap.gsfc.nasa.gov}}

1071

|

|3.177×1071{{nbsp}}J

|Rough estimate of total mass-energy within our observable universe, accounting for all forms of matter and energy.{{Cite web |title=9.9*10^-30*1000*3.566*10^80*9*10^16 - Wolfram{{!}}Alpha |url=https://www.wolframalpha.com/input?i=9.9*10%5E-30*1000*3.566*10%5E80*9*10%5E16 |access-date=2024-09-11 |website=www.wolframalpha.com |language=en}}

SI multiples

{{SI multiples|unit=joule|symbol=J}}

{{SI unit lowercase|James Prescott Joule|joule|J}}

See also

Notes

{{reflist|30em}}

{{Orders of magnitude}}

{{DEFAULTSORT:Orders of Magnitude (Energy)}}

Category:Energy

*

Energy