Ozone monitoring instrument
{{Short description|Earth observation satellite}}
{{Infobox spacecraft class
| name = Ozone Monitoring Instrument on-board Aura-Satellite
| image = File:NASA - Human Fingerprint on Global Air Quality.webm
| image_caption = Overview of OMI/Aura by NASA
| manufacturer = [https://www.spaceoffice.nl/en/ Dutch Space]
| designer = Netherlands Agency for Aerospace Programmes, Finnish Meteorological Institute and the National Aeronautics and Space Agency (NASA)
| country = Netherlands
| operator = NASA
| applications = Atmospheric composition, air pollution, ozone layer monitoring
| spacecraft_type =
| constellation = A-Train
| dimensions = 50x40x35 cm3 (OMI)
| mass = 5 kg (OMI)
| lifetime = 20 years
| firstlaunch = 2004
| power = 66 watts ((OMI)
| orbits = Sun-Synchronous (Aura Satellite)
}}
The ozone monitoring instrument (OMI){{Cite journal |last1=Levelt |first1=P.F. |last2=van den Oord |first2=G.H.J. |last3=Dobber |first3=M.R. |last4=Malkki |first4=A. |last5=Huib Visser |last6=Johan de Vries |last7=Stammes |first7=P. |last8=Lundell |first8=J.O.V. |last9=Saari |first9=H. |date=31 May 2006 |title=The ozone monitoring instrument |url=https://ieeexplore.ieee.org/document/1624590 |journal=IEEE Transactions on Geoscience and Remote Sensing |volume=44 |issue=5 |pages=1093–1101 |doi=10.1109/TGRS.2006.872333 |bibcode=2006ITGRS..44.1093L |issn=0196-2892}} is a nadir-viewing visual and ultraviolet spectrometer aboard the NASA Aura spacecraft, which is part of the satellite constellation A-Train. In this group of satellites Aura flies in formation about 15 minutes behind Aqua satellite, both of which orbit the Earth in a polar Sun-synchronous pattern, and which provides nearly global coverage in one day. Aura satellite was launched on July 15, 2004, and OMI has collected data since August 9, 2004.{{cite web |title=Ozone Monitoring Instrument (OMI) Data User's Guide |url=https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.2_ProductRequirements_Designs/README.OMI_DUG.pdf |publisher=NASA |date=5 January 2012}}
From a technical point of view, OMI instrument use hyperspectral imaging to observe solar-backscatter radiation to the space with an spectral range that covers the visible and ultraviolet. Its spectral capabilities were designed to achieve specific requirements of total ozone amounts retrievals in terms of accuracy and precision. Also its characteristics provide accurate radiometric and wavelength self calibration over the long-term project requirements.
__TOC__
OMI project
The OMI project is a cooperation between the Netherlands Agency for Aerospace Programmes (NIVR), the Finnish Meteorological Institute (FMI) and the National Aeronautics and Space Agency (NASA).
The OMI project was carried out under the direction of the NIVR and financed by the Dutch Ministries of Economic Affairs, Transport and Public Works and the Ministry of Education and Science. The instrument was built by [https://www.spaceoffice.nl/en/ Dutch Space] in co-operation with Netherlands Organisation for Applied Scientific Research Science and Industry and Netherlands Institute for Space Research. The Finnish industry supplied the electronics. The scientific part of the OMI project is managed by KNMI (principal investigator [https://www.tudelft.nl/en/staff/p.f.levelt/ Prof. Dr. P. F. Levelt] now at the Delft University of Technology), in close co-operation with NASA and the Finnish Meteorological Institute.
Scientific objectives and atmospheric monitoring
One of the scientific objectives of OMI is to measure trace gases: ozone (O3), nitrogen dioxide{{Cite journal |last1=Lamsal |first1=Lok N. |last2=Krotkov |first2=Nickolay A. |last3=Vasilkov |first3=Alexander |last4=Marchenko |first4=Sergey |last5=Qin |first5=Wenhan |last6=Yang |first6=Eun-Su |last7=Fasnacht |first7=Zachary |last8=Joiner |first8=Joanna |last9=Choi |first9=Sungyeon |last10=Haffner |first10=David |last11=Swartz |first11=William H. |last12=Fisher |first12=Bradford |last13=Bucsela |first13=Eric |date=2021-01-21 |title=Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments |url=https://amt.copernicus.org/articles/14/455/2021/ |journal=Atmospheric Measurement Techniques |language=English |volume=14 |issue=1 |pages=455–479 |doi=10.5194/amt-14-455-2021 |doi-access=free |bibcode=2021AMT....14..455L |issn=1867-1381}} (NO2), sulfur dioxide{{Cite journal |last1=Fioletov |first1=Vitali E. |last2=McLinden |first2=Chris A. |last3=Krotkov |first3=Nickolay |last4=Li |first4=Can |last5=Joiner |first5=Joanna |last6=Theys |first6=Nicolas |last7=Carn |first7=Simon |last8=Moran |first8=Mike D. |date=2016-09-15 |title=A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument |url=https://acp.copernicus.org/articles/16/11497/2016/acp-16-11497-2016.html |journal=Atmospheric Chemistry and Physics |language=English |volume=16 |issue=18 |pages=11497–11519 |doi=10.5194/acp-16-11497-2016 |doi-access=free |issn=1680-7316}} (SO2), formaldehyde (HCHO),{{Cite journal |last1=Marais |first1=E. A. |last2=Jacob |first2=D. J. |last3=Guenther |first3=A. |last4=Chance |first4=K. |last5=Kurosu |first5=T. P. |last6=Murphy |first6=J. G. |last7=Reeves |first7=C. E. |last8=Pye |first8=H. O. T. |date=2014-08-01 |title=Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter |url=https://acp.copernicus.org/articles/14/7693/2014/ |journal=Atmospheric Chemistry and Physics |language=English |volume=14 |issue=15 |pages=7693–7703 |doi=10.5194/acp-14-7693-2014 |doi-access=free |bibcode=2014ACP....14.7693M |issn=1680-7316}} BrO,{{Cite journal |last1=Suleiman |first1=Raid M. |last2=Chance |first2=Kelly |last3=Liu |first3=Xiong |last4=González Abad |first4=Gonzalo |last5=Kurosu |first5=Thomas P. |last6=Hendrick |first6=Francois |last7=Theys |first7=Nicolas |date=2019-04-04 |title=OMI total bromine monoxide (OMBRO) data product: algorithm, retrieval and measurement comparisons |url=https://amt.copernicus.org/articles/12/2067/2019/ |journal=Atmospheric Measurement Techniques |language=English |volume=12 |issue=4 |pages=2067–2084 |doi=10.5194/amt-12-2067-2019 |doi-access=free |bibcode=2019AMT....12.2067S |issn=1867-1381}} and OClO. However, OMI sensors can distinguish between aerosol types, such as smoke, dust, and sulfates,{{Cite journal |last1=Levelt |first1=Pieternel F. |last2=Joiner |first2=Joanna |last3=Tamminen |first3=Johanna |last4=Veefkind |first4=J. Pepijn |last5=Bhartia |first5=Pawan K. |last6=Stein Zweers |first6=Deborah C. |last7=Duncan |first7=Bryan N. |last8=Streets |first8=David G. |last9=Eskes |first9=Henk |last10=van der A |first10=Ronald |last11=McLinden |first11=Chris |last12=Fioletov |first12=Vitali |last13=Carn |first13=Simon |last14=de Laat |first14=Jos |last15=DeLand |first15=Matthew |date=2018-04-24 |title=The Ozone Monitoring Instrument: overview of 14 years in space |url=https://acp.copernicus.org/articles/18/5699/2018/ |journal=Atmospheric Chemistry and Physics |language=English |volume=18 |issue=8 |pages=5699–5745 |doi=10.5194/acp-18-5699-2018 |doi-access=free |bibcode=2018ACP....18.5699L |issn=1680-7316}} and can measure cloud pressureNote that several studies of OMI retrievals indicate that the cloud pressures derived from OMI measure an average pressure reached by solar photons inside a cloud. and cloud coverage, which provide data to derive tropospheric ozone.{{Cite journal |last1=Mielonen |first1=T. |last2=de Haan |first2=J. F. |last3=van Peet |first3=J. C. A. |last4=Eremenko |first4=M. |last5=Veefkind |first5=J. P. |date=2015-02-09 |title=Towards the retrieval of tropospheric ozone with the Ozone Monitoring Instrument (OMI) |url=https://amt.copernicus.org/articles/8/671/2015/ |journal=Atmospheric Measurement Techniques |language=English |volume=8 |issue=2 |pages=671–687 |doi=10.5194/amt-8-671-2015 |doi-access=free |bibcode=2015AMT.....8..671M |issn=1867-1381}} In that regard OMI follows in the heritage of TOMS, SBUV, GOME, SCIAMACHY, and GOMOS. On top of that, OMI aims to detect emissions in volcanic eruptions with up to at least 100 times more sensitivity than TOMS. The Ozone Monitoring Instrument has been proved an useful platform to monitor other traces gases like Glyoxal,{{Cite journal |last1=Kwon |first1=Hyeong-Ahn |last2=González Abad |first2=Gonzalo |last3=Chan Miller |first3=Christopher |last4=Hall |first4=Kirsten R. |last5=Nowlan |first5=Caroline R. |last6=O'Sullivan |first6=Ewan |last7=Wang |first7=Huiqun |last8=Chong |first8=Heesung |last9=Ayazpour |first9=Zolal |last10=Liu |first10=Xiong |last11=Chance |first11=Kelly |date=September 2024 |title=Updated OMI Glyoxal Column Measurements Using Collection 4 Level 1B Radiances |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024EA003705 |journal=Earth and Space Science |language=en |volume=11 |issue=9 |doi=10.1029/2024EA003705 |issn=2333-5084}} variables like surface UV radiation,{{Cite journal |last1=Tanskanen |first1=A. |last2=Krotkov |first2=N.A. |last3=Herman |first3=J.R. |last4=Arola |first4=A. |date=24 April 2006 |title=Surface ultraviolet irradiance from OMI |url=https://ieeexplore.ieee.org/document/1624605 |journal=IEEE Transactions on Geoscience and Remote Sensing |volume=44 |issue=5 |pages=1267–1271 |doi=10.1109/TGRS.2005.862203 |hdl=11603/28634 |issn=0196-2892}} or total column estimations like the water vapor,{{Cite journal |last1=Wang |first1=Huiqun |last2=Souri |first2=Amir Hossein |last3=González Abad |first3=Gonzalo |last4=Liu |first4=Xiong |last5=Chance |first5=Kelly |date=2019-09-27 |title=Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications |url=https://amt.copernicus.org/articles/12/5183/2019/ |journal=Atmospheric Measurement Techniques |language=English |volume=12 |issue=9 |pages=5183–5199 |doi=10.5194/amt-12-5183-2019 |doi-access=free |issn=1867-1381}} NO2 and Ozone. Has been uses in operational services by European Centre for Medium-range Weather Forecasts (ECMWF), the US National Oceanic and Atmospheric Administration (NOAA) for ozone and air quality forecasts, and the Volcanic Ash Advisory Centers (VAACs) for the rerouting of aircraft in case of a volcanic eruption.
Instrument Information
The instrument observes Earth's backscattered radiation and uses two imaging grating spectrometers, and each grating spectrometer is coupled to a CCD detector with 780x576 (spectral x spatial) pixels. The instrument can operate in two different modes: the normal operational mode where a single pixel in the observation has an spatial resolution 13x24 km2 at nadir (straight down), and the zoom mode where this resolution is increased to 13x12 km2.
= Spectral Information =
class="wikitable floatright"
|+ Spectral information. Full Width at Half Maximum (FWHM) is also refereed as Average Spectral Resolution. Average Spectral Sampling Distance (ASSD). ! Channel !! Total Range !! Full Performance Range !! FWHM !! ASSD (nm/pixel) | ||||
UV-1 | 264-311 nm | 270-310 nm | 0.63 | 0.33 |
UV-2 | 307-383 nm | 310-365 nm | 0.42 | 0.14 |
VIS | 349-504 nm | 365-504 nm | 0.63 | 0.21 |
OMI measurements cover a spectral region of 264–504 nm (nanometers) with a spectral resolution between 0.42 nm and 0.63 nm and a nominal ground footprint of 13 × 24 km2 at nadir. This spectral coverage is divided in three different channels two of them in the ultraviolet range, and one in the visible spectrum. Note that the ground pixel size of the UV-1 channel is twice as large in the swath direction compared to the other two channels, this optical design of the UV channel were done to reduce straylight in this wavelength range.{{Cite web |last=Instituut |first=Koninklijk Nederlands Meteorologisch |date=2019-11-22 |title=Instrument - Ozone Monitoring Instrument - KNMI Projects |url=https://www.knmiprojects.nl/projects/ozone-monitoring-instrument/instrument |access-date=2024-11-04 |website=www.knmiprojects.nl |language=en-GB}}
= Orbital Information =
The Aura satellite orbits at an altitude of 705 km in a sun-synchronous polar orbit with an exact 16-day repeat cycle and with a local equator crossing time of 13. 45 ( 1:45 P.M.) on the ascending node. The orbital inclination is 98.1 degrees, providing latitudinal coverage from 82° N to 82° S. It is a wide-field-imaging spectrometer with a 114° across-track viewing angle range that provides a 2600 km wide swath, enabling measurements with a daily global coverage.
= Calibration and Validation =
The discussion of the calibration and validation processes began before the launch of Aura Satellite.{{Cite journal |last1=Dobber |first1=M. |last2=Dirksen |first2=R. |last3=Levelt |first3=P. |last4=van den Oord |first4=B. |last5=Jaross |first5=G. |last6=Kowalewski |first6=M. |last7=Mount |first7=G. |last8=Heath |first8=D. |last9=Hilsenrath |first9=E. |last10=de Vries |first10=J. |date=2003-04-01 |title=Ozone Monitoring Instrument flight-model on-ground calibration from a scientific point of view |journal=Egs - AGU - Eug Joint Assembly |url=https://ui.adsabs.harvard.edu/abs/2003EAEJA.....6489D/abstract |pages=6489|bibcode=2003EAEJA.....6489D }}Dobber, Marcel & Dirksen, Ruud & Levelt, P. & Oord, G.H.J. & Jaross, Glen & Kowalewski, Matt & Mount, George & Heath, Donald & Hilsenrath, Ernest & Cebula, R. (2004). Ozone Monitoring Instrument flight-model on-ground and in-flight calibration. 554. 89-96. Once the instrument was in orbit the information of these calibration was published,{{Cite journal |last1=Dobber |first1=M.R. |last2=Dirksen |first2=R.J. |last3=Levelt |first3=P.F. |last4=van den Oord |first4=G.H.J. |last5=Voors |first5=R.H.M. |last6=Kleipool |first6=Q. |last7=Jaross |first7=G. |last8=Kowalewski |first8=M. |last9=Hilsenrath |first9=E. |last10=Leppelmeier |first10=G.W. |last11=Johan de Vries |last12=Dierssen |first12=W. |last13=Rozemeijer |first13=N.C. |date=May 2006 |title=Ozone monitoring instrument calibration |url=https://ieeexplore.ieee.org/document/1624601 |journal=IEEE Transactions on Geoscience and Remote Sensing |volume=44 |issue=5 |pages=1209–1238 |doi=10.1109/TGRS.2006.869987 |issn=0196-2892}} showing specific details of the absolute radiometric calibration, the bi-directional scattering distribution function (BSDF) calibration and the spectral calibration carried on. Note also that the instrument is equipped with an internal white light source for detector calibration purposes. The validation,{{Cite journal |last1=Loew |first1=Alexander |last2=Bell |first2=William |last3=Brocca |first3=Luca |last4=Bulgin |first4=Claire E. |last5=Burdanowitz |first5=Jörg |last6=Calbet |first6=Xavier |last7=Donner |first7=Reik V. |last8=Ghent |first8=Darren |last9=Gruber |first9=Alexander |last10=Kaminski |first10=Thomas |last11=Kinzel |first11=Julian |last12=Klepp |first12=Christian |last13=Lambert |first13=Jean-Christopher |last14=Schaepman-Strub |first14=Gabriela |last15=Schröder |first15=Marc |date=6 June 2017 |title=Validation practices for satellite-based Earth observation data across communities |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017RG000562 |journal=Reviews of Geophysics |language=en |volume=55 |issue=3 |pages=779–817 |doi=10.1002/2017RG000562 |issn=8755-1209}} which aim to assess the inherent uncertainties in satellite data products of the instrument together with retrieval algorithms used for each data product, was carried on continuously since the launch of Aura satellite. The validation include products like: total ozone column,{{Cite journal |last1=McPeters |first1=R. |last2=Kroon |first2=M. |last3=Labow |first3=G. |last4=Brinksma |first4=E. |last5=Balis |first5=D. |last6=Petropavlovskikh |first6=I. |last7=Veefkind |first7=J. P. |last8=Bhartia |first8=P. K. |last9=Levelt |first9=P. F. |date=2008-08-16 |title=Validation of the Aura Ozone Monitoring Instrument total column ozone product |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JD008802 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=113 |issue=D15 |doi=10.1029/2007JD008802 |issn=0148-0227}}{{Cite journal |last1=Balis |first1=D. |last2=Kroon |first2=M. |last3=Koukouli |first3=M. E. |last4=Brinksma |first4=E. J. |last5=Labow |first5=G. |last6=Veefkind |first6=J. P. |last7=McPeters |first7=R. D. |date=2007-12-27 |title=Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JD008796 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=112 |issue=D24 |doi=10.1029/2007JD008796 |issn=0148-0227}} NO2,{{Cite journal |last1=Compernolle |first1=Steven |last2=Verhoelst |first2=Tijl |last3=Pinardi |first3=Gaia |last4=Granville |first4=José |last5=Hubert |first5=Daan |last6=Keppens |first6=Arno |last7=Niemeijer |first7=Sander |last8=Rino |first8=Bruno |last9=Bais |first9=Alkis |last10=Beirle |first10=Steffen |last11=Boersma |first11=Folkert |last12=Burrows |first12=John P. |last13=De Smedt |first13=Isabelle |last14=Eskes |first14=Henk |last15=Goutail |first15=Florence |date=2020-07-10 |title=Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties |url=https://acp.copernicus.org/articles/20/8017/2020/ |journal=Atmospheric Chemistry and Physics |language=English |volume=20 |issue=13 |pages=8017–8045 |doi=10.5194/acp-20-8017-2020 |doi-access=free |issn=1680-7316}}{{Cite journal |last1=Celarier |first1=E. A. |last2=Brinksma |first2=E. J. |last3=Gleason |first3=J. F. |last4=Veefkind |first4=J. P. |last5=Cede |first5=A. |last6=Herman |first6=J. R. |last7=Ionov |first7=D. |last8=Goutail |first8=F. |last9=Pommereau |first9=J.-P. |last10=Lambert |first10=J.-C. |last11=van Roozendael |first11=M. |last12=Pinardi |first12=G. |last13=Wittrock |first13=F. |last14=Schönhardt |first14=A. |last15=Richter |first15=A. |date=2008-08-16 |title=Validation of Ozone Monitoring Instrument nitrogen dioxide columns |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JD008908 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=113 |issue=D15 |doi=10.1029/2007JD008908 |issn=0148-0227}} ozone vertical profiles.{{Cite journal |last1=Liu |first1=X. |last2=Bhartia |first2=P. K. |last3=Chance |first3=K. |last4=Froidevaux |first4=L. |last5=Spurr |first5=R. J. D. |last6=Kurosu |first6=T. P. |date=2010-03-12 |title=Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements |url=https://acp.copernicus.org/articles/10/2539/2010/ |journal=Atmospheric Chemistry and Physics |language=English |volume=10 |issue=5 |pages=2539–2549 |doi=10.5194/acp-10-2539-2010 |doi-access=free |issn=1680-7316}}{{Cite journal |last1=Kroon |first1=M. |last2=de Haan |first2=J. F. |last3=Veefkind |first3=J. P. |last4=Froidevaux |first4=L. |last5=Wang |first5=R. |last6=Kivi |first6=R. |last7=Hakkarainen |first7=J. J. |date=2011-09-20 |title=Validation of operational ozone profiles from the Ozone Monitoring Instrument |url=http://doi.wiley.com/10.1029/2010JD015100 |journal=Journal of Geophysical Research |language=en |volume=116 |issue=D18 |doi=10.1029/2010JD015100 |issn=0148-0227}}
= In-flight performance =
One important aspect of satellite instruments for scientific measurements is the evolution of the performance during the life-cycle of the sensors, as well as, the continuous evaluation of the quality of the data products. In the case of an instrument like OMI the main aspects to consider are: the radiometric and spectral stability, the row anomaly, and detector degradation. In the first aspect: the radiometric degradation of OMI ranges from ~2% in the UV channels to ~0.5% in the VIS channel, which is much lower than any other similar satellite instrument. Regarding the wavelength calibration of the instrument it remains stable to 0.005–0.020 nm which indicates a high wavelength stability. It was detected a row anomaly due, probably, to a partial cover of the instrument,{{Cite journal |last1=Schenkeveld |first1=V. M. Erik |last2=Jaross |first2=Glen |last3=Marchenko |first3=Sergey |last4=Haffner |first4=David |last5=Kleipool |first5=Quintus L. |last6=Rozemeijer |first6=Nico C. |last7=Veefkind |first7=J. Pepijn |last8=Levelt |first8=Pieternel F. |date=2017-06-01 |title=In-flight performance of the Ozone Monitoring Instrument |url=https://amt.copernicus.org/articles/10/1957/2017/ |journal=Atmospheric Measurement Techniques |language=English |volume=10 |issue=5 |pages=1957–1986 |doi=10.5194/amt-10-1957-2017 |doi-access=free |pmid=29657582 |issn=1867-1381 |ref=inflightcalibration}} warning flags were included in the raw products to avoid the use of these specific rows and keep the quality of the retrieval products. Further information of the long-term calibration indicated in 2017 that the instrument will be able to provide useful science data for another 5 to 10 years.
Scientific relevance
File:A Day of Night-Shining Clouds.png
The OMI project has been monitoring the atmospheric composition and providing measurements widely used in the field of atmospheric chemistry research.{{Cite web |title=ACP – Special issue – Ten years of Ozone Monitoring Instrument (OMI) observations (ACP/AMT inter-journal SI) |url=https://acp.copernicus.org/articles/special_issue368.html |language=English}} The fact that it has been operational for more than a decade makes it also useful for trend monitoring. The reference describing the first 14 years of the OMI details the research data products provided by NASA, KNMI, FMI and SAO, also according to these authors, beyond the initial goals, OMI has been important due the high-resolution NO2 and SO2 measurements (OMI is the first instrument that is able to obtain daily global coverage combined with such spatial resolution), and the fact that top-down studies allowed for source attribution analyses.
= Awards =
The International Team of the Ozone Monitoring Instrument has received several awards for its contributions to a better understanding of the Earth system:
- [https://aura.gsfc.nasa.gov/science/feature-20190401.html#:~:text=The%20Ozone%20Monitoring%20Instrument%20(OMI,retrieval%20algorithm%20development%2C%20and%20validation. USGS 2018 Pecora Award] The Pecora award is annual to recognize individuals or teams using remote sensing in the field of Earth Science. It consider not only the scientific role but also its role informing decision makers and supporting natural or human-induced disaster responses.
- [https://www.ametsoc.org/index.cfm/ams/about-ams/ams-awards-honors/2021-awards-and-honors-recipients/ 2021 AMS Special Award] A broad description of this award to OMI International Team is given as an [https://www.youtube.com/watch?v=jx_kgdM-38I AMS video].File:2011 Arctic Ozone Loss.jpg
= Contributions to scientific research =
- Assessment of the Montreal Protocol: the instrument has proved stability to provide long-term data record for monitoring the ozone layer, which is the particular interest to evaluate the possible recovery of the ozone depletion in the southern hemisphere.
- Global concentrations of trace gases: the OMI data show a steady decline in concentrations of NO2 in the United States, Europe, and Japan, whereas in China, first strong increases were observed, followed by decreases after 2014.
- Absorbing aerosol that can cause warming: OMI can provide information as from its ultraviolet (UV) channel it is possible to derive such absorbing capacity.{{Cite journal |last1=Torres |first1=Omar |last2=Tanskanen |first2=Aapo |last3=Veihelmann |first3=Ben |last4=Ahn |first4=Changwoo |last5=Braak |first5=Remco |last6=Bhartia |first6=Pawan K. |last7=Veefkind |first7=Pepijn |last8=Levelt |first8=Pieternel |date=2007-12-27 |title=Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2007JD008809 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=112 |issue=D24 |doi=10.1029/2007JD008809 |issn=0148-0227}}
- Long-term data record of tropospheric ozone has been established: Tropospheric ozone assessment is important as it is the third main anthropogenic greenhouse gas,{{Cite journal |last1=Checa-Garcia |first1=Ramiro |last2=Hegglin |first2=Michaela I. |last3=Kinnison |first3=Douglas |last4=Plummer |first4=David A. |last5=Shine |first5=Keith P. |date=2018-04-16 |title=Historical Tropospheric and Stratospheric Ozone Radiative Forcing Using the CMIP6 Database |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076770 |journal=Geophysical Research Letters |language=en |volume=45 |issue=7 |pages=3264–3273 |doi=10.1002/2017GL076770 |issn=0094-8276}} and the fraction of ozone in the troposphere can be derived from the OMI data, either by itself alone or in combination with other instruments{{Cite journal |last1=Ziemke |first1=J. R. |last2=Douglass |first2=A. R. |last3=Oman |first3=L. D. |last4=Strahan |first4=S. E. |last5=Duncan |first5=B. N. |date=2015-07-22 |title=Tropospheric ozone variability in the tropics from ENSO to MJO and shorter timescales |url=https://acp.copernicus.org/articles/15/8037/2015/ |journal=Atmospheric Chemistry and Physics |language=English |volume=15 |issue=14 |pages=8037–8049 |doi=10.5194/acp-15-8037-2015 |doi-access=free |issn=1680-7316}}
- OMI formaldehyde retrievals indicate increases of this trace gas over India and China, and a downward trend over the Amazonian forest, spatially correlated with areas affected by deforestation{{Cite journal |last1=De Smedt |first1=I. |last2=Stavrakou |first2=T. |last3=Hendrick |first3=F. |last4=Danckaert |first4=T. |last5=Vlemmix |first5=T. |last6=Pinardi |first6=G. |last7=Theys |first7=N. |last8=Lerot |first8=C. |last9=Gielen |first9=C. |last10=Vigouroux |first10=C. |last11=Hermans |first11=C. |last12=Fayt |first12=C. |last13=Veefkind |first13=P. |last14=Müller |first14=J.-F. |last15=Van Roozendael |first15=M. |date=2015-11-10 |title=Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations |url=https://acp.copernicus.org/articles/15/12519/2015/ |journal=Atmospheric Chemistry and Physics |language=en |volume=15 |issue=21 |pages=12519–12545 |doi=10.5194/acp-15-12519-2015 |doi-access=free |issn=1680-7324}}
- OMI has been the first satellite instrument to be used for daily monitoring of volcanic emissions{{Cite journal |last1=Carn |first1=S. A. |last2=Fioletov |first2=V. E. |last3=McLinden |first3=C. A. |last4=Li |first4=C. |last5=Krotkov |first5=N. A. |date=2017-03-09 |title=A decade of global volcanic SO2 emissions measured from space |url=https://www.nature.com/articles/srep44095 |journal=Scientific Reports |language=en |volume=7 |issue=1 |pages=44095 |doi=10.1038/srep44095 |issn=2045-2322}}
- OMI satellite products of Ozone total column has been used for data assimilation en IFS model by ECMWF{{Cite journal |last=Inness |first=Antje |last2=Blechschmidt |first2=A.-M. |last3=Bouarar |first3=I. |last4=authors |first4=other |date=2014 |title=Data assimilation of satellite retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS |url=https://www.ecmwf.int/node/7595 |doi=10.21957/YWHGIJT6L}}
References
{{Reflist}}
External links
- [https://aura.gsfc.nasa.gov/omi.html OMI webpage] at NASA.gov
- [https://www.knmiprojects.nl/projects/ozone-monitoring-instrument OMI webpage] at KNMI.nl
- [http://www.temis.nl/ Tropospheric Emission Monitoring Internet Service (TEMIS)]
- https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.2_ProductRequirements_Designs/README.OMI_DUG.pdf
{{Use dmy dates|date=November 2017}}