Pentellated 7-orthoplexes#Pentistericantellated 7-orthoplex
class=wikitable style="float:right; margin-left:8px; width:480px;" |
colspan=4|Orthogonal projections in B6 Coxeter plane |
---|
align=center
|120px |120px |120px |120px |
align=center
|120px |120px |120px |120px |
align=center
|120px |120px |120px |120px |
align=center
|120px |120px |120px |120px |
align=center
|120px |
In seven-dimensional geometry, a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-orthoplex.
There are 32 unique {{not a typo|pentellations}} of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and {{not a typo|sterications}}. 16 are more simply constructed relative to the 7-cube.
These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.
{{-}}
Pentellated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Pentellated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1|4|node}} {{CDD|node_1|3|node|3|node|3|node|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 20160 |
style="background:#e7dcc3;"|Vertices | 2688 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Small {{not a typo|terated}} hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)Klitzing, (x3o3o3o3o3x4o - staz)
= Coordinates =
Coordinates are permutations of (0,1,1,1,1,1,2){{radic|2}}
= Images =
{{B7 Coxeter plane graphs|t16|150}}
Pentitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node|3|node|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 87360 |
style="background:#e7dcc3;"|Vertices | 13440 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)Klitzing, (x3x3o3o3o3x4o - tetaz)
= Images =
{{B7 Coxeter plane graphs|t156|150}}
= Coordinates =
Coordinates are permutations of (0,1,1,1,1,2,3).
== Penticantellated 7-orthoplex ==
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Penticantellated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node_1|4|node}} {{CDD|node_1|3|node|3|node_1|3|node|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 188160 |
style="background:#e7dcc3;"|Vertices | 26880 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)Klitzing, (x3o3x3o3o3x4o - teroz)
= Coordinates =
Coordinates are permutations of (0,1,1,1,2,2,3){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t146|150}}
Penticantitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|penticantitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 295680 |
style="background:#e7dcc3;"|Vertices | 53760 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)Klitzing, (x3x3x3oxo3x4o - tograz)
= Coordinates =
Coordinates are permutations of (0,1,1,1,2,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t145|150}}
Pentiruncinated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentiruncinated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,3,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1|4|node}} {{CDD|node_1|3|node|3|node|3|node_1|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 174720 |
style="background:#e7dcc3;"|Vertices | 26880 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)Klitzing, (x3o3o3x3o3x4o - topaz)
= Coordinates =
The coordinates are permutations of (0,1,1,2,2,2,3){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t136|150}}
Pentiruncitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentiruncitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,3,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node|3|node_1|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 443520 |
style="background:#e7dcc3;"|Vertices | 80640 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)Klitzing, (x3x3o3x3o3x4o - toptaz)
= Coordinates =
Coordinates are permutations of (0,1,1,2,2,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t1356|150}}
Pentiruncicantellated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentiruncicantellated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,3,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|4|node}} {{CDD|node_1|3|node|3|node_1|3|node_1|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 403200 |
style="background:#e7dcc3;"|Vertices | 80640 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)Klitzing, (x3o3x3x3o3x4o - toparz)
= Coordinates =
Coordinates are permutations of (0,1,1,2,3,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t1346|180}}
Pentiruncicantitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentiruncicantitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 725760 |
style="background:#e7dcc3;"|Vertices | 161280 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)Klitzing, (x3x3x3x3o3x4o - tegopaz)
= Coordinates =
Coordinates are permutations of (0,1,1,2,3,4,5){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t13456|150|NOB7A6}}
Pentistericated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentistericated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node|3|node|3|node|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 67200 |
style="background:#e7dcc3;"|Vertices | 13440 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)Klitzing, (x3o3o3o3x3x4o - tocaz)
= Images =
{{B7 Coxeter plane graphs|t126|150}}
= Coordinates =
Coordinates are permutations of (0,1,2,2,2,2,3){{radic|2}}.
Pentisteritruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentisteritruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 241920 |
style="background:#e7dcc3;"|Vertices | 53760 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)Klitzing, (x3x3o3o3x3x4o - tacotaz)
= Coordinates =
Coordinates are permutations of (0,1,2,2,2,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t1256|150}}
== Pentistericantellated 7-orthoplex ==
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentistericantellated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node|3|node_1|3|node|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 403200 |
style="background:#e7dcc3;"|Vertices | 80640 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)Klitzing, (x3o3x3o3x3x4o - tocarz)
= Coordinates =
Coordinates are permutations of (0,1,2,2,3,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t1246|150}}
Pentistericantitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentistericantitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 645120 |
style="background:#e7dcc3;"|Vertices | 161280 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)Klitzing, (x3x3x3o3x3x4o - tecagraz)
= Coordinates =
Coordinates are permutations of (0,1,2,2,3,4,5){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t12456|150|NOB7A6}}
Pentisteriruncinated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Pentisteriruncinated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,3,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node|3|node|3|node_1|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 241920 |
style="background:#e7dcc3;"|Vertices | 53760 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Bipenticantitruncated 7-orthoplex as t1,2,3,6{35,4}
- Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)Klitzing, (x3o3o3x3x3x4o - tecpaz)
= Coordinates =
Coordinates are permutations of (0,1,2,3,3,3,4){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t1236|150}}
Pentisteriruncitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentisteriruncitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,3,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 645120 |
style="background:#e7dcc3;"|Vertices | 161280 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)Klitzing, (x3x3o3x3x3x4o - tecpotaz)
= Coordinates =
Coordinates are permutations of (0,1,2,3,3,4,5){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t12356|150|NOB7A6}}
Pentisteriruncicantellated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentisteriruncicantellated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,3,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 645120 |
style="background:#e7dcc3;"|Vertices | 161280 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6{35,4}
- Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)Klitzing, (x3o3x3x3x3x4o - tacparez)
= Coordinates =
Coordinates are permutations of (0,1,2,3,4,4,5){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t12346|150|NOB7A6}}
== Pentisteriruncicantitruncated 7-orthoplex ==
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|pentisteriruncicantitruncated 7-orthoplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,4,5{35,4} |
style="background:#e7dcc3;"|Coxeter diagram | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|4|node}} {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|split1|nodes_11}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 1128960 |
style="background:#e7dcc3;"|Vertices | 322560 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | B7, [4,35] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Great {{not a typo|terated}} hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)Klitzing, (x3x3x3x3x3x4o - gotaz)
= Coordinates =
Coordinates are permutations of (0,1,2,3,4,5,6){{radic|2}}.
= Images =
{{B7 Coxeter plane graphs|t123456|150|NOB7A6}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D uniform polytopes (polyexa) with acronyms}}
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}