Pentellated 7-orthoplexes#Pentistericantellated 7-orthoplex

class=wikitable style="float:right; margin-left:8px; width:480px;"
colspan=4|Orthogonal projections in B6 Coxeter plane
align=center

|120px
7-orthoplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}

|120px
Pentellated 7-orthoplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1|4|node}}

|120px
Pentitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node_1|4|node}}

|120px
Penticantellated 7-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node_1|4|node}}

align=center

|120px
Penticantitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|4|node}}

|120px
Pentiruncinated 7-orthoplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1|4|node}}

|120px
Pentiruncitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|4|node}}

|120px
Pentiruncicantellated 7-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|4|node}}

align=center

|120px
Pentiruncicantitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|4|node}}

|120px
Pentistericated 7-orthoplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1|4|node}}

|120px
Pentisteritruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|4|node}}

|120px
Pentistericantellated 7-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|4|node}}

align=center

|120px
Pentistericantitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|4|node}}

|120px
Pentisteriruncinated 7-orthoplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|4|node}}

|120px
Pentisteriruncitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|4|node}}

|120px
Pentisteriruncicantellated 7-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|4|node}}

align=center

|120px
Pentisteriruncicantitruncated 7-orthoplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|4|node}}

In seven-dimensional geometry, a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-orthoplex.

There are 32 unique {{not a typo|pentellations}} of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and {{not a typo|sterications}}. 16 are more simply constructed relative to the 7-cube.

These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.

{{-}}

Pentellated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Pentellated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node|3|node|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges20160
style="background:#e7dcc3;"|Vertices2688
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Small {{not a typo|terated}} hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)Klitzing, (x3o3o3o3o3x4o - staz)

= Coordinates =

Coordinates are permutations of (0,1,1,1,1,1,2){{radic|2}}

= Images =

{{B7 Coxeter plane graphs|t16|150}}

Pentitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node|3|node|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges87360
style="background:#e7dcc3;"|Vertices13440
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)Klitzing, (x3x3o3o3o3x4o - tetaz)

= Images =

{{B7 Coxeter plane graphs|t156|150}}

= Coordinates =

Coordinates are permutations of (0,1,1,1,1,2,3).

== Penticantellated 7-orthoplex ==

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Penticantellated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node_1|3|node|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges188160
style="background:#e7dcc3;"|Vertices26880
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)Klitzing, (x3o3x3o3o3x4o - teroz)

= Coordinates =

Coordinates are permutations of (0,1,1,1,2,2,3){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t146|150}}

Penticantitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|penticantitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges295680
style="background:#e7dcc3;"|Vertices53760
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)Klitzing, (x3x3x3oxo3x4o - tograz)

= Coordinates =

Coordinates are permutations of (0,1,1,1,2,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t145|150}}

Pentiruncinated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentiruncinated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,3,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node|3|node_1|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges174720
style="background:#e7dcc3;"|Vertices26880
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)Klitzing, (x3o3o3x3o3x4o - topaz)

= Coordinates =

The coordinates are permutations of (0,1,1,2,2,2,3){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t136|150}}

Pentiruncitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentiruncitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,3,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges443520
style="background:#e7dcc3;"|Vertices80640
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)Klitzing, (x3x3o3x3o3x4o - toptaz)

= Coordinates =

Coordinates are permutations of (0,1,1,2,2,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t1356|150}}

Pentiruncicantellated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentiruncicantellated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,3,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges403200
style="background:#e7dcc3;"|Vertices80640
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)Klitzing, (x3o3x3x3o3x4o - toparz)

= Coordinates =

Coordinates are permutations of (0,1,1,2,3,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t1346|180}}

Pentiruncicantitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentiruncicantitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,3,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges725760
style="background:#e7dcc3;"|Vertices161280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)Klitzing, (x3x3x3x3o3x4o - tegopaz)

= Coordinates =

Coordinates are permutations of (0,1,1,2,3,4,5){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t13456|150|NOB7A6}}

Pentistericated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentistericated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node|3|node|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges67200
style="background:#e7dcc3;"|Vertices13440
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)Klitzing, (x3o3o3o3x3x4o - tocaz)

= Images =

{{B7 Coxeter plane graphs|t126|150}}

= Coordinates =

Coordinates are permutations of (0,1,2,2,2,2,3){{radic|2}}.

Pentisteritruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentisteritruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges241920
style="background:#e7dcc3;"|Vertices53760
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)Klitzing, (x3x3o3o3x3x4o - tacotaz)

= Coordinates =

Coordinates are permutations of (0,1,2,2,2,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t1256|150}}

== Pentistericantellated 7-orthoplex ==

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentistericantellated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges403200
style="background:#e7dcc3;"|Vertices80640
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)Klitzing, (x3o3x3o3x3x4o - tocarz)

= Coordinates =

Coordinates are permutations of (0,1,2,2,3,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t1246|150}}

Pentistericantitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentistericantitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges645120
style="background:#e7dcc3;"|Vertices161280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)Klitzing, (x3x3x3o3x3x4o - tecagraz)

= Coordinates =

Coordinates are permutations of (0,1,2,2,3,4,5){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t12456|150|NOB7A6}}

Pentisteriruncinated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Pentisteriruncinated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,3,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges241920
style="background:#e7dcc3;"|Vertices53760
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Bipenticantitruncated 7-orthoplex as t1,2,3,6{35,4}
  • Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)Klitzing, (x3o3o3x3x3x4o - tecpaz)

= Coordinates =

Coordinates are permutations of (0,1,2,3,3,3,4){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t1236|150}}

Pentisteriruncitruncated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentisteriruncitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,3,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges645120
style="background:#e7dcc3;"|Vertices161280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)Klitzing, (x3x3o3x3x3x4o - tecpotaz)

= Coordinates =

Coordinates are permutations of (0,1,2,3,3,4,5){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t12356|150|NOB7A6}}

Pentisteriruncicantellated 7-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentisteriruncicantellated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,3,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges645120
style="background:#e7dcc3;"|Vertices161280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6{35,4}
  • Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)Klitzing, (x3o3x3x3x3x4o - tacparez)

= Coordinates =

Coordinates are permutations of (0,1,2,3,4,4,5){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t12346|150|NOB7A6}}

== Pentisteriruncicantitruncated 7-orthoplex ==

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|pentisteriruncicantitruncated 7-orthoplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,3,4,5{35,4}
style="background:#e7dcc3;"|Coxeter diagram{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|4|node}}
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|split1|nodes_11}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges1128960
style="background:#e7dcc3;"|Vertices322560
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupsB7, [4,35]
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Great {{not a typo|terated}} hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)Klitzing, (x3x3x3x3x3x4o - gotaz)

= Coordinates =

Coordinates are permutations of (0,1,2,3,4,5,6){{radic|2}}.

= Images =

{{B7 Coxeter plane graphs|t123456|150|NOB7A6}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyexa.htm|7D uniform polytopes (polyexa) with acronyms}}